数学杂志  2020, Vol. 40 Issue (2): 228-236   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
冯茜
马晴霞
刘安平
一类脉冲分数阶偏微分方程解的振动性
冯茜, 马晴霞, 刘安平    
中国地质大学(武汉) 数学与物理学院, 湖北武汉, 430074
摘要:本文研究了一类带Neumann边界条件的脉冲分数阶偏微分方程解的振动性质.利用修正后的Riemann-Liouille分数阶定义下的相关性质及Riccati变换和不等式技巧,获得了一些判别解振动的充分条件,并给出相关例子说明了主要结论,推广了文献[12]中的结果.
关键词脉冲    分数阶偏微分方程    修正后的Riemann-Liouille分数阶导数    振动    
OSCILLATION FOR A CLASS OF IMPULSIVE FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
FENG Qian, MA Qing-xia, LIU An-ping    
School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
Abstract: In this paper, we study the oscillation criteria for a class of impulsive fractional partial differential equations with Neumann boundary condition. By using the properties of the modiffed Riemann-Liouville fractional partial differential equations and a generalized Riccati technique and the differential inequality methods, some sufficient conditions for the oscillatory behavior of the solution are obtained. As an application, the relevant example is given to illustrate the main conclusions, which generalize the results in [12].
Keywords: impulsive     fractional partial differential equations     modiffed Riemann-Liouville fractional partial derivative     oscillation    
1 引言

脉冲微分方程理论的出现使得对理论物理、化学、生物技术和人口动力学等学科中的某些过程和现象的精确模拟成为可能.近年来, 由于分数阶微分方程在反常扩散、多孔介质力学、非牛顿流体力学、粘弹性力学、软物质力学、生物医学以及控制系统等领域的广泛应用, 其研究越来越受到人们的关注.不论在理论还是应用中, 人们主要研究分数阶微分方程的定性性质, 研究方向众多, 如解的存在性以及带有初值条件或边界条件的分数阶微分方程解的稳定性, 其相关定性理论研究迅速发展, 并得到了一些研究成果.偏微分方程解的振动问题已有一些学者通过研究得到了一些结论[1]-[3].近年来, 分数阶微分方程的振动性问题受到广泛关注, 一些学者研究带阻尼项的分数阶微分方程的振动性[4]-[10], 并陆续有很好的研究成果发表[11]-[17].但关于脉冲分数阶微分方程的振动性研究却很少, 本篇论文借鉴现有的一些研究结果以及方法来进一步讨论脉冲分数阶偏微分方程的性质.

本文将讨论如下方程

$ \begin{equation} \begin{cases} &D_{+, t}^{\alpha}\left(r(t)D_{+, t}^{\alpha}u(x, t)\right)+p(t)D_{+, t}^{\alpha}u(x, t) = a(t)h(u)\Delta u(x, t)\\ & +\sum\limits_{i = 1}^{j}a_{i}(t)h_{i}(u(x, t-\tau_{i}))\Delta u(x, t-\tau_{i})-m(x, t, u(x, t))-q(x, t)F(u(x, t)), \quad t\neq t_{k}, \\ &D_{+, t}^{\alpha}u(x, t_{k}^{+})-D_{+, t}^{\alpha}u(x, t_{k}^{-}) = \alpha_{k}D_{+, t}^{\alpha}u(x, t_{k}), \ k = 1, 2, 3, \cdots, (x, t)\in\Omega\times R_{+}\equiv E, \\ &u(x, t_{k}^{+})-u(x, t_{k}^{-}) = \beta_{k}u(x, t_{k}), \ k = 1, 2, 3, \cdots, (x, t)\in\Omega\times R_{+}\equiv E, \end{cases} \end{equation} $ (1.1)

边界条件

$ \begin{align} \frac{\partial u(x, t)}{\partial N} = 0, \qquad (x, t)\in\partial\Omega\times R_{+}, \qquad t\neq t_{k}, \end{align} $ (1.2)

其中$ \alpha\in(0, 1) $, $ \Delta $为拉普拉斯算子, $ \Omega $$ R^{n} $内的有界域, $ \partial\Omega $充分光滑, $ \overline{\Omega} = \Omega\cup\partial\Omega $, $ N $$ \partial\Omega $的单位外法向量, $ 0 < t_{1} < \cdots < t_{i} < \cdots $$ \lim\limits_{i\to\infty}t_{i} = +\infty $.

如下是本文的基本假设

(H1) $ a(t), p(t), a_{i}(t)\in C(R_{+}; R_{+}) $, $ r(t)\in C^{\alpha}(R_{+}; R_{+}) $$ \tau_{i}\geq0 $是常数, $ i\in I_{j} = \{1, 2\cdots, j\} $; $ \alpha_{k} > -1, \; \beta_{k} > -1 $.

