近些年来, hom-结构, 如hom-李代数, hom-代数, hom-李超代数, hom-超代数, hom-双代数, n-元hom-Nambu-李代数以及hom-李2-代数等代数结构及性质被广泛研究, 而且取得了许多重要研究结果. hom-李代数最早是由Hartwig, Larsson以及Silvestrov在文献[1]中研究Witt代数和Virasoro代数的形变时提出来的.文献[2]给出了hom-李代数及其表示的定义, 而且对hom-李代数的表示理论进行了严谨细致的研究.文献[3]在半单李代数上研究了hom-李代数的结构.二次hom-李代数在文献[4]中得到了研究.文献[5]提供了保积hom-李代数可解的充要条件.
而在李理论的研究中, 李环是一个重要且非常有趣的课题.在文献[6]中, 研究了幂零李环的条件及幂零李环的中心序列.对于4-Engel李环的幂零类的研究在文献[7]中得到体现.文献[8, 9]对李环的二阶上同调及Schreier's扩张理论进行了探索.特别的, 在文献[10]中, 作者在李环的一个短正合序列$ A\rightarrow E\xrightarrow{\pi} L $中的$ A $的扩张的自同构群上构造正合序列, 这里$ A $是$ E $的阿贝尔子环.他们通过一系列的研究得出如下结论.
设$ A\rightarrow E\xrightarrow{\pi} L $是阿贝尔扩张, 则存在以下两个正合序列
设$ A\rightarrow E\rightarrow L $是中心扩张, 则存在以下正合序列
文献[11, 12]研究了有限维$ p $ -群上的$ p $ -自同构.文献[13, 14]分别在群扩张的自同构中得到了一个正合序列和在群扩张的自同构群上得到Wells正合序列.特别地, 在文献[15]中, 作者在群的一个短正合序列$ 1\rightarrow N\rightarrow G\xrightarrow{\pi} H\rightarrow 1 $中的$ N $的扩张的自同构群上构造正合序列, 这里$ N $是$ G $的阿贝尔子群.他们通过一系列的研究得出如下结论.
若$ 1\rightarrow N\rightarrow G\xrightarrow{\pi} H\rightarrow 1 $是阿贝尔扩张, 则存在以下两个正合序列:
若$ 1\rightarrow N\rightarrow G\xrightarrow{\pi} H\rightarrow 1 $是中心扩张, 则存在以下正合序列:
文献[16]首次研究了hom-李环, 给出了hom-李环的定义并讨论了hom-李环幂零的条件.自然地, 通过对阿贝尔群扩张的自同构和阿贝尔李环扩张的自同构的研究, 希望在阿贝尔hom-李环中也能构造出相应的正合序列, 并对其进行相关应用.本文具体结果如下:
定理1.1 令$ A\rightarrow E\xrightarrow{\pi} L $是一个阿贝尔扩张, 则有以下两个正合序列:
定理1.2 令$ A\rightarrow E\xrightarrow{\pi} L $是一个中心扩张, 则存在下列正合序列:
这里$ \lambda(\theta, \phi) = [m_{\theta, \phi}, m'_{\theta, \phi}] $, $ \tau(\gamma) = (\theta, \phi) $.
定理1.3 令$ E $是一个hom-李环, 且$ A $是$ E $的一个阿贝尔理想, 如果序列$ A\rightarrow E\rightarrow L $分裂, 则序列
也可裂.
定理1.4 令$ E $是一个阶为$ p^{n}(p\geq2) $的hom-李$ p $环, $ Z(E) $是循环的且$ \Phi(E)\subseteq Z(E) $.则每一个$ Z(E) $的$ p $自同构都可以被扩张成依赖于$ \mathrm{Aut}^{L}_{A}(E) $的$ E $上的自同构, 这里, $ A = Z(E) $, $ L = E/Z(E) $.
本文内容安排如下.第2节介绍与hom-李环及其正合序列等有关的一些基本概念.第3节, 在$ A\rightarrow E\xrightarrow{\pi} L $是阿贝尔hom-李环扩张的前提下, 讨论了正合序列的实现过程, 并给出了不同情况下的正合序列.在阿贝尔hom-李环扩张$ A\rightarrow E\xrightarrow{\pi} L $是可分裂的情况下, 对不同形式扩张下的正合序列进行了改造, 使得被改造后的正合序列依然可分裂.第4节, 对定理3.10中所得到的正合序列(3.4)进行了应用.
本节给出本文中将涉及的一些相关概念和基本结论.
定义2.1 [16] hom-李环是指一个三元数组$ (L, [\cdot, \cdot], \beta) $, 其中$ L $是一个阿贝尔群, $ [\cdot, \cdot]: L\times L\rightarrow L $是反对称双线性映射, 线性映射$ \beta: L\rightarrow L $满足hom-Jacobi等式
定义2.2 设$ (L, [\cdot, \cdot], \beta) $为hom-李环, 若线性映射$ \beta: L\rightarrow L $满足
其中$ x, y\in L $.则称$ (L, [\cdot, \cdot], \beta) $为保积hom-李环.
定义2.3 设$ (L, [\cdot, \cdot], \beta) $是一个hom-李环, 并且$ M $为$ L $的子群.若$ \beta(M)\subseteq M, $ $ [M, M]\subseteq M $, 则称$ (M, [\cdot, \cdot], \beta) $是$ (L, [\cdot, \cdot], \beta) $的hom-子环.若$ L $的子群$ M $满足$ \beta(M)\subseteq M, [M, L]\subseteq M $, 称$ M $为$ (L, [\cdot, \cdot], \beta) $的理想.
