数学杂志  2020, Vol. 40 Issue (1): 119-126   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
肖甫育
加权双线性Hardy算子在加幂权Lp空间中的最佳常数
肖甫育    
上海大学理学院数学系, 上海 200444
摘要:本文研究了加权双线性Hardy算子和加权双线性Cesàro算子在加幂权Lp空间中的有界性,精确得到了这两类算子在加幂权Lp空间中的算子范数.作为应用,得到了双线性Riemann-Liouville算子和双线性Weyl算子的最佳常数.
关键词加权双线性Hardy算子    加权双线性Cesàro算子    加幂权Lp空间    双线性Riemann-Liouville算子    双线性Weyl算子    最佳常数    
SHARP BOUND FOR THE WEIGHTED BILINEAR HARDY OPERATOR ON THE