(H2) $ q(x, t)\in C(\overline{E}; R_{+}) $, $ q(t) = \min\limits_{x\in\overline{\Omega}}q(x, t) $; $ h'(u), h_{i}^{'}(u), F(u)\in C(R; R) $, 对于$ x\neq0 $, 存在一个正常数$ c $, 使得$ \frac{F(x)}{x}\geq c > 0 $; $ u\neq0, \; uh'(u) > 0, \; uh_{i}^{'}(u) > 0 $.

(H3) $ m\in C(\overline{E}\times R; R) $,

$ m(x, t, \eta) = \left\{ \begin{array}{rcl} \geq0, & &{\eta\in(0, +\infty)}, \\ \leq0, & &{\eta\in(-\infty, 0)}. \end{array}\right. $

(H4) $ u(x, t) $和它的分数阶导数$ D_{+, t}^{\alpha}u(x, t) $是分段连续函数, $ t = t_{k}, k = 1, 2, 3, \cdots $为第一类间断点, 且在$ t = t_{k} $处左连续, 即$ D_{+, t}^{\alpha}u(x, t_{k}^{-}) = D_{+, t}^{\alpha}u(x, t_{k}), u(x, t_{k}^{-}) = u(x, t_{k}). $

定义1.1 [18]    $ f:R_{+}\rightarrow R $, 阶数为$ \alpha > 0 $的Riemann-Liouville左侧分数阶积分定义如下

$ \begin{align} (I_{0+}^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)}\int_{0}^{t}(t-v)^{\alpha-1}f(v)dv. \end{align} $ (1.3)

上式在$ R_{+} $是逐点定义的, $ \Gamma $是gamma函数.

定义1.2 [19]   修正后的Riemann-Liouville分数阶导数定义如下

$ \begin{equation} \begin{cases} &D_{t}^{\alpha}f(t) = \frac{1}{\Gamma(1-\alpha)}\frac{d}{dt}\int_{0}^{t}{(t-\xi)^{-\alpha}}(f(\xi)-f(0))d\xi , \;0<\alpha<1, \\ &D_{t}^{\alpha}f(t) = \left(f^{n}(t)\right)^{\alpha-n}, \;1\leq n\leq\alpha<n+1. \end{cases} \end{equation} $ (1.4)

下面给出关于$ \alpha $阶修正后的Riemann-Liouville分数阶导数的一些计算公式

$ \begin{eqnarray*} D_{t}^{\alpha}t^{r}& = &\frac{\Gamma(1+\alpha)}{\Gamma(1+r-\alpha)}t^{r-\alpha}, \\ D_{t}^{\alpha}\left(f(t)h(t)\right)& = &h(t)D_{t}^{\alpha}f(t)+f(t)D_{t}^{\alpha}h(t), \\ D_{t}^{\alpha}f[h(t)]& = &f'_{h}D_{t}^{\alpha}h(t) = D_{h}^{\alpha}f[h(t)](h'(t))^{\alpha}. \end{eqnarray*} $

及一些在本文的证明中要用到的记号

$ U(t) = \int_{\Omega}u(x, t)dx, \quad R(t) = I_{+}^{\alpha}\left(\frac{p(t)}{r(t)}\right), \quad\xi = \frac{t^{\alpha}}{\Gamma(1+\alpha)}, \quad \widetilde{r}(\xi) = r(t), $
$ \quad \widetilde{p}(\xi) = p(t), \quad\widetilde{q}(\xi) = q(t), \quad\widetilde{\psi}(\xi) = \psi(t), \quad\widetilde{R}(\xi) = R(t). $
2 主要结果和证明

定理2.1   如果下列脉冲分数阶微分不等式

$ \begin{equation} \begin{cases} &D_{+, t}^{\alpha}\left[r(t)D_{+, t}^{\alpha}U(t)\right]+p(t)D_{+, t}^{\alpha}U(t)\leq-cq(t)U(t)\\ &D_{+, t}^{\alpha}U(t^{+}) = (1+\alpha_{k})D_{+, t}^{\alpha}U(t), \qquad k = 1, 2, 3, \cdots, \\ &U(t^{+}) = (1+\beta_{k})U(t), \qquad k = 1, 2, 3, \cdots \end{cases} \end{equation} $ (2.1)

没有最终正解, 且下列脉冲分数阶微分不等式

$ \begin{equation} \begin{cases} &D_{+, t}^{\alpha}\left[r(t)D_{+, t}^{\alpha}U(t)\right]+p(t)D_{+, t}^{\alpha}U(t)\geq-c q(t)U(t)\\ &D_{+, t}^{\alpha}U(t^{+}) = (1+\alpha_{k})D_{+, t}^{\alpha}U(t), \qquad k = 1, 2, 3, \cdots, \\ &U(t^{+}) = (1+\beta_{k})U(t), \qquad k = 1, 2, 3, \cdots \end{cases} \end{equation} $ (2.2)

没有最终负解, 那么方程(1.1)和(1.2)的每个非平凡解$ u(x, t) $$ E $内都是振动的.