定义2.4 设$ L $为有限维hom-李环, 若$ L\neq 0 $令$ \Phi(L) $为$ L $的所有极大hom-子环的交.若$ L = 0 $, 令$ \Phi(L) = 0 $, 则称$ \Phi(L) $是$ L $的Frattini hom-子环.
定义2.5 设$ (L, [\cdot, \cdot], \beta) $是一个保积的hom-李环, 令$ \beta^{k} = \beta\circ \beta\circ\cdot\cdot\cdot\circ\beta $, 特别地$ \beta^{0} = id $, $ \beta^{1} = \beta $, 对于任一非负整数$ k $, 一个线性映射$ D: L\rightarrow L $, 如果满足下面两个条件
(1) $ [D, \beta] = 0 $,
(2) $ D([x, y]) = [D(x), \beta^{k}(y)]+[\beta^{k}(x), D(y)], \; \forall\; x, y\in L $.
则称$ D $为hom-李环的$ \beta^{k} $导子.所有的hom-李环的$ \beta^{k} $导子的集合记为$ \mathrm{Der}_{\beta^{k}}(L) $.
定义2.6 定义hom-李环$ (L, [\cdot, \cdot], \beta) $的降中心列为
若存在$ n\in Z^{+} $, 使得$ L^{n} = 0 $, 则称$ (L, [\cdot, \cdot], \beta) $幂零.
定义2.7 令$ L $是一个hom-李环且$ n\in N_{+} $, 定义
则易知$ nL $是$ L $的一个理想.一个幂零hom-李环$ L $的阶为$ p $, 称$ L $为$ p $ -hom-李环.称$ L' = [L, L] $为$ L $的导出子环.
定义2.8 设$ (L_{1}, [\cdot, \cdot], \beta_{1}) $与$ (L_{2}, [\cdot, \cdot], \beta_{2}) $为hom-李环.若线性映射$ \phi: L_{1}\rightarrow L_{2} $满足
(1) $ \beta_{2}\phi = \phi\beta_{1} $,
(2) $ \phi([x, y]_{1}) = [\phi(x), \phi(y)]_{2}, \; \forall\; x, y\in L_{1} $,
则称$ \phi $为hom-李环同态.当$ \phi $既是单射又是满射时, 则称它为同构映射.
定义2.9 设$ (L, [\cdot, \cdot], \beta) $是一个hom-李环, $ N $是$ L $的理想. $ L/N = \{x+N\mid x\in L\} $在$ L/N $的元素之间定义方括号积$ [\cdot, \cdot] $如下
若$ \overline{\beta} $是$ L/N $上的一个同态且$ \overline{\beta}(\overline{x}) = \beta(x)+N $, 则$ L/N $关于上述方括号积构成一个hom-李环, 称$ L/N $为hom-李环$ L $模掉理想$ N $的商环, 记为$ \overline{L} = L/N $.
定义2.10 若$ E\rightarrow L $是hom-李环的满同态, 所以对$ \forall\; x\in L $, 则存在$ \; tx\in E $, 使得$ tx\rightarrow x $, 称$ tx $为$ x $的一个提升.
定义2.11 设$ L_{1} $, $ L_{2} $, $ \cdots $, $ L_{k} $, $ \cdots $均为域$ \mathbb{F} $上的hom-李环, 又$ f_{i} $是$ L_{i} $到$ L_{i+1} $的同态.如果$ \mathrm{Ker}f_{i+1} = f_{i}(L_{i}) $, i = 1, 2, $ \cdots $, 则称序列
为正合序列.
定义2.12 设$ (L, [\cdot, \cdot], \beta) $是一个hom-李环, $ V $是线性空间, 并且$ \beta_{v} $是$ V $上的线性映射. $ (V, \beta_{v}) $就被称为hom- L -模, 如果存在一个映射
并且$ \forall\; v\in V, x, y\in L $, 满足以下条件
(1) $ \beta_{v}(x\cdot v) = \beta(x)\beta_{v}(v) $,
(2) $ [x, y]\beta_{v}(v) = \beta(x)yv-\beta(y)xv $.
定义2.13 设$ a $, $ b $与$ L $均为hom-李环, 若有$ L $的理想$ n $与$ a $同构, 而商环$ L/n $与$ b $同构, 则称$ L $是$ b $通过$ a $的扩张.
定义2.14 设$ L $是一个hom-李环, $ A $是一个平凡的hom-$ L $-模, 令$ Z^{2}(L, A, \alpha) $是所有函数对$ (f, g, \alpha) $的集合.这里$ f, g: L\times L\rightarrow A $, $ \alpha: L\rightarrow \mathrm{Der}_{\beta^{k}}(A) $, 对$ \forall\; l, l_{1}, l_{2}, l_{3}\in L $满足
(1) $ f(l, 0) = 0, f(l_{1}, l_{2}) = f(l_{2}, l_{1}) $,
(2) $ f(l_{1}, l_{2}+l_{3})+f(l_{2}, l_{3}) = f(l_{1}+l_{2}, l_{3})+f(l_{1}, l_{2}) $,
(3) $ g(l, l) = 0 $,
(4) $ g(l_{1}+l_{2}, l_{3})-\alpha_{l_{3}}(f(l_{1}, l_{2})) = f([l_{1}, l_{3}], [l_{2}, l_{3}])+g(l_{1}, l_{3})+g(l_{2}, l_{3}) $,
$ g(l_{1}, l_{2}+l_{3})-\alpha_{l_{1}}(f(l_{2}, l_{3})) = f([l_{1}, l_{2}], [l_{1}, l_{3}])+g(l_{1}, l_{2})+g(l_{1}, l_{3}) $,
(5) $ g([l_{1}, l_{2}], l_{3})+g([l_{2}, l_{3}], l_{1})+g([l_{3}, l_{1}], l_{2})+f([l_{1}, l_{2}, l_{3}], [l_{2}, l_{3}, l_{1}])+ $ $ f(-[l_{3}, l_{1}, l_{2}], [[l_{3}, l_{1}, l_{2}]) $
$ = \alpha_{l_{3}}(g(l_{1}, l_{2}))+\alpha_{l_{1}}(g(l_{2}, l_{3}))+\alpha_{l_{2}}(g(l_{3}, l_{1})) $.
