设$(\Omega, {\cal F})$是一个可测空间, $\mathbb{N}$是整数集, $\mathbb{N}_{+}$是非负整数集.令$\chi=\{0, 1, 2, ...\}$和$\Theta=\{0, 1, 2, ...\}$是两个可数状态空间, $\overrightarrow{\xi}=\{\xi_{n}, n\geq0\}$和$\overrightarrow{X}=\{X_{n}, n\geq0\}$是定义在可测空间$(\Omega, {\cal F})$上分别取值于$\Theta$和$\chi$的随机变量序列.设$p_{\theta}=\{p(\theta;x)\}, \theta\in\Theta$是含参数$\theta$的分布, $P_{\theta}=\{p(\theta;x, y), x, y\in\chi\}, \theta\in\Theta$是定义在$\chi^{2}$上含参数$\theta$的转移矩阵.对任意随机变量序列$\overrightarrow{\eta}=\{\eta_{n}, n=0, 1, ...\}$.记$\overrightarrow{\eta}_{k}^{r}=\{\eta_{n}, k\leq n\leq r\}$, $0\leq k\leq n\leq r\leq\infty$.设$\textbf{P}$是可测空间$(\Omega, {\cal F})$上的一个概率测度, 且在$\textbf{P}$下$\{(X_{n}, \xi_{n}), n\geq0\}$的有限维分布为
令
称$f_{n}(\omega)$为$\{(X_{n}, \xi_{n}), n\geq0\}$的熵密度, 其中$\ln$是以e为底的自然对数.
定义1 设$\overrightarrow{\xi}=\{\xi_{n}, n\geq0\}$和$\overrightarrow{X}=\{X_{n}, n\geq0\}$是定义在可测空间$(\Omega, {\cal F})$上分别取值于$\Theta$和$\chi$的随机变量序列.设$\textbf{Q}$为可测空间$(\Omega, {\cal F})$上的另一个概率测度, 若对任意$x, y\in\chi, n\in\mathbb{N_{+}}$, 有
则称$\overrightarrow{X}$在概率测度Q下为单无限随机环境$\overrightarrow{\xi}$下的马氏链.特别地, 若$\overrightarrow{\xi}$是马氏链, 则称$\overrightarrow{X}$在概率测度Q下为单无限马氏环境$\overrightarrow{\xi}$下的马氏链.
易知, 若$\overrightarrow{X}$在概率测度Q下为单无限马氏环境$\overrightarrow{\xi}$下的马氏链, 则$\{(X_{n}, \xi_{n}), n\geq0\}$在概率测度$\textbf{Q}$下是马氏双链[1].特别地, 若$\{\xi_{n}, n\geq0\}$是初始分布为$p^{\prime}(\theta_{0})$, 转移概率为$K(\theta, \alpha)$的马氏链, 则在概率测度$\textbf{Q}$下, $\{(X_{n}, \xi_{n}), n\geq0\}$是一个具有初始分布
和转移矩阵
的马氏双链.设$\{(X_{n}, \xi_{n}), n\geq0\}$在概率测度Q下的有限维分布为
易知, 若$\{(X_{n}, \xi_{n}), n\geq0\}$在概率测度Q下为马氏环境下马氏链, 则
且
设概率测度P和Q为可测空间$(\Omega, {\cal F})$上的概率测度, 令
称$h(\textbf{P}|\textbf{Q})$为P关于Q的渐近对数似然比.特别地, 若$\{(X_{n}, \xi_{n}), n\geq0\}$在概率测度Q下是单无限马氏环境下的马氏链, 则
随机环境中的马氏链的研究已有相当长的历史, Nawrotzkill[2, 3]建立了随机环境中的一般理论. Cogburn[1, 4, 5]构造了Hopf-链, 利用Hopf-链理论深入研究了平稳环境中马氏链的遍历理论, 中心极限定理, 直接收敛和转移函数的周期性关系以及不变概率测度的存在性. Hu[6-8]对连续时间参数的随机环境中的马氏过程的存在性, 等价性, $q$-过程的存在唯一性进行了研究.李应求等[9-11]利用鞅差理论来研究随机环境中的马氏链, 在假设马氏双链遍历的条件下, 得到了马氏环境中马氏链的强大数定律成立的充分条件以及马氏环境中若干强极限定理.石志岩等[12-14]研究了随机环境下树指标马氏链的定义及其存在性, 以及马氏环境下Cayley树指标马氏链的Shannon-McMillan定理.
强偏差定理(亦称小偏差定理)是由不等式表示的一类强极限定理, 它是强极限定理的推广.刘文和杨卫国[15]研究了马氏逼近和任意随机变量序列的一类小偏差定理; 杨卫国[16]研究了任意$N$值随机变量序列关于$m$阶非齐次马氏链的一类小偏差定理; 彭维才[17]研究了关于齐次树上随机场的一类强偏差定理; 石志岩[18]研究了树指标随机过程的一类强偏差定理; 石志岩和季金莉等[19]研究了可列齐次马氏链的一类强偏差定理.