  设$ u(x, t) $是方程(1.1)和(1.2)的一个非振动解.不妨设存在$ t_{0}\geq0 $, 使得$ u(x, t) > 0 $, $ u(x, t-\tau_{i}) > 0 $, $ (x, t)\in\Omega\times[t_{0}, +\infty) $.

$ t\neq t_{k} $.将方程(1.1)的第一个式子关于$ x $$ \Omega $内积分, 得到

$ \begin{align} &D_{+, t}^{\alpha}\int_{\Omega}\left(r(t)D_{+, t}^{\alpha}u(x, t)\right)dx+p(t)\int_{\Omega}D_{+, t}^{\alpha}u(x, t)dx\\ = &a(t)\int_{\Omega}h(u)\Delta u(x, t)dx+\sum\limits_{i = 1}^{j}a_{i}(t)\int_{\Omega}h_{i}(u(x, t-\tau_{i}))\Delta u(x, t-\tau_{i})dx\\ &-\int_{\Omega}m(x, t, u(x, t))dx-\int_{\Omega}q(x, t)F(u(x, t))dx. \end{align} $ (2.3)

由Green公式、边值条件(1.2)及条件(H2), 容易得到

$ \begin{eqnarray} &&\int_{\Omega}h(u)\Delta u(x, t)dx\ = \int_{\partial\Omega}h(u)\frac{\partial u(x, t)}{\partial N}dS-\int_{\Omega}h'(u)\mid \text {grad} \;u\mid^{2}dx\\ & = &-\int_{\Omega}h'(u)\mid \text {grad}\; u\mid^{2}dx \leq0, \quad\qquad\qquad\qquad\qquad\qquad\qquad t\geq t_{0}, \end{eqnarray} $ (2.4)
$ \begin{eqnarray} &&\int_{\Omega}h_{i}(u(x, t-\tau_{i}))\Delta u(x, t-\tau_{i})dx \\ & = &-\int_{\Omega}h_{i}'(u(x, t-\tau_{i}))\mid \text {grad}\;u(x, t-\tau_{i})\mid^{2}dx\leq0, \qquad\qquad \;t\geq t_{0}, \end{eqnarray} $ (2.5)

$ \begin{eqnarray} &&\int_{\Omega}m(x, t, u(x, t))dx\geq0, \qquad \qquad \qquad \qquad \qquad \qquad \qquad \, \, \, t\geq t_{0}, \end{eqnarray} $ (2.6)
$ \begin{eqnarray} &&\int_{\Omega}q(x, t)F(u(x, t))dx\geq\int_{\Omega}cq(t)u(x, t)dx\geq cq(t)U(t), \quad\, \, \, \, t\geq t_{0}. \end{eqnarray} $ (2.7)

由(2.3)–(2.7)式, 得到

$ \begin{align} D_{+, t}^{\alpha}\left[r(t)D_{+, t}^{\alpha}U(t)\right]+p(t)D_{+, t}^{\alpha}U(t)\leq-cq(t)U(t), \qquad\qquad\quad t\geq t_{0}. \end{align} $ (2.8)

$ t = t_{k} $.分别对方程(1.1)的第二个式子和第三个式子关于$ x $$ \Omega $内积分, 得到

$ \begin{align} D_{+, t}^{\alpha}U(t_{k}^{+}) = D_{+, t}^{\alpha}\int_{\Omega}u(x, t_{k}^{+})dx = (1+\alpha_{k})D_{+, t}^{\alpha}\int_{\Omega}u(x, t_{k})dx = (1+\alpha_{k})D_{+, t}^{\alpha}U(t_{k}), \\ \;k = 1, 2, 3, \cdots. \end{align} $ (2.9)
$ \begin{align} U(t_{k}^{+}) = \int_{\Omega}u(x, t_{k}^{+})dx = (1+\beta_{k})\int_{\Omega}u(x, t_{k})dx = (1+\beta_{k})U(t_{k}), \;k = 1, 2, 3, \cdots. \end{align} $ (2.10)

由(2.8)–(2.10)式知, $ U(t) = \int_{\Omega}u(x, t)dx $是脉冲分数阶微分不等式(2.1)的最终正解, 这与假设矛盾.

$ u(x, t) $是脉冲分数阶微分方程(1.1)和(1.2)的最终负解.用类似方法, 容易得到$ U(t) = \int_{\Omega}u(x, t)dx $是脉冲分数阶微分不等式(2.2)的最终负解, 这与假设矛盾.定理得证.