称$ Z^{2}(L, A, \alpha) $为在$ A $上的$ L $上的上闭链.
现给出两个上闭链$ (f, g, \alpha), \, (f', g', \alpha)\in Z^{2}(L, A, \alpha) $, 令$ (f, g, \alpha)+(f', g', \alpha): = (f+f', g+g', \alpha) $, 这里$ f+f', \, g+g' $在逐点加法(如果$ f, \, g: L\times L\rightarrow A $, 则$ (f, g, \alpha)(l_{1}, l_{2}) = f(l_{1}, l_{2})+g(l_{1}, l_{2}) $)的运算下构成阿贝尔群.
定义2.15 设$ L $是一个hom-李环, $ A $是一个平凡的hom-$ L $-模, 令$ t: L\rightarrow A $是一个满足$ t(0) = 0 $的映射.且令$ B^{2}(L, A, \alpha) $是所有函数对$ (f, g, \alpha) $的集合.这里$ f, \, g: L\times L\rightarrow A $, $ \alpha: L\rightarrow \mathrm{Der}_{\beta^{K}}(A) $, 对$ \; \forall\; l_{1}, \, l_{2}\in L $满足
称函数对$ (f, g, \alpha) $为在$ A $上的$ L $上的边界余映射.
不难证明$ B^{2}(L, A, \alpha) $是$ Z^{2}(L, A, \alpha) $的子集.
定义2.16 称商群$ H^{2}(L, A, \alpha) = Z^{2}(L, A, \alpha)/B^{2}(L, A, \alpha). $为hom-李环$ L $的二阶上同调群.
定义2.17 一个被阿贝尔hom-李环$ A $的被hom-李环$ L $的扩张$ 0\rightarrow A\rightarrow E\xrightarrow{\pi} L\rightarrow 0 $称为是可裂的.如果存在一个hom-李环同态$ \lambda: L\rightarrow E $使得$ \pi\lambda = 1_{L} $.
本节的目的是构造阿贝尔hom-李环的正合序列, 由于hom-李环本身内部存在一个映射和两种运算并且还具有复杂的二阶上同调群, 显然会比群和李环的构造更加复杂.在定理3.10和3.12的基础之上通过阿贝尔李扩张推广了三个正合序列, 并证明了在序列$ A\rightarrow E\xrightarrow{\pi} L $可裂的情况下所推广的这三个正合序列也可裂.
令$ E $和$ L $是保积hom-李环, $ A $是$ E $的理想. $ \beta: L\rightarrow L $限制在$ A $上是$ A $上的线性变换, $ \beta $是同态映射且与$ \gamma, \, \pi $可交换, 这一规定贯穿全文.首先来介绍一些记号.
定义3.1 [10] 令
引理3.1 设$ A\rightarrow E\xrightarrow{\pi} L $是一个阿贝尔hom-李环扩张, 其中$ A $是$ E $的阿贝尔子环.则阿贝尔hom-李环$ A $的被hom-李环$ E $的一个扩张确定了$ E $到$ A $的自同构群$ \mathrm{Aut}(A) $的一个hom-李环同态.
证 设正合列$ 0\rightarrow A\rightarrow E\rightarrow L\rightarrow 1 $是阿贝尔hom-李环$ A $的被hom-李环$ E $的一个扩张.则$ E\rightarrow L $是满同态, 进而对$ \; \forall\; x\in L $, 都存在一个提升$ tx\in E $, 即$ tx\rightarrow x $.于是可以规定
又因为$ A $是$ E $的hom-李环, 所以$ \mathrm{Im}(\theta_{x})\subset A $, 当然$ \theta_{x} $是$ A $的一个自同构.从而存在
接下来利用$ \alpha(l) = \alpha_{l} $, 这里$ \alpha_{l}(a) = [\beta^{k}(l), a] $, $ l\in L $, $ a\in A $, 来定义一个hom-李环同态$ \alpha: L\rightarrow \mathrm{Der}_{\beta^{k}}(A) $.所以, 可以考虑第二上同调群$ H^{2}(L, A, \alpha) $.与群和李环的情况类似, 对于任意的阿贝尔扩张$ A\rightarrow E\xrightarrow{\pi} L $, $ (\theta, \phi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L) $被称为是相容的, 如果$ \forall\; l\in L $, 满足$ \theta\alpha_{l}\theta^{-1} = \alpha_{\phi(l)} $.把所有的相容对记为$ C $.类似于阿贝尔群扩张的Wells序列及阿贝尔李环扩张的正合序列, 对每一个$ \gamma\in \mathrm{Aut}_{A}(E) $都包含了一个相容对$ (\theta, \phi) $, 而且映射$ \tau(\gamma) = (\theta, \phi) $是一个同态.令$ A\rightarrow E\xrightarrow{\pi} L $是一个阿贝尔hom-李环扩张, 其中$ A $是$ E $的阿贝尔子环.设$ t: L\rightarrow E $是$ E $的一个正规截口.则对任意的$ l\in L $, 必存在一个$ x\in E $使得$ \pi(x) = l $, 而且$ t(l) $由$ A+t(l) = A+x $所确定.这就说明了$ \pi(t(l)) = l $成立.