本文首先给出渐近对数似然比的概念, 通过构造非负鞅的方法, 建立可列状态齐次马氏链的强偏差定理.最后, 我们得到了单无限马氏环境下可列齐次马氏链的强大数定律及Shannon-McMillan定理.
引理1
证 该引理的详细证明与文献[20]的引理1类似, 故此处省略.
引理2 设P 和Q是定义在可测空间$(\Omega, {\cal F})$上的两个概率测度, 且$\{(X_{n}, \xi_{n}), n\geq0\}$在概率测度Q下为定义$1$中定义的单无限马氏环境下的马氏链. $f(x, \theta;y, \alpha)$是$(\chi\times\Theta)^{2}$上的实函数, $\lambda$为一个实数.令
其中$E_{\textbf{Q}}$表示在概率测度Q下的期望, 则$\{t_{n}(\lambda, \omega), {\cal F}_{n}, n\geq1 \}$是概率测度P 下的非负鞅.
证 令${\cal F}_{n}=\sigma\{\overrightarrow{X}_{0}^{n}, \overrightarrow{\xi}_{0}^{n}\}$, 则
因此$\{t_{n}(\lambda, \omega), {\cal F}_{n}, n\geq1\}$是概率测度P 下的非负鞅.
定理1 设P 和Q是定义在可测空间$(\Omega, {\cal F})$上的两个概率测度, $\{(X_{n}, \xi_{n}), n\geq0\}$在概率测度Q下为取值于可数状态空间$(\chi\times\Theta)$的单无限马氏环境下的马氏链, $f(x, \theta;y, \alpha)$是定义于$(\chi\times\Theta)^{2}$上的实函数.令$c\geq0$,
假设存在实数$\alpha>0$, 对任意正整数$k$, 有
且任意$(x, \theta)\in(\chi\times\Theta)$, 有
其中$E_{\textbf{Q}}$表示在概率测度Q下的期望.则有
特别地
证 由引理2知, $\{t_{n}(\lambda, \omega), {\cal F}_{n}, n\geq1\}$是在概率测度$\textbf{P}$下是非负鞅, 由Doob鞅收敛定理[21]知, 存在一个有限非负随机变量$t_{\infty}(\lambda, \omega)$使得$ \lim\limits_{n\rightarrow\infty}t_{n}(\lambda, \omega)=t_{\infty}(\lambda, \omega), \quad \textbf{P}-\text{a.e.}, $故
由(10)和(19)式有
由(9), (13), (19)和(20)式有
当$0<|\lambda|\leq\alpha$, 由(11), (21)以及不等式$\ln x\leq x-1(x>0)$和$e^{x}-x-1\leq(x^{2}/2)e^{|x|}$可得
其中$f\triangleq f(X_{i-1}, \xi_{i-1};X_{i}, \xi_{i})$.当$0<\lambda\leq\alpha$, 由(22)式得
令$g(\lambda)=\frac{\lambda}{2}\tau+\frac{c}{\lambda}$, 易知, 当$\lambda=\sqrt{\frac{2c}{\tau}}$时, $g(\lambda)$取最小值$\sqrt{2c\tau}$, 在不等式(23)中令$\lambda=\sqrt{\frac{2c}{\tau}}$, 则有
当$c=0$时, 令$\lambda\rightarrow 0^{+}$, 由(23)式有
当$-\alpha\leq\lambda<0$, 由(22)式得
令$g(\lambda)=\frac{\lambda}{2}\tau+\frac{c}{\lambda}$, 易知, 当$\lambda=-\sqrt{\frac{2c}{\tau}}$时, $g(\lambda)$取最大值$-\sqrt{2c\tau}$, 在不等式(26)中令$\lambda=-\sqrt{\frac{2c}{\tau}}$, 则有
当$c=0$时, 令$\lambda\rightarrow 0^{-}$, 由(26)式有
由(25)和(28)式知(18)式成立.
推论1 在定理$1$的条件下, 若把条件$(15)$式改为
则有
其中$g(\lambda)=\frac{2\tau\lambda e^{-2}}{(\alpha-\lambda)^{2}}+\frac{c}{\lambda}$.特别地,
证 易知$\max\{x^{2}e^{-hx}, x\geq0\}=\frac{4e^{-2}}{h^{2}}, h>0$.由$(22)$和$(29)$式知
其中$f\triangleq f(X_{i-1}, \xi_{i-1};X_{i}, \xi_{i})$.当$0<\lambda\leq\alpha$, 由(33)式知
当$c=0$时, 令$\lambda\rightarrow 0^{+}$, 由(34)式知
当$-\alpha\leq\lambda<0$, 由(33)式知
当$c=0$时, 令$\lambda\rightarrow 0^{-}$, 由(36)式知
由(34)和(36)式知(30), (31)式成立, 由(35)和(37)式知(32)式成立.