引理2.2 [18]  若$ G(t) = \int_{0}^{t}(t-v)^{-\alpha}U(v)dv, \; \; \alpha\in(0, 1), \; \; t > 0, $$ G'(t) = \Gamma(1-\alpha)(D_{+}^{\alpha}U)(t), \; \; \alpha\in(0, 1), \; \; t > 0. $

引理2.3   若$ 0 < \alpha < 1 $, 则$ (D_{+}^{\alpha}I_{0+}^{\alpha}f)(x) = f(x). $

  由定义1.1和1.2可得

$ \begin{array}{l} (D_{+}^{\alpha}I_{0+}^{\alpha}f)(x) & = \frac{1}{\Gamma(1-\alpha)}\frac{d}{dx}\int_{0}^{x}\frac{dt}{(x-t)^{\alpha}}(\frac{1}{\Gamma(\alpha)}\int_{0}^{t}\frac{f(s)ds}{(t-s)^{1-\alpha}}-I_{0+}^{\alpha}f(0))\nonumber\\ & = \frac{1}{\Gamma(\alpha)\Gamma(1-\alpha)}\frac{d}{dx}\int_{0}^{x}\frac{dt}{(x-t)^{\alpha}}\int_{0}^{t}\frac{f(s)}{(t-s)^{1-\alpha}}ds\nonumber\\ & = \frac{1}{\Gamma(\alpha)\Gamma(1-\alpha)}\frac{d}{dx}\int_{0}^{x}f(s)ds\int_{s}^{x}(x-t)^{-\alpha}(t-s)^{\alpha-1}dt. \end{array} $

$ t = s+\mu(x-s) $, 利用Beta函数的定义得

$ \begin{array}{l} \int_{s}^{x}(x-t)^{-\alpha}(t-s)^{\alpha-1}dt = \int_{0}^{1}\mu^{\alpha-1}(1-\mu)^{-\alpha}d\mu = B(\alpha, 1-\alpha), \\ (D_{+}^{\alpha}I_{0+}^{\alpha}f)(x) = \frac{B(\alpha, 1-\alpha)}{\Gamma(\alpha)\Gamma(1-\alpha)}\frac{d}{dx}\int_{0}^{x}f(s)ds = f(x). \end{array} $

引理2.4 [20]   假设$ w\in PC^{1}[R_{+}, R], $

$ w'(t)\leq g_{1}(t)w(t)+g_{2}(t), \qquad t\neq t_{k}, \quad t\geq t_{0}, $
$ w(t_{k}^{+})\leq (1+\delta_{k})w(t_{k}), \qquad k = 1, 2, 3, \cdots, $

其中$ g_{1}, g_{2}\in C[R_{+}, R] $, $ \delta_{k} $是常数, $ PC^{1}[R_{+}, R] = \{x(t):R_{+}\to R, \; x(t)\mbox{在除}\; t = t_{k}, k = 1, 2, \cdots\mbox{以外的点连续可微}, x(t_{k}^{+}), x(t_{k}^{-}), x'(t_{k}^{+}), x'(t_{k}^{-}) \mbox{存在, 且}\; x(t_{k}) = x(t_{k}^{-}), x'(t_{k}) = x'(t_{k}^{-})\} $.则

$ \begin{array}{l} w(t)\leq& w(t_{0})\prod\limits_{t_{0}<t_{k}<t}(1+\delta_{k})\exp(\int_{t_{0}}^{t}g_{1}(s)ds)\\ &+\int_{t_{0}}^{t}\prod\limits_{s<t_{k}<t}(1+\delta_{k})\exp(\int_{s}^{t}g_{1}(\sigma)d\sigma)g_{2}(s)ds, \quad\; \; t\geq t_{0}. \end{array} $

定理2.5   假设存在$ t^{*}\geq0 $,

$ \begin{align} \int_{t^{*}}^{\infty}\frac{1}{r(s)e^{R(s)}}ds = +\infty, \end{align} $ (2.11)

$ \begin{align} \lim\limits_{\xi\to\infty}\int_{t^{*}}^{\xi}\prod\limits_{t^{*}<\xi_{k}<s}\frac{1+\beta_{k}}{1+\alpha_{k}}\widetilde{\psi}(s)ds = +\infty, \end{align} $ (2.12)

其中$ \widetilde{\psi}(s) = ce^{\widetilde{R}(s)}\widetilde{q}(s) $.那么方程(1.1)–(1.2)每个非平凡解$ u(x, t) $$ E $内振动.

  用反证法.假设$ U(t) $是脉冲分数阶微分不等式(2.1)的非振动解.不失一般性, 假设$ U(t) $是脉冲分数阶微分不等式(2.1)的最终正解, 存在$ t^{*}\geq0 $, 使得$ U(t) > 0, U(t-\tau_{i}) > 0, G(t) > 0 $, $ t\geq t^{*} $.由(2.1)式及引理2.3, 有