对$ \forall\; l_{1}, \, l_{2}\in L $, 定义
引理3.2 根据以上定义, 则有$ (\mu, \delta, \alpha)\in Z^{2}(L, A, \alpha) $.
证要证$ (\mu, \delta, \alpha)\in Z^{2}(L, A, \alpha) $, 只需要证对$ \forall\; l_{1}, \, l_{2}, \, l_{3}\in L $有以下等式成立即可
由于
且
故有$ (\mu, \delta, \alpha)\in Z^{2}(L, A, \alpha) $.证毕.
引理3.3 令$ A\rightarrow E\xrightarrow{\pi} L $是一个阿贝尔扩张, 若$ \sigma\in \mathrm{Aut}_{A}(E) $, 则存在一个三元组$ (\theta, \phi, \chi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L)\times A^{L} $, 使得对任意的$ l, \, l_{1}, \, l_{2}\in L, \, a\in A $.有下列等式成立
(ⅰ) $ \gamma(\beta^{k}(t(l)+a)) = \beta^{k}(t(\phi(l)))+\chi(l)+\theta(a), $
(ⅱ) $ \mu(\phi(l_{1}), \phi(l_{2}))-\theta(\mu(l_{1}, l_{2})) = \chi(l_{1}+l_{2})-\chi(l_{1})-\chi(l_{2}) $,
(ⅲ) $ \theta[\beta^{k}(t(l)), a] = [\beta^{k}(t(\phi(l))), \theta(a)] $,
(ⅳ) $ \delta(\phi(l_{1}), \phi(l_{2}))-\theta(\delta(l_{1}, l_{2})) = \chi[l_{1}, l_{2}]-[\chi(l_{1}), \beta^{k}(t(\phi(l_{2})))]-[\beta^{k}(t(\phi(l_{1}))), \chi(l_{2})] $.
证 (ⅰ) 令$ \theta = \gamma\mid_{A} $, 定义$ \phi: L\rightarrow L $使得对任意的$ l\in L $, 满足$ \phi(l) = \pi(\gamma(t(l))) $.显然$ \theta\in \mathrm{Aut}(A) $, $ \phi\in \mathrm{Aut}(L) $.
现在进一步定义$ \chi\in A^{L} $, 由于对任意的$ l\in L $, 都有$ \pi(t(l)) = l $, 故有$ \pi(t(\phi(l))) = \phi(l) $, 所以$ \pi(t(\phi(l)))-\phi(l) = 0 $.由此, 定义$ \chi: L\rightarrow A $满足$ \chi(l) = \beta^{k}(\gamma(t(l)))-\beta^{k}(t(\phi(l))) $.现在令$ l\in L, a\in A $, 则得到$ \gamma(\beta^{k}(t(l)+a)) = \gamma(\beta^{k}(t(l)))+\theta(a) = \chi(l)+\beta^{k}(t(\phi(l)))+\theta(a) $.
(ⅱ) 令$ l_{1}, l_{2}\in L $, 根据定义有,
因此有,
(ⅲ)令$ l\in L, a\in A $, 故
(ⅳ)令$ l_{1}, l_{2}\in L $, 根据定义有,
故有,
证毕.
引理3.4 令$ A\rightarrow E\xrightarrow{\pi} L $是一个阿贝尔扩张, 若三元组$ (\theta, \phi, \chi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L)\times A^{L} $满足引理3.3中的(ii)–(iv), 则由引理3.3的(i)定义的映射$ \gamma: E\rightarrow E $是属于$ \mathrm{Aut}_{A}(E) $中的在$ E $上的自同构.
证 首先注意到对任意的$ x\in E $, 其都可以被表示为$ x = \beta^{k}(t(l))+a $的形式.令
其中$ l_{1}, l_{2}\in L $, $ a_{1}, a_{2}\in A $.故有,
现在令$ x\in \mathrm{ker}(\gamma) $, 这里$ x = \beta^{k}(t(l))+a $, 其中$ l\in L, a\in A $.这意表明$ \beta^{k}(t(\phi(l)))\in A $或者说$ \phi(l) = 0 $, 因此$ l = 0 $.由此可知$ \theta(a) = 0 $, 所以$ x = 0 $.故该映射是单射.下证$ \gamma $是满射.令$ u\in E $, 则可以写成$ u = \beta^{k}(t(l')+a') $, 其中$ l'\in L, a'\in A $.取$ l\in L, a\in A $满足: $ \phi(l) = l' $且$ \theta(a) = a'-\chi(l) $.故有,
故该映射是满射.证毕.
当$ A\subseteq Z(E) $时, 说$ A\rightarrow E\xrightarrow{\pi} L $是中心扩张.若$ A\rightarrow E\xrightarrow{\pi} L $是一个中心扩张, 则$ L $在$ A $上的作用是平凡的, 且引理3.3, 3.4会有如下改变:
引理3.5 令$ A\rightarrow E\xrightarrow{\pi} L $是中心扩张, 若$ \gamma\in \mathrm{Aut}_{A}(E) $, 则存在一个三元组$ (\theta, \phi, \chi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L)\times A^{L} $对$ \forall\; l, \, l_{1}, \, l_{2}\in L, \, a\in A $满足
(ⅰ) $ \gamma(\beta^{k}(t(l))+a) = \beta^{k}(t(\phi(l)))+\chi(l)+\theta(a) $,
(ⅲ) $ \delta(\phi(l_{1}), \phi(l_{2}))-\theta(\delta(l_{1}, l_{2})) = \chi[l_{1}, l_{2}] $.
