设$ 0<\alpha<n $, $ S^{n-1} $是$ \mathbb{R}^{n} $中的单位球面, 并且$ \Omega\in L^{s}(\mathbb{S}^{n-1})(s>1) $是零次齐次函数.分数次积分$ T_{\Omega, \mu} $及其极大算子$ M_{\Omega, \mu} $的定义为
当$ \mu = 0 $时, $ T_{\Omega, \mu} $与二阶变系数椭圆偏微分方程有着非常密切的联系. 1995年, Caldŕon与Zygmund证明了该算子在变指标Lebesgue空间$ L^{p(\cdot)}(\mathbb{R}^{n}) $上有界.随后, 又有很多学者对其进行了进一步的研究[1-3].
令$ \gamma = (\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}) $, 并且$ \gamma_{i}(i = 1, 2, \cdots, n) $是非负整数, 记$ |\gamma| = :\sum\limits_{i = 1}^{n}\gamma_{i} $且
令$ A(x) $是定义在$ \mathbb{R}^{n} $上的函数, $ R_{m}(A;x, y) $表示定义在$ \mathbb{R}^{n} $上且$ m-1 $阶可导的函数$ A(x) $在点$ x $关于$ y $的$ m $阶Taylor展开式的余项, 即
在2001年, 丁勇[4]引入了如下一类带粗糙核的多线性分数次积分算子
与之相应的分数次极大算子的定义为
显然, 当$ m = 0 $时, $ T_{\Omega, \mu}^{A} $即为交换子$ [A, T_{\Omega, \mu}] $.当$ m\geq1 $时, $ T_{\Omega, \mu}^{A} $即为上述交换子的非退化推广.丁勇[4]证明了当$ D^{\gamma}A\in L^{r}(\mathbb{R}^{n})(1\leq r<\infty, |\gamma| = m-1) $时, 该算子在加权Lebesgue空间上有界; Wu和Yang[5]证明了当$ D^{\gamma}A\in BMO(\mathbb{R}^{n})(|\gamma| = m-1) $时, 该算子在Lebesgue空间上有界.
另一方面, 在1995年, Paluszynski[6]给出了由Riesz位势算子以及Lipschitz函数生成的广义交换子, 即多线性分数次积分算子, 并给出了Besov空间的一些刻画.在Paluszynski$ ^{[6]} $的启发下, Lu和Zhang[7]证明了当$ D^{\gamma}A\in \dot{\Lambda}(\mathbb{R}^{n})(|\gamma| = m-1) $时, $ T_{\Omega, \mu}^{A} $在Lebesgue空间上有界.当$ \beta>0 $, 齐次Lipschitz空间的定义为
其中$ \triangle_{h}^{1}f(x) = f(x+h)-f(x), \triangle_{h}^{k+1}f(x) = \triangle_{h}^{k}f(x+h)-\triangle_{h}^{k}f(x), k\geq1 $.
若$ 1\leq q<\infty $, 等价范数为
上述都是在一些经典函数空间上的结果, 随着科学的发展, 很多非线性的问题随之而来.这时经典函数空间出现了一定的局限性, 例如它对非标准增长条件下的非线性问题已经失去了效用.在这类非线性问题的研究过程中, 学者越来越多的关注由经典函数空间到变指标函数空间.
令$ p(\cdot):\mathbb{R}^{n}\longrightarrow[1, \infty) $上的可测函数.记变指标Lebesgue空间$ L^{p(\cdot)}(\mathbb{R}^{n}) $为存在某个$ \lambda>0 $使得
成立的$ \mathbb{R}^{n} $上的可测函数$ f $全体.变指标Lebesgue空间$ L^{p(\cdot)}(\mathbb{R}^{n}) $是一个Banach空间, 其范数定义为$ \|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})}: = \text{inf}\{\lambda>0:\rho_{p}(\frac{f}{\lambda})\leq1\}. $记
用这个符号定义一族变指标
$ p^{'}(\cdot) $是$ p(\cdot) $的共轭指标且$ \frac{1}{p^{'}(\cdot)}+\frac{1}{p(\cdot)} = 1 $.