$ \begin{align} D_{+}^{\alpha}\left[e^{R(t)}r(t)D_{+}^{\alpha}U(t)\right] & = e^{R(t)}D_{+}^{\alpha}\left[r(t)D_{+}^{\alpha}U(t)\right]+r(t)D_{+}^{\alpha}U(t)D_{+}^{\alpha}e^{R(t)}\\ & = e^{R(t)}D_{+}^{\alpha}\left[r(t)D_{+}^{\alpha}U(t)\right]+r(t)D_{+}^{\alpha}U(t)e^{R(t)}D_{+}^{\alpha}I_{0+}^{\alpha}\left(\frac{p(t)}{r(t)}\right)\\ & = e^{R(t)}D_{+}^{\alpha}\left[r(t)D_{+}^{\alpha}U(t)\right]+e^{R(t)}p(t)D_{+}^{\alpha}U(t)\\ & = e^{R(t)}\left[D_{+}^{\alpha}[r(t)D_{+}^{\alpha}U(t)]+p(t)D_{+}^{\alpha}U(t)\right]\\ &<-ce^{R(t)}q(t)U(t) <0. \end{align} $ (2.13)

由上式知$ e^{R(t)}r(t)D_{+}^{\alpha}U(t) $$ t\geq t^{*} $上是减函数.不妨设$ D_{+}^{\alpha}U(t) > 0 $, $ t\in[t^{*}, \infty) $.否则, 存在$ T\in[t^{*}, \infty) $, 使得$ D_{+}^{\alpha}U(T) < 0 $, $ e^{R(t)}r(t)D_{+}^{\alpha}U(t)\leq e^{R(T)}r(T)D_{+}^{\alpha}U(T) = c_{1} < 0, $其中$ c_{1} $$ t\in[T, \infty) $是一个常数.根据引理2.2, 有

$ \begin{align} \frac{G'(t)}{\Gamma(1-\alpha)} = D_{+}^{\alpha}U(t)\leq\frac{c_{1}}{e^{R(t)}r(t)}. \end{align} $ (2.14)

对上述不等式从$ T $$ t $积分, 得

$ \begin{eqnarray} &&\int_{T}^{t}\frac{G'(s)}{\Gamma(1-\alpha)}ds\leq\int_{T}^{t}\frac{c_{1}}{e^{R(s)}r(s)}ds, \end{eqnarray} $ (2.15)
$ \begin{eqnarray} &&G(t)\leq G(T)+\Gamma(1-\alpha)c_{1}\int_{T}^{t}\frac{1}{e^{R(s)}r(s)}ds. \end{eqnarray} $ (2.16)

$ t\to+\infty $, $ \lim\limits_{t\to\infty}G(t)\leq-\infty $, 这与$ G(t) > 0 $矛盾.因此$ D_{+}^{\alpha}U(t) > 0 $, $ t > T $.

$ w(t) = e^{R(t)}\frac{r(t)D_{+}^{\alpha}U(t)}{U(t)}, $

$ w(t) > 0 $, 由(2.1)式及引理2.3, 容易得到

$ \begin{align} D_{+}^{\alpha}w(t) & = e^{R(t)}D_{+}^{\alpha}[\frac{r(t)D_{+}^{\alpha}U(t)}{U(t)}]+\frac{r(t)D_{+}^{\alpha}U(t)}{U(t)}D_{+}^{\alpha}e^{R(t)}\\ & = e^{R(t)}\frac{D_{+}^{\alpha}[r(t)D_{+}^{\alpha}U(t)]}{U(t)}-\frac{e^{R(t)}r(t)D_{+}^{\alpha}U(t)D_{+}^{\alpha}U(t)}{U^{2}(t)}+\frac{p(t)}{r(t)}w(t)\\ &\leq e^{R(t)}\frac{-p(t)D_{+, t}^{\alpha}U(t)-c q(t)U(t)}{U(t)}-\frac{w^{2}(t)}{e^{R(t)}r(t)}+\frac{p(t)}{r(t)}w(t)\\ &\leq-ce^{R(t)}q(t)-\frac{p(t)}{r(t)}w(t)-\frac{w^{2}(t)}{e^{R(t)}r(t)}+\frac{p(t)}{r(t)}w(t)\\ &\leq-ce^{R(t)}q(t). \end{align} $ (2.17)

$ \begin{align} D_{+}^{\alpha}w(t)\leq-\psi(t), \end{align} $ (2.18)

其中$ \psi(t) = ce^{R(t)}q(t) $.利用(H1)和$ w(t) $的定义式, 不等式(2.1)的第二个式子和第三个式子变为

$ \begin{align} w(t_{k}^{+}) = \frac{1+\alpha_{k}}{1+\beta_{k}}w(t_{k}), \qquad k = 1, 2, 3, \cdots. \end{align} $ (2.19)

$ \xi = \frac{t^{\alpha}}{\Gamma(1+\alpha)} $, $ \widetilde{w}(\xi) = w(t) $, $ \widetilde{\psi}(\xi) = \psi(t) $, 则$ \widetilde{w}(\xi) > 0 $, 可以得到

$ \begin{align} D_{+}^{\alpha}w(t) = D_{+}^{\alpha}\widetilde{w}(\xi) = \widetilde{w'}(\xi)D_{+}^{\alpha}(\xi) = \widetilde{w'}(\xi), \end{align} $ (2.20)