引理3.6 令$ A\rightarrow E\xrightarrow{\pi} L $是中心扩张, 若三元组$ (\theta, \phi, \chi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L)\times A^{L} $满足引理3.5中的(ⅱ)和(ⅲ), 则由引理3.5的(i)定义的映射$ \gamma: E\rightarrow E $是属于$ \mathrm{Aut}_{A}(E) $中的在$ E $上的自同构.
任给一个阿贝尔扩张$ A\rightarrow E\xrightarrow{\pi} L $, 若对$ \forall\; l\in L $都有$ \theta\alpha_{l}\theta^{-1} = \alpha_{\phi(l)} $, 则称$ (\theta, \phi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L) $是相容的.
引理3.7 由所有的相容对组成的集合是$ \mathrm{Aut}(A)\times \mathrm{Aut}(L) $的子群.将所有相容对组成的子群记为$ C $.并由此定义$ C_{1} $和$ C_{2} $如下
记
(ⅰ) $ \theta\in C_{1}\Leftrightarrow \theta_{\alpha_{l}} = \alpha_{l}\theta, \; \forall\; l\in L\Leftrightarrow \theta[\beta^{k}(t(l)), a] = [\beta^{k}(t(l)), \theta(a)], \; \forall\; l\in L, \, a\in A, $
(ⅱ) $ \phi\in C_{2}\Leftrightarrow \alpha_{l} = \alpha_{\phi(l)}, \; \forall\; l\in L\Leftrightarrow [\beta^{k}(t(l)), a] = [\beta^{k}(t(\phi(l))), a], \; \forall\; l\in L, \, a\in A. $
令$ A\rightarrow E\xrightarrow{\pi} L $是一个阿贝尔扩张, 且令$ \theta\in C_{1} $, $ \phi\in C_{2} $.定义$ k_{\theta}, k'_{\theta}, k_{\phi}, k'_{\phi}: L\times L\rightarrow A $如下
引理3.8 根据以上定义, $ (k_{\theta}, k'_{\theta}) $和$ (k_{\phi}, k'_{\phi}) $是$ Z^{2}(L, A, \alpha) $中的元素.
证 要证$ (k_{\theta}, k'_{\theta})\in Z^{2}(L, A, \alpha) $, 只需要证对$ \forall\; l_{1}, l_{2}, l_{3}\in L $, 有以下等式成立即可
由引理3.2知以下等式成立
由以上可知$ (k_{\theta}, k'_{\theta})\in Z^{2}(L, A, \alpha) $.同理可证$ (k_{\phi}, k'_{\phi})\in Z^{2}(L, A, \alpha) $.证毕.
根据上面的假设和标记, 定义$ \lambda_{i}: C_{i}\rightarrow H^{2}(L, A, \alpha)(i = 1, 2) $如下
引理3.9 映射$ \lambda_{1} $和$ \lambda_{2} $是定义明确的.
证 首先证明$ \lambda_{1} $是定义明确的.令$ t, t': L\rightarrow E $是两个正常映射, 则有$ t(l)-t'(l)\in A $, $ \forall\; l\in L $.因此对每一个$ l\in L $都会唯一的存在$ \lambda(l)\in A $使得: $ \beta^{k}(t(l)) = \beta^{k}(t'(l))+\lambda(l) $.这就由等式: $ \lambda(l) = \beta^{k}(t(l))+\beta^{k}(t'(l)) $, 定义了一个映射$ \lambda: L\rightarrow A $.又由于
其中$ l_{1}, l_{2}\in L $.同样地, 考虑$ t' $, 得到两个映射$ \mu', \delta': L\times L\rightarrow A $.使得其满足
其中$ l_{1}, l_{2}\in L $, 可以看出
又由于
现在令$ \theta\in C_{1} $且$ \phi\in C_{2} $, 定义映射$ m_{\mu}, m'_{\mu}: L\times L\rightarrow A $使得其满足
则由(3.1)式可知下面等式成立
定义映射$ \lambda': L\rightarrow A $使得其满足对$ \forall\; l\in L $都有, $ \lambda'(l) = \lambda(l)-(\theta\lambda)(l). $自然地有,
由(3.2)及$ \theta\in C_{1} $, 可以得知,
通过上式及(3.3)式, 可以证得$ (k_{\theta}-m_{\theta}, k'_{\theta}-m'_{\theta})\in B^{2}(L, A, \alpha) $, 或者说可以得到,
这就说明了$ \lambda_{1} $的选取不依赖于所取得空间.同理可证$ \lambda_{2} $.证毕.
注记:映射$ \lambda_{1}, \lambda_{2} $不是同态映射, 但这里$ \mathrm{Ker}(\lambda_{i})\, \, (1\leq i\leq 2) $与通常其所表示的意义一致.
令$ A\rightarrow E\xrightarrow{\pi} L $是一个阿贝尔扩张.由引理3.3, 每个自同构$ \gamma\in \mathrm{Aut}_{A}(E) $包含了一个自同构$ \theta\in \mathrm{Aut}(A) $和另一个一个自同构$ \phi\in \mathrm{Aut}(L) $, 其中$ \theta = \gamma\mid_A $满足$ \phi(l) = \pi(\gamma(t(l))) $, $ \forall\; l\in L $.现在可以通过令$ \tau(\gamma) = (\theta, \phi) $, 定义一个同态$ \tau: \mathrm{Aut}_{A}(E)\rightarrow \mathrm{Aut}(A)\times \mathrm{Aut}(L) $.同样可以通过令$ \tau_{1}(\gamma) = \theta, \, \tau_{2}(\gamma) = \phi $, 定义$ \tau_{1}: \mathrm{Aut}^{L}_{A}(E) \rightarrow C_{1} $和$ \tau_{2}: \mathrm{Aut}^{A}(E)\rightarrow C_{2} $.显然$ \tau_{1} $和$ \tau_{2} $分别是$ \tau $在$ \mathrm{Aut}^{L}_{A}(E) $和$ \mathrm{Aut}^{A}(E) $上的限制.