变指标空间与经典函数空间有很大的不同, 主要是变指标函数空间已经失去了平移不变性, 这一区别导致许多在经典空间中成立的性质在变指标空间中不再成立.随后一些学者发现只要证明Hardy-Littlewood极大算子$ M $在$ L^{p(\cdot)}(\mathbb{R}^{n}) $上有界, 则相应的的经典调和分析和函数空间理论中的许多结论可以在相应的变指标函数空间中成立.
给定函数$ f\in L^{1}_{\text{loc}}(\mathbb{R}^{n}) $, Hardy-Littlewood极大算子$ M $的定义如下
其中$ B(x, r): = \{y\in\mathbb{R}^{n}:|x-y|<r\} $.若$ p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) $满足下列条件
可以得到$ p(\cdot)\in\mathcal{B}(\mathbb{R}^{n}) $.则Hardy-Littlewood极大算子$ M $在$ L^{p(\cdot)}(\mathbb{R}^{n}) $上有界.
在变指标Lebesgue空间$ L^{p(\cdot)}(\mathbb{R}^{n}) $中, 有以下几个重要的命题.
命题1.1[8] 若$ p(\cdot), p^{'}(\cdot)\in\mathcal{B}(\mathbb{R}^{n}) $, 存在$ 0<r_{1}, r_{2}<1 $且$ C>0 $, 使得
其中$ S $是$ \mathbb{R}^{n} $中所有的球$ B $的可测子集.
命题1.2[8] 若$ p(\cdot)\in\mathcal{B}(\mathbb{R}^{n}) $, 存在常数$ C>0 $, 使得$ \mathbb{R}^{n} $中所有的球$ B $满足
命题1.3[9] 若$ p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) $, $ q>p_{+} $且$ {\frac{1}{p(\cdot)} = \frac{1}{\tilde{q}(\cdot)}+\frac{1}{q}} $, 则
命题1.4[10] 令$ p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) $满足(1.6)和(1.7)式, 则有
对于所有的方体(球体) $ Q\subset\mathbb{R}^{n} $, 其中$ p(\infty) = \lim\limits_{x\rightarrow\infty}p(x) $.
众所周知, 在研究算子的有界性时, Hölder不等式是一个非常重要的工具, 当然在变指标函数空间也需要同样类似的不等式, 于是就有了广义Hölder不等式.
命题1.5[11] 若$ p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) $, 任意的$ f\in{L^{p(\cdot)}(\mathbb{R}^{n})} $, 则$ fg $在$ \mathbb{R}^{n} $上可积并且
其中$ r_{p}: = 1+\frac{1}{p_{-}}-\frac{1}{p_{+}} $.上述不等式被称为广义Hölder不等式.
在变指标Lebesgue空间中, Wu和Lan[6]证明了当$ {D^{\gamma}A}\in{\dot{\Lambda}}_{\beta}(\mathbb{R}^{n}) $时, $ T_{\Omega, \mu}^{A} $是有界的.结果如下
定理1.1[12] 令$ p(\cdot)\in\mathcal{B}(\mathbb{R}^{n}) $, $ 0<\beta<1 $, $ {D^{\gamma}A}\in{\dot{\Lambda}}_{\beta}(|\gamma| = m-1) $, $ 0<\alpha<\frac{n}{p_{+}} $, $ 0<\alpha+\beta<\frac{n}{p_{+}} $, 并且$ 1<p_{+}<\frac{\alpha+\beta}{n} $.定义$ q(\cdot) $满足$ \frac{1}{p(\cdot)}-\frac{1}{q(\cdot)} = \frac{\alpha+\beta}{n} $, 使得
2010年, Izuki[8]引入了变指标Herz空间的定义, 接下来介绍一些定义以及记号.对于任意的$ k\in\mathbb{Z} $, 记$ B_{k} = \{x\in\mathbb{R}^{n}:|x|\leq2^{k}\} $和$ R_{k} = B_{k}\backslash B_{k-1} $; 对任意的$ k\in\mathbb{Z} $, 记$ \chi_{k} = \chi_{R_{k}} $; 对任意的$ k\in\mathbb{N}_{0} $, 记$ \tilde{\chi_{k}} = \chi_{k} $, 其中当$ k\in\mathbb{N} $时, 有$ \tilde{\chi_{k}} = \chi_{k} $; 当$ k = 0 $时, 有$ \tilde{\chi_{0}} = \chi_{B_{0}} $.