则(2.18)式变为

$ \begin{align} \widetilde{w'}(\xi)\leq-\widetilde{\psi}(\xi). \end{align} $ (2.21)

由(2.19)–(2.21)式, 容易得到

$ \begin{equation} \begin{cases} \widetilde{w'}(\xi)\leq-\widetilde{\psi}(\xi), \qquad \xi\neq \xi_{k}, \quad \xi\geq t^{*}, \\ \widetilde{w}(\xi_{k}^{+}) = \frac{1+\alpha_{k}}{1+\beta_{k}}\widetilde{w}(\xi_{k}), \qquad k = 1, 2, 3, \cdots.\\ \end{cases} \end{equation} $ (2.22)

根据引理2.4, 得

$ \begin{align} \widetilde{w}(\xi) &\leq\widetilde{w}(t^{*})\prod\limits_{t^{*}<\xi_{k}<\xi}\frac{1+\alpha_{k}}{1+\beta_{k}}-\int_{t^{*}}^{\xi}\prod\limits_{s<\xi_{k}<\xi}\frac{1+\alpha_{k}}{1+\beta_{k}}\widetilde{\psi}(s)ds\\ & = \prod\limits_{t^{*}<\xi_{k}<\xi}\frac{1+\alpha_{k}}{1+\beta_{k}}\left[\widetilde{w}(t^{*})-\int_{t^{*}}^{\xi}\prod\limits_{t^{*}<\xi_{k}<s}\frac{1+\beta_{k}}{1+\alpha_{k}}\widetilde{\psi}(s)ds\right] <0, \end{align} $ (2.23)

这与$ \widetilde{w}(\xi) > 0 $矛盾, 定理2.5的第一部分证毕.

$ U(t) $是不等式(2.2)的一个非振动解.不妨设$ U(t) $是脉冲分数阶微分不等式(2.2)的最终负解, 则$ G(t) < 0, t\in [t^{*}, \infty) $.用类似方法, 容易得到$ D_{+}^{\alpha}U(t) < 0 $, $ t\geq t^{*} $.令$ w(t) = -e^{R(t)}\frac{r(t)D_{+}^{\alpha}U(t)}{U(t)} $, 则$ w < 0 $.根据(2.2)式, 可以得到 $ D_{+}^{\alpha}w(t)\geq c e^{R(t)}q(t) = \psi(t) $$ w(t_{k}^{+}) = \frac{1+\alpha_{k}}{1+\beta_{k}}w(t_{k}), k = 1, 2, 3, \cdots. $

$ \begin{equation} \begin{cases} \widetilde{w'}(\xi)\geq\widetilde{\psi}(\xi), \qquad \xi\neq \xi_{k}, \quad \xi\geq t^{*}, \\ \widetilde{w}(\xi_{k}^{+}) = \frac{1+\alpha_{k}}{1+\beta_{k}}\widetilde{w}(\xi_{k}), \qquad k = 1, 2, 3, \cdots.\\ \end{cases} \end{equation} $ (2.24)

$ \widetilde{w}(\xi) = -\widetilde{v}(\xi) $

$ \begin{equation} \begin{cases} \widetilde{v'}(\xi)\leq-\widetilde{\psi}(\xi), \qquad \xi\neq \xi_{k}, \quad \xi\geq t^{*}, \\ \widetilde{v}(\xi_{k}^{+}) = \frac{1+\alpha_{k}}{1+\beta_{k}}\widetilde{v}(\xi_{k}), \qquad k = 1, 2, 3, \cdots.\\ \end{cases} \end{equation} $ (2.25)

由引理2.4, 得

$ \begin{align} \widetilde{v}(\xi)\leq \widetilde{v}(t^{*})\prod\limits_{t^{*}<\xi_{k}<\xi}\frac{1+\alpha_{k}}{1+\beta_{k}}-\int_{t^{*}}^{\xi}\prod\limits_{s<\xi_{k}<\xi}\frac{1+\alpha_{k}}{1+\beta_{k}}\widetilde{\psi}(s)ds, \end{align} $ (2.26)

$ \begin{align} \widetilde{w}(\xi) &\geq\widetilde{w}(t^{*})\prod\limits_{t^{*}<\xi_{k}<\xi}\frac{1+\alpha_{k}}{1+\beta_{k}}+\int_{t^{*}}^{\xi}\prod\limits_{s<\xi_{k}<\xi}\frac{1+\alpha_{k}}{1+\beta_{k}}\widetilde{\psi}(s)ds\\ & = \prod\limits_{t^{*}<\xi_{k}<\xi}\frac{1+\alpha_{k}}{1+\beta_{k}}[\widetilde{w}(t^{*})+\int_{t^{*}}^{\xi}\prod\limits_{t^{*}<\xi_{k}<s}\frac{1+\beta_{k}}{1+\alpha_{k}}\widetilde{\psi}(s)ds] >0, \end{align} $ (2.27)

这与结论$ \widetilde{w}(\xi) < 0 $矛盾.定理2.5证毕.