定理3.10 令$ A\rightarrow E\xrightarrow{\pi} L $是一个阿贝尔扩张, 则有以下两个正合序列:
证 先证(3.4), 由于$ 1\rightarrow \mathrm{Aut}^{A, L}(E)\xrightarrow{\iota} \mathrm{Aut}^{L}_{A}(E) $和$ \mathrm{Aut}^{A, L}(E)\xrightarrow{\iota} \mathrm{Aut}^{L}_{A}(E)\xrightarrow{\tau_{1}} C_{1} $是显然的.只需证$ \mathrm{Aut}^{L}_{A}(E)\xrightarrow{\tau_{1}} C_{1}\xrightarrow{\lambda_{1}} H^{2}(L, A, \alpha) $即可.令$ \gamma\in \mathrm{Aut}^{L}_{A}(E) $, 有, $ (\lambda_{1}\tau_{1})(\gamma) = \lambda_{1}(\theta) = [(k_{\theta}, k'_{\theta})] $, 这里$ \theta = \gamma\mid_A $.因为$ \gamma\in \mathrm{Aut}^{L}_{A}(E) $, 有, $ \phi(l) = (\pi\gamma t)(l) = l $.又由引理3.3可知,
这说明了$ (k_{\theta}, k'_{\theta})\in B^{2}(L, A, \alpha) $, 因此$ \mathrm{Im}(\tau_{1})\subseteq \mathrm{Ker}(\lambda_{1}) $.
下面证明$ \mathrm{Ker}(\lambda_{1})\subseteq \mathrm{Im}(\tau_{1}) $.设$ \theta\in C_{1} $且满足$ \lambda_{1}(\theta) = 1. $则有$ (k_{\theta}, k'_{\theta})\in B^{2}(L, A, \alpha) $, 因此存在一个映射$ \chi: L\rightarrow A $, 其中$ \chi(0) = 0 $, 满足等式
根据引理3.3, 令$ \phi = \mathrm{id}\mid_L $, 得到自同构$ \gamma\in \mathrm{Aut}_{A}(E) $满足
其中$ l\in L, a\in A $.因此有,
故$ \gamma(\beta^{k}(t(l)))-(\beta^{k}(t(l))+a)\in A $.这就证明了$ \gamma\in \mathrm{Aut}^{L}_{A}(E) $.进一步有, $ \gamma(a) = \theta(a), $其中$ a\in A $.所以$ \tau_{1}(\gamma) = \theta $.故$ \mathrm{Ker}(\lambda_{1})\subseteq \mathrm{Im}(\tau_{1}) $.因此$ \mathrm{Aut}^{L}_{A}(E))\xrightarrow{\tau_{1}} C_{1}\xrightarrow{\lambda_{1}} H^{2}(L, A, \alpha) $是正合列.
下证(3.5)由于$ 1\rightarrow \mathrm{Aut}^{A, L}(E)\xrightarrow{\iota} \mathrm{Aut}^{L}_{A}(E) $和$ \mathrm{Aut}^{A, L}(E)\xrightarrow{\iota} \mathrm{Aut}^{A}(E)\xrightarrow{\tau_{2}} C_{2} $是显然的, 只需证$ \mathrm{Aut}^{A}(E)\xrightarrow{\tau_{2}} C_{2}\xrightarrow{\lambda_{2}} H^{2}(L, A, \alpha) $即可.令$ \gamma\in \mathrm{Aut}^{A}(E) $, 有,
这里$ \phi(l) = (\pi\gamma t)(l) $, $ l\in L $.由于$ \phi = \tau_{2}(\gamma) $, $ \alpha_{l} = \alpha_{\phi(l)} $, 由引理3.3的(ⅱ), (ⅳ)及$ \theta = \gamma\mid_A = id_{A}, $可知,
因为$ \gamma\in \mathrm{Aut}^{A}(E) $, 因此$ [(k_{\phi}, k'_{\phi})] = 1 $.故$ \mathrm{Im}(\tau_{2})\subseteq \mathrm{Ker}(\lambda_{2}) $.
下面证明$ \mathrm{Ker}(\lambda_{2})\subseteq \mathrm{Im}(\tau_{2}) $.设$ \phi\in \mathrm{Ker}(\lambda_{2}) $, 则存在一个映射$ \chi: L\rightarrow A $满足$ \lambda(0) = 0. $使得,
由引理3.3, 令$ \theta = id\mid_A $, 则$ \forall\; l\in L, \, \forall\; a\in A $, 有一个自同构$ \gamma\in \mathrm{Aut}_{A}(E) $满足
因此有$ \gamma(a) = \theta(a) = a $, $ \gamma\in \mathrm{Aut}^{A}(E) $, 且显然有$ \tau_{2}(\gamma) = \phi $.故$ \mathrm{Ker}(\lambda_{2})\subseteq \mathrm{Im}(\tau_{2}) $.证毕.
引理3.11 令$ A\rightarrow E\xrightarrow{\pi} L $是阿贝尔扩张且$ \theta\in C_{1} $, $ \phi\in C_{2} $, 定义
则有$ (m_{\theta, \phi}, m'_{\theta, \phi})\in Z^{2}(L, A, \alpha) $.
证 由引理定义可知, 要证$ (m_{\theta, \phi}, m'_{\theta, \phi})\in Z^{2}(L, A, \alpha) $, 只需证明以下两式成立即可:
由
及等式
可知
同理可证
故$ (m_{\theta, \phi}, m'_{\theta, \phi})\in Z^{2}(L, A, \alpha) $.证毕.