定义1.1[8] 令$ \alpha\in\mathbb{R} $, $ 0<q\leq\infty $且$ p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) $.齐次变指标$ \dot{K}^{\alpha, q}_{p(\cdot)}(\mathbb{R}^{n}) $空间定义为
其中$ \|f\|_{\dot{K}^{\alpha, q}_{p(\cdot)}(\mathbb{R}^{n})}: = \|\{2^{\alpha l}\|f\chi_{l}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\}_{l = -\infty}^{\infty}\|_{\ell^{q}(\mathbb{Z})} $.
本文将Wu和Lan[12]的结果推广到变指标Herz空间, 建立多线性分数次积分算子在变指标Herz空间上的有界性.
定理1.2 令$ p_{1}(\cdot), p_{2}(\cdot)\in\mathcal{B}(\mathbb{R}^{n}) $, $ 0<\beta<1 $, $ {D^{\gamma}A}\in{\dot{\Lambda}}_{\beta}(|\gamma| = m-1) $, $ s>(p_{1}^{'})_{+} $, $ 0<r_{1}, r_{2}<\infty $且满足命题1.1和(1.8)式, $ nr_{2}+\beta+\mu<\alpha<nr_{1}-(\beta+\mu+\frac{n-1}{s}) $.如果$ \frac{1}{p_{1}(\cdot)}-\frac{1}{p_{2}(\cdot)} = \frac{\beta+\mu}{n} $, 且$ 0<q_{1}<q_{2}<\infty $使得
接下来介绍比变指标Herz空间更广泛的变指标Herz-Morrey空间, 并在此空间上建立相应的结论.
定义1.2[13] 令$ \alpha\in\mathbb{R} $, $ 0<q\leq\infty $, $ p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) $且$ 0\leq\lambda<\infty $.齐次变指标Herz-Morrey空间$ M\dot{K}_{q, p(\cdot)}^{\alpha, \lambda}(\mathbb{R}^{n}) $的定义如下
其中$ \|f\|_{M\dot{K}_{q, p(\cdot)}^{\alpha, \lambda}(\mathbb{R}^{n})}: = \sup\limits_{L\in\mathbb{Z}} 2^{-L\lambda}(\sum\limits^{L}_{k = -\infty}2^{\alpha q k}\|f\chi_{k}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}^{q})^{\frac{1}{q}} $.显然, 当$ \lambda = 0 $时, $ M\dot{K}_{q, p(\cdot)}^{\alpha, \lambda}(\mathbb{R}^{n}) = \dot{K}_{p(\cdot)}^{\alpha, q}(\mathbb{R}^{n}). $
定理1.3 令$ p_{1}(\cdot), p_{2}(\cdot)\in\mathcal{B}(\mathbb{R}^{n}) $, $ 0<\beta<1 $, $ {D^{\gamma}A}\in{\dot{\Lambda}}_{\beta}(|\gamma| = m-1) $. $ s>(p_{1}^{'})_{+} $, $ 0<\lambda<\infty $, $ 0<r_{1}, r_{2}<\infty $且满足(1.6)和(1.7)式, $ nr_{2}+\beta+\mu+\lambda<\alpha<nr_{1}-(\beta+\mu+\frac{n-1}{s}) $.如果$ \frac{1}{p_{1}(\cdot)}-\frac{1}{p_{2}(\cdot)} = \frac{\beta+\mu}{n} $, 且$ 0<q_{1}<q_{2}<\infty $使得
定理1.4 在定理1.2或定理1.3的条件下, 多线性分数次极大算子$ M_{\Omega, \mu}^{A} $在$ \dot{K}^{\alpha, q}_{p(\cdot)}(\mathbb{R}^{n}) $, $ M\dot{K}_{q, p(\cdot)}^{\alpha, \lambda}(\mathbb{R}^{n}) $有界.
注 当$ m = 0 $时, $ T_{\Omega, \mu}^{A}f(x) $即为交换子$ [A, T_{\Omega, \mu}f(x)] $在$ \dot{K}^{\alpha, q}_{p(\cdot)}(\mathbb{R}^{n}) $以及$ M\dot{K}_{q, p(\cdot)}^{\alpha, \lambda}(\mathbb{R}^{n}) $有界.