3 举例

例1   考虑如下问题

$ \begin{equation} \begin{cases} &D_{+, t}^{\frac{1}{2}}[e^{-t-\frac{2}{3\sqrt{\pi}}t^{\frac{3}{2}}}D_{+, t}^{\frac{1}{2}}u(x, t)]+\frac{1}{2}te^{-t-\frac{2}{3\sqrt{\pi}}t^{\frac{3}{2}}}D_{+, t}^{\frac{1}{2}}u(x, t)\\ & = e^{t}u^{2}\Delta u(x, t)+t^{\frac{2}{3}}\Delta u(x, t-\frac{\pi}{3})-\frac{u^{3}(x, t)}{1+t^{2}+x^{2}}-(x^{2}+t^{2})u(x, t), \quad t\neq t_{k}, \\ &D_{+, t}^{\frac{1}{2}}u(x, t_{k}^{+})-D_{+, t}^{\frac{1}{2}}u(x, t_{k}^{-}) = D_{+, t}^{\frac{1}{2}}u(x, t_{k}), k = 1, 2, 3, \cdots, \, (x, t)\in \Omega\times R_{+}\equiv E, \\ &u(x, t_{k}^{+})-u(x, t_{k}^{-}) = u(x, t_{k}), \ k = 1, 2, 3, \cdots, \, (x, t)\in \Omega\times R_{+}\equiv E, \end{cases} \end{equation} $ (3.1)

边界条件为

$ \begin{align} \frac{\partial u(x, t)}{\partial N} = 0, \qquad (x, t)\in\partial\Omega\times R_{+}, \qquad t\neq t_{k}, \end{align} $ (3.2)

  在(3.1)式中, $ r(t) = e^{-t-\frac{2}{3\sqrt{\pi}}t^{\frac{3}{2}}}, \; p(t) = \frac{1}{2}te^{-t-\frac{2}{3\sqrt{\pi}}t^{\frac{3}{2}}}, \; a(t) = e^{t}, a_{1}(t) = t^{\frac{2}{3}}, \, m(x, t, u) = \frac{u^{3}(x, t)}{1+t^{2}+x^{2}} $, $ h(u) = u^{2} $, $ h_{1}(u) = 1 $, $ q(x, t) = x^{2}+t^{2} $, $ q(t) = \min(x^{2}+t^{2}) = t^{2}, F(u) = u, \frac{F(u)}{u}\geq c = 1 $, $ j = 1 $, $ \alpha_{k} = \beta_{k} = 1 $.那么

$ \begin{array}{l} &R(t) = I_{0+}^{\frac{1}{2}}(\frac{p(t)}{r(t)})\ = \frac{1}{\Gamma(\frac{1}{2})}\int_{0}^{t}(t-v)^{\frac{1}{2}-1}(\frac{v}{2})dv = \frac{1}{\Gamma(\frac{1}{2})}\int_{0}^{t}(-v)d(t-v)^{\frac{1}{2}} = \frac{2}{3\sqrt{\pi}}t^{\frac{3}{2}}, \\ &\int_{t^{*}}^{\infty}\frac{1}{r(s)e^{R(s)}}ds = \int_{t^{*}}^{\infty}\frac{1}{e^{-s-\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}e^{\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}}ds = \int_{t^{*}}^{\infty}e^{s}ds = +\infty, \end{array} $

$ \begin{array}{l} \lim\limits_{\xi\to\infty}\int_{t^{*}}^{\xi}e^{\widetilde{R(s)}}\widetilde{q(s)}ds\ & = \lim\limits_{\xi\to\infty}\int_{t^{*}}^{\xi}e^{\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}s^{2}ds = \lim\limits_{\xi\to\infty}[\sqrt{\pi}s^{\frac{3}{2}}e^{\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}\mid_{t^{*}}^{\xi}-\int_{t^{*}}^{\xi}e^{\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}\sqrt{\pi}ds^{\frac{3}{2}}]\nonumber\\ & = \lim\limits_{\xi\to\infty}[\sqrt{\pi}s^{\frac{3}{2}}e^{\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}\mid_{t^{*}}^{\xi}-\int_{t^{*}}^{\xi}\frac{3\sqrt{\pi}}{2}e^{\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}s^{\frac{1}{2}}ds]\nonumber\\ & = \lim\limits_{\xi\to\infty}[\sqrt{\pi}s^{\frac{3}{2}}e^{\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}\mid_{t^{*}}^{\xi}-\frac{3\pi}{2}\int_{t^{*}}^{\xi}de^{\frac{2}{3\sqrt{\pi}}s^{\frac{3}{2}}}]\nonumber\\ & = \lim\limits_{\xi\to\infty}[\sqrt{\pi}\xi^{\frac{3}{2}}e^{\frac{2}{3\sqrt{\pi}}\xi^{\frac{3}{2}}}-\frac{3\pi}{2}e^{\frac{2}{3\sqrt{\pi}}\xi^{\frac{3}{2}}}-\sqrt{\pi}(t^{*})^{\frac{3}{2}}e^{\frac{2}{3\sqrt{\pi}}(t^{*})^{\frac{3}{2}}}-\frac{3\pi}{2}e^{\frac{2}{3\sqrt{\pi}}(t^{*})^{\frac{3}{2}}}]\nonumber\\ & = +\infty, \end{array} $
$ \begin{array}{l} \lim\limits_{\xi\to\infty}\int_{t^{*}}^{\xi}\prod\limits_{t^{*}<\xi_{k}<s}\frac{1+\beta_{k}}{1+\alpha_{k}}\widetilde{\psi(s)}ds = +\infty. \end{array} $