令$ A\rightarrow E\xrightarrow{\pi} L $是一个中心扩张, 且$ L $平凡地作用在$ A $上.由于$ A\subseteq Z(E) $, 且$ \alpha_{l}(a) = [\beta^{k}(t(l)), a] = 0 $, 故有$ {A} = C_{1} $及$ \mathrm{Aut}(L) = C_{2} $.
定理3.12 令$ A\rightarrow E\xrightarrow{\pi} L $是一个中心扩张, 则存在下列正合序列:
证 在$ \mathrm{Aut}^{A, L}(E) $和$ \mathrm{Aut}_{A}(E) $上序列显然是正合的.在证明此定理之前, 可以证明$ \lambda $是定义明确的.若$ (\theta, \phi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L) $是由$ \gamma\in \mathrm{Aut}_{A}(E) $所诱导的, 则通过引理3.5的(ⅱ)和(ⅲ)存在一个映射$ \chi: L\rightarrow A $满足$ \lambda(0) = 0 $使得
故$ (m_{\theta, \phi}, m'_{\theta, \phi})\in B^{2}(L, A, \alpha) $且$ \lambda(\theta, \phi) = 1 $.
相反的, 如果$ (\theta, \phi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L) $满足$ [(m_{\theta, \phi}, m'_{\theta, \phi})] = 1 $, 则存在一个映射$ \chi: L\rightarrow A $满足$ \lambda(0) = 0 $使得
$ m_{\theta, \phi}(l_{1}, l_{2}) = \chi(l_{1}+l_{2})-\chi(l_{1})-\chi(l_{2}), \; \; \; m'_{\theta, \phi}(l_{1}, l_{2}) = \chi[l_{1}, l_{2}] $.
现由引理3.6知存在一个自同构$ \gamma\in \mathrm{Aut}_{A}(E) $使得$ \tau(\gamma) = (\theta, \phi) $.证毕.
令$ A\rightarrow E\xrightarrow{\pi} L $是阿贝尔李扩张, 记$ C_{1}^{\ast} = \{\theta\in C_{1}\mid \lambda_{1}(\theta) = 1\} $和$ C_{2}^{\ast} = \{\phi\in C_{2}\mid \lambda_{2}(\phi) = 1\} $.由定理3.10得到下列两个正合序列:
接下来, 将证明如果原正合序列可裂, 则这两个正和序列也是可裂的.
定理3.13 令$ E $是一个hom-李环, 且$ A $是$ E $的一个阿贝尔理想, 如果序列$ A\rightarrow E\rightarrow L $分裂, 则序列(3.7), (3.8)也可裂.
证 在$ A\rightarrow E\xrightarrow{\pi} L $中存在一个hom-李环同态$ t:\, L\rightarrow E $满足$ \pi\circ t = id_{L} $, 而且对$ E $中的每个元素都可以唯一的用$ \beta^{k}(t(l))+a $表示出来, 其中$ l\in L; a\in A $.首先证明(3.7)可裂.
定义一个映射$ \psi_{1}: C_{1}^{\ast}\rightarrow \mathrm{Aut}^{L}_{A}(E) $使得其满足: $ \psi_{1}(\theta) = \gamma_{1} $, 这里$ \gamma_{1}: E\rightarrow E $, 满足运算
对任意的$ x_{1} = \beta^{k}(t(l_{1}))+a_{1} $, $ x_{2} = \beta^{k}(t(l_{2}))+a_{2} $, 由于$ t $是同构映射, 则有
又由于$ \theta\in C_{1} $, 有,
又由于$ \gamma_{1}\beta = \beta\gamma_{1} $, 这就证明了$ \gamma_{1} $是hom-李环同态.显然可知: $ \gamma_{1}\in\mathrm{Aut}^{L}_{A}(E) $, $ \gamma_{1} $是群同态且$ \tau_{1}\circ \psi_{1} = id_{C_{1}^{\ast}} $.所以序列(3.7)可裂.
现在证明(3.8)可裂.定义一个映射$ \psi_{2}: C_{2}\ast\rightarrow \mathrm{Aut}^{A}(E) $使得其满足$ \psi_{2}(\phi) = \gamma_{2} $, 这里$ \gamma_{2}: E\rightarrow E $, 满足运算
对任意的$ x_{1} = \beta^{k}(t(l_{1}))+a_{1} $, $ x_{2} = \beta^{k}(t(l_{2}))+a_{2}\in E $, 由于$ t $是同构映射, 有,
又由于$ \phi\in C_{2} $, 有$ \alpha_{l} = \alpha_{\phi(l)}, \; \forall\; l\in L $.故
又由于$ \gamma_{2}\beta = \beta\gamma_{2} $, 这就证明了$ \gamma_{2} $是hom-李环的自同构, 显然可知: $ \gamma_{2}\in \mathrm{Aut}^{A}(E), $ $ \gamma_{2} $是群自同构且$ \tau_{2}\circ \psi_{2} = id_{C_{2}^{\ast}} $.所以序列(3.8)可裂.证毕.
令$ A\rightarrow E\xrightarrow{\pi} L $是中心李扩张, 记$ C^{\ast} = \{(\theta, \phi)\in \mathrm{Aut}(A)\times \mathrm{Aut}(L)\mid \lambda(\theta, \phi) = 1\} $.由定理3.12得到下列正合序列
接下来, 将证明如果原始的正合序列可裂, 则这个正和序列也是可裂的.
定理3.14 令$ E $是一个hom-李环, 且$ A $是$ E $的一个阿贝尔理想, 进一步, 若$ A\subseteq Z(E) $, 如果序列$ A\rightarrow E\rightarrow L $分裂, 则序列(3.9)也可裂.