定理2 在定理$1$的条件下, 令转移矩阵P是强遍历的, $\pi$是由P决定的唯一平稳分布, 若对任意$(x, \theta), (y, \alpha)\in(\chi\times\Theta)$, 有
对任意正整数$k$, 有
其中$E_{\textbf{Q}}$表示在概率测度Q下的期望, 则有
证 由定理1知
由(38)式知, 对任意$(x, \theta)\in(\chi, \Theta)$, 有$ \sum\limits_{(y, \alpha)}f(x, \theta;y, \alpha)P(x, \theta;y, \alpha)<\infty, $故对任意$i\geq1$, 有$E_{\textbf{Q}}[f(X_{i-1}, \xi_{i-1};X_{i}, \xi_{i})|X_{i-1}, \xi_{i-1}]<\infty$, 因此可得
由(42), (43)和(44)式可得
令$f_{1}(x, \theta;y, \alpha)=E_{\textbf{Q}}[f(X_{i}, \xi_{i};X_{i+1}, \xi_{i+1})|X_{i}=y, \xi_{i}=\alpha]$.易知$e^{\alpha|x|}$是凸函数, 利用条件期望的Jensen不等式有
易知$g(x)=x^{2}e^{\alpha|x|}$也是一个凸函数, 由(39)式和条件期望的Jensen不等式, 有
因此$f_{1}(X_{i-1}, \xi_{i-1};X_{i}, \xi_{i})$满足定理1的条件(14)和(15), 故由定理1可得
注意到
由(46)和(47)式可得
由(43)和(44)式, 有
由(45)和(49)式, 有
由归纳可知, 对任意正整数$h$, 有
因为$P$是强遍历的, 且$\pi$是由$P$决定的唯一平稳分布, 则
由(51)和(52)式可知, (41)式成立.
$f_{n}(\omega)$在某种意义下收敛于常数($L_{1}$收敛, 依概率收敛, $\text{a.e.}$收敛), 在信息论中称为Shannon-McMillan定理或熵定理或称为信源的渐近等分性(AEP). Shannon[22]首先研究了有限字母集上的平稳遍历信源依概率收敛的渐近等分性; McMillan[23]和Breiman[24]分别证明有限字母集上的平稳遍历信源$L_{1}$收敛和a.e.收敛的渐近等分性; 钟开莱[25]研究了字母集为可列的情况; 刘文和杨卫国[26, 27]给出了一类非齐次马氏信源的渐近等分性以及$m$阶非齐次马氏信源的渐近等分性.本节我们将研究单无限马氏环境下可列齐次马氏链的Shannon-McMillan定理.
定理3 设$\{(X_{n}, \xi_{n}), n\geq0\}$是取值于可数状态空间$(\chi\times\Theta)$的随机变量序列.设$P$是强遍历的, 且$\pi$是由P决定的唯一平稳分布.若
则
证 由(53)式可得$\sup\limits_{(x, \theta)}\sum\limits_{(y, \alpha)}P^{\frac{1}{2}}(x, \theta;y, \alpha)<\infty$成立(详细证明见附录).在定理$2$中令$\alpha=\frac{1}{2}$, $f(x, \theta;y, \alpha)=\ln P(x, \theta;y, \alpha)$, 则可得
因此有
又
类似于(58)式的讨论, 可得
由(57), (58)和(59)式易知当$f(x, \theta;y, \alpha)=\ln P(x, \theta;y, \alpha)$时满足定理$2$的条件, 故可得
因此可得
由(2), (60)和(63)知(55)式成立.
命题 令$\sum\limits_{i=1}^{\infty}a_{i}=1,(0<a_{i}<1)$.若$\sum\limits_{i=1}^{\infty}a_{i}^{\frac{1}{2}}\ln^{2}a_{i}<\infty$, 则$\sum\limits_{i=1}^{\infty}a_{i}^{\frac{1}{2}}<\infty$成立.
证 不失一般性, 我们假设$a_{1}>a_{2}>...$, 则存在一个正整数$N$, 使得当$i>N$, 有$a_{i}<\frac{1}{3}$. 易知当$i>N$, 有$\ln^{2}a_{i}>1$. 因此得到 $ \sum\limits_{i>N}a_{i}^{\frac{1}{2}}\ln^{2}a_{i}>\sum\limits_{i>N}a_{i}^{\frac{1}{2}}. $再由正项级数的比较判别法知, $\sum\limits_{i=1}^{\infty}a_{i}^{\frac{1}{2}}<\infty$.