则由定理2.5可知, 问题(3.1)和(3.2)的解都是振动的.

参考文献
[1] Yang Jichen, Liu Anping, Liu Guangjie. Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays[J]. Electronic Journal of Differential Equations, 2013, 2013(27): 207–211.
[2] Liu Anping, Ma Qingxia, He Mengxing. Oscillation of nonlinear impulsive parabolic equations of neutral type[J]. Rocky Mountain Journal of Mathematics, 2010, 36(3): 1011–1026.
[3] Liu Anping, Xiao Li, Liu Ting, Zou Min. Oscillation of nonlinear impulsive hyperbolic equation with several delays[J]. Rocky Mountain Journal of Mathematics, 2007, 37(5): 1669–1684. DOI:10.1216/rmjm/1194275940
[4] Prakash P, Harikrishnan S, Benchohra M. Oscillation of certain nonlinear fractional partial differential equation with damping term[J]. Applied Mathematics Letters, 2015, 43: 72–79. DOI:10.1016/j.aml.2014.11.018
[5] Li Weinian. Forced oscillation criteria for a class of fractional partial differential equations with damping term[J]. Mathematical Problems in Engineering, 2015, Article ID 410904.
[6] Zheng Bin. Oscillation for a class of nonlinear fractional differential equations with damping term[J]. Journal of Advanced Mathematical Studies, 2013, 6(1): 107–115.
[7] Chen Daxue. Oscillatory behavior of a class of fractional differential equations with damping[J]. UPB Scientific Bulletin (Series A), 2013, 75(1): 107–118.
[8] Qin Huizeng, Zheng Bin. Oscillation of a class of fractional differential equations with damping term[J]. Scientific World Journal, 2013, 2013: 1–9.
[9] Yang Jichen, Liu Anping, Liu Ting. Forced oscillation of nonlinear fractional differential equations with damping term[J]. Advances in Difierence Equations, 2015, 2015(1): 1–7.
[10] 马晴霞, 刘安平. 带阻尼项的非线性分数阶微分方程的振动性(英文)[J]. 应用数学, 2016, 29(2): 291–297.
[11] Chen Daxue. Oscillation criteria of fractional differential equations[J]. Advances in Difierence Equation, 2012, 2012(1): 33–42. DOI:10.1186/1687-1847-2012-33
[12] Harikrishnan S, Prakash P, Nieto J J. Forced oscillation of solutions of a nonlinear fractional partial differential equation[J]. Applied Mathematics and Computation, 2015, 254(254): 14–19.
[13] Li Weinian. On the forced oscillation of certain fractional partial differential equations[J]. Applied Mathematics Letters, 2015, 50: 5–9. DOI:10.1016/j.aml.2015.05.016
[14] Feng Qinghua, Meng Fanwei. Oscillation of solutions to nonlinear forced fractional differential equations[J]. Electronic Journal of Differential Equations, 2013, 2013(169): 1–10.
[15] Li Weinian. Oscillation of solutions for certain fractional partial differential equations[J]. Advances in Difierence Equations, 2016, 2016(1): 16. DOI:10.1186/s13662-016-0756-z
[16] Prakash P, Harikrishnan S. Oscillation of solutions of impulsive vector hyperbolic differential equations with delays[J]. Applicable Analysis, 2012, 91(3): 459–473. DOI:10.1080/00036811.2010.541602
[17] 熊永福, 朱思瑛, 刘安平. 分数阶偏微分方程解的强迫振动性质(英文)[J]. 生物数学学报, 2017, 32(3): 304–310.
[18] Abbas S, Benchohra M, N'Guérékata G M. Topics in fractional differential equations[M]. New York: Springer, 2012.
[19] Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J]. Computers and Mathematics with Applications, 2006, 51(9-10): 1367–1376. DOI:10.1016/j.camwa.2006.02.001
[20] Raheem A, Maqbul M. Oscillation criteria for impulsive partial fractional differential equations[J]. Computers and Mathematics with Applications, 2017, 73(8): 1781–1788. DOI:10.1016/j.camwa.2017.02.016