全文中, $ C $表示一个不依赖于主要参数的常数,但其值在不同的地方可能不尽相同.
在证明定理1.2和定理1.3之前, 需要一些必要的引理.
引理2.1[7] $ A(x) $是$ \mathbb{R}^{n} $上的一个函数, 且$ A(x)\in{L_{\text{loc}}^{q}(\mathbb{R}^{n})}\; (q>n), $
其中$ Q_{x}^{y} $是以$ x $为心, 以$ 4\sqrt{n}|x-y| $为边长的方体.
引理2.2[7] 令$ Q^{\ast}\subset Q, g\in{{\dot{\Lambda}}_{\beta}(\mathbb{R}^{n})}(0<\beta<1) $, 则$ |m_{Q^{\ast}}(g)-m_{Q}(g)|\leq C|Q|^{\frac{\beta}{n}}\|g\|_{\dot{\bigwedge}_{\beta}}. $
引理2.3[14] 设$ \Omega(x-y)\in{L^{s}(\mathbb{S}^{n-1})}(s>\frac{n}{(n-\alpha)}), k, j\in\mathbb{Z} $, 则
(1) 当$ k\leq{j-3}, \; x\in{R_{k}} $时, $ ( \int_{R_{j}}|\Omega(x-y)|^{s}dy)^{\frac{1}{s}}\leq C 2^{\frac{jn}{s}}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})} $.
(2) 当$ k\geq{j+3}, \; x\in{R_{k}} $时, $ ( \int_{R_{j}}|\Omega(x-y)|^{s}dy)^{\frac{1}{s}}\leq C 2^{\frac{(j-k+kn)}{s}}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})} $.
应用以上结果, 首先证明定理1.2.
定理1.2的证明 令$ f\in\dot{K}^{\alpha, q_{1}}_{p_{1}(\cdot)}(\mathbb{R}^{n}) $, 因为$ 0<q_{1}/{q_{2}}\leq1 $, 由不等式
对于任意$ j\in\mathbb{Z} $, 记$ f_{j}: = f \chi_{j} $, 则$ f = {\sum\limits_{j = -\infty}^{\infty}f_{j}} $.运用()式可得
首先估计$ {\rm I}_{2} $, 当$ D^{\gamma}A\in{\dot{\bigwedge}_{\beta}(\mathbb{R}^{n})} $, 由定理1.1中$ T_{\Omega, \mu}^{A} $的$ (L^{p_{1}(\cdot)}(\mathbb{R}^{n}), L^{p_{2}(\cdot)}(\mathbb{R}^{n})) $有界性可知
接下来估计$ \rm I_{1} $, 为此由(1.3)先对$ |R_{m}(A;x, y)| $进行估计.
对于任意$ x\in\mathbb{R}^{n} $, 且$ Q $是以$ x $为心, $ 2\sqrt{n}|x-y| $为边长的方体, 令$ A_{Q}(y) = A(y)-\sum\limits_{|\gamma| = m-1}\frac{1}{\gamma!}m_{Q}(D^{\gamma}A)\cdot y^{\gamma} $, 显然可得$ R_{m}(A;x, y) = R_{m}(A_{Q};x, y) $, 其中$ m_{Q}(D^{\gamma}A) $记作$ D^{\gamma}A $在Q上的平均.再运用引理2.1, 对于任意的$ y $,
其中$ Q_{x}^{y} $是以$ x $为心, 以$ 4\sqrt{n}|x-y| $为边长的方体.显然$ Q_{x}^{y}\subset3Q $, 由引理2.2可得
再次运用引理2.2可得
联立(2.2)–(2.4)式可得
对于任意的$ {j, k}\in\mathbb{Z} $且$ j\leq{k-3} $, 运用()式和广义Hölder不等式, 可以得到
因为$ s>(p_{1}^{'})_{+} $且$ {\frac{1}{p_{1}^{'}(\cdot)} = \frac{1}{\tilde{p}_{1}^{'}(\cdot)}+\frac{1}{s}} $, 运用命题1.3和引理2.3可得
由命题1.4, 当$ |B_{j}|\leq2^{n} $且$ x_{j}\in B_{j} $, 有
当$ |B_{j}|\geq1 $, 有
故有
联立(2.6)–(2.8)式可得
运用命题1.2和(1.1)式可得
另一方面, 由分数次积分$ I^{\beta+\mu} $可以得到
接下来, 运用Hölder不等式, (2.11)式, $ I^{\beta+\mu} $的$ (L^{p_{1}(\cdot)}(\mathbb{R}^{n}), L^{p_{2}(\cdot)}(\mathbb{R}^{n})) $有界性以及命题1.2可知
联立(2.9)–(2.12)式可知
其中$ e_{1}: = \beta+\mu-nr_{1}+\alpha+\frac{n-1}{s}<0 $.为了继续估计(2.13)式.考虑以下这两种情形$ 1<q_{1}<\infty $和$ 0<q_{1}\leq1 $.