证 在$ A\rightarrow E\xrightarrow{\pi} L $中存在一个hom-李环同态$ t: L\rightarrow E $, 满足$ \pi\circ t = id_{l} $, 而且对$ E $中的每个元素都可以唯一的用$ \beta^{k}(t(l))+a $表示出来, 其中$ l\in L, \, a\in A $.现在证明(3.9)可裂.
由$ \psi(\theta, \phi) = \gamma $定义一个映射$ \psi: C^{\ast}\rightarrow \mathrm{Aut}_{A}(E) $, 这里$ \gamma: E\rightarrow E $, 满足运算
对任意的$ x_{1} = \beta^{k}(t(l_{1}))+a_{1} $, $ x_{2} = \beta^{k}(t(l_{2}))+a_{2}\in E $, 有$ \gamma(x_{1}+x_{2}) = \gamma(x_{1})+\gamma(x_{2}). $由于$ t $是自同态映射, 且$ A\subseteq Z(E) $.可知,
又由于$ \gamma\beta = \beta\gamma $, 故$ \gamma $是自同态.不难得知$ \gamma\in \mathrm{Aut}_{A}(E) $, $ \psi $是群同态, 且$ \tau\circ \psi = id_{C^{\ast}} $.所以序列(3.9)可裂.证毕.
本节, 在定理3.10 (3.4)的基础上, 将$ Z(E) $的自同构推广到$ E $的自同构.以下引理显然成立.
引理4.1 令$ E $是一个hom-李环.
(1) 若$ E $是阿贝尔hom-李环, 则$ E $的任何加法子群也都是$ E $的子环.
(2) 若$ E $是不含有非平凡子环的平凡hom-李环, 则$ E $是素数阶循环的.
引理4.2 令$ M $是hom-李环$ E $的子环, 取$ \aleph_{E}(M) = \{x\in E\mid [x, M]\subseteq M\} $, 则以下结论成立.
(ⅰ) $ \aleph_{E}(M) $是hom-李环$ E $的子环, 且$ M\subseteq \aleph_{E}(M) $.
(ⅱ) $ M $是$ E $的一个理想当且仅当$ \aleph_{E}(M) = E $.
(ⅲ) $ [K, M]\subseteq M $当且仅当$ K\subseteq \aleph_{E}(M) $, 这里$ K $是$ E $的子环.
(ⅳ)若$ E $是幂零的且$ M\subset E $, 则$ M\subset \aleph_{E}(M) $.
(ⅴ)若$ E $是幂零的, 且$ M $是$ E $的最大子环, 则$ M $是$ E $理想且$ E/M $是素数阶.
引理4.3 令$ E $是hom-李环, 以下结论成立.
(ⅰ)若$ E $是有限维的, 则$ \Phi(E) $恰好由$ E $的所有非生成元组成.
(ⅱ) $ E/I $是阿贝尔的当且仅当$ E'\subseteq I $.
(ⅲ)若$ E $是幂零的, 则$ E'\subseteq \Phi(E) $.
(ⅳ)若$ E $是幂零的, 则$ \Phi(E) $是$ E $的理想.
(ⅴ)若$ E $是幂零的且非平凡, 则$ Z(E)\neq 0 $.
定理4.4 令$ E $是一个阶为$ p^{n}(p\geq2) $的hom-李P环, $ Z(E) $是循环的且$ \Phi(E)\subseteq Z(E) $.则每一个$ Z(E) $的p自同构都可以被扩张成依赖于$ \mathrm{Aut}^{L}_{A}(E) $的$ E $上的自同构, 这里, $ A = Z(E) $, $ L = E/Z(E) $.
证 令$ A = \langle x\rangle $, $ |A| = p^{\omega} $, 且$ \pi: E\rightarrow L $是自然同态.所以得到一个中心扩张$ A\rightarrow E\rightarrow L $.容易看出每一个$ A $上的每一个循环群都保留着李乘.现在由第二章的注记得到$ C_{1} = \mathrm{Aut}(A)\cong Z_{P^{\omega-1}(P-1)}. $注意到$ \theta = \gamma\mid_ A $.因为$ \gamma\in \mathrm{Aut}^{L}_{A}(E) $, 有$ \phi(l) = (\pi\gamma t)(l) = l. $所以扩张是中心扩张.定义$ \theta: A\rightarrow A $满足$ \theta(x) = mx, $这里$ m = 1+jp $且$ 1\leq m<p^{\omega} $.显然$ \theta $是$ A $上的一个$ p $ -自同构, 而且有$ p^{\omega-1} $这样的$ p $ -自同构.对$ \forall\; l_{1}, l_{2}\in L $, 有
由$ pt(l)\in pE\subseteq \Phi(E)\subseteq A $且$ p $整除$ 1-m $, 可以定义映射$ \chi: L\rightarrow A $使得其满足$ \chi(l) = (1-m)t(l). $因此,
同样的, 对$ \forall\; a, b\in E $, 有$ p[a, b] = 0 $.故$ pE\subseteq \Phi(E)\subseteq A $.因此,
现在由(4.1)及上式可以推出, $ (k_{\theta}, k'_{\theta})\in B^{2}(L, A, \alpha) $.因此由定理3.10的(3.4), 得到$ \lambda_{1}(\theta) = 1 $, 且$ \theta\in \mathrm{Ker}(\lambda_{1}) = \mathrm{Im}(\tau_{1}) $.所以, $ p^{\omega-1}\subseteq|\mathrm{Im}(\tau_{1})| $.故每一个$ A $上的$ p $ -自同构都属于$ \mathrm{Im}(\tau_{1}) $.证毕.