情形1 若$ 1<q_{1}<\infty $, 运用Hölder不等式, 可得
情形2 若$ 0<q_{1}\leq1 $, 运用(2.1)式, 用$ q_{1} $代替$ q_{1}/q_{2} $可得
最后估计$ {\rm I}_{3} $, 对于任意的$ {j, k}\in\mathbb{Z} $且$ j\geq{k+3} $, 类似于(2.9)式的估计, 可以得到
运用命题1.2和(1.8)式, 类似于(2.10)式的估计可得
另一方面, 由分数次积分$ I^{\beta+\mu} $可以知道
类似于(2.11)式的估计, 可以得到
联立(2.14) – (2.18)式可得
其中$ e_{2}: = \beta+\mu+nr_{2}-\alpha<0 $.为了继续估计$ (2.18) $式, 考虑以下这两种情形$ 1<q_{1}<\infty $和$ 0<q_{1}\leq1 $.
情形1 若$ 1<q_{1}<\infty $, 运用Hölder不等式, 可以得到
情形2 若$ 0<q_{1}\leq1 $, 用$ () $式, 用$ q_{1} $代替$ q_{1}/q_{2} $可得
这样就完成了定理1.2的证明.接下来证明定理1.3.
定理1.3的证明 令$ f\in M\dot{K}^{\alpha, \lambda}_{q_{1}, p_{1}(\cdot)} $, 记$ f_{j}: = f \chi_{j} $($ j\in\mathbb{Z} $), 则$ f = {\sum\limits_{j = -\infty}^{\infty}f_{j}} $, 用(2.1)式可得
首先估计$ {\rm D}_{2} $, 当$ D^{\gamma}A\in{\dot{\bigwedge}_{\beta}(\mathbb{R}^{n})} $时, 由定理1.1中$ T_{\Omega, \mu}^{A} $的$ (L^{p_{1}(\cdot)}(\mathbb{R}^{n}), L^{p_{2}(\cdot)}(\mathbb{R}^{n})) $有界性可知
类似于定理1.2中$ {\rm I}_{1} $的估计方法, 可得
其中$ d_{1}: = \beta+\mu-nr_{1}+\alpha+\frac{n-1}{s}<0 $, 为了继续估计$ (2.19) $式, 考虑以下这两种情形$ 1<q_{1}<\infty $和$ 0<q_{1}\leq1 $.
最后估计$ {\rm D}_{3} $,
其中$ d_{2}: = \beta+\mu+nr_{2}-\alpha<0 $.为了继续估计$ (2.20) $式, 考虑以下这两种情形$ 1<q_{1}<\infty $和$ 0<q_{1}\leq1 $.
情形1 若$ 1<q_{1}<\infty $, 有
对于$ {\rm D}_{31} $, 运用Hölder不等式, 得到
对于$ {\rm D}_{32} $, 由已知条件$ d_{2}+\lambda<0 $和Hölder不等式, 可得
情形2 若$ 0<q_{1}\leq1 $, 由已知条件$ d_{2}+\lambda<0 $, 运用$ (2.1) $式, 用$ q_{1} $代替$ q_{1}/q_{2} $可得
这样就完成了定理1.3的证明.定理1.4的证明与上述证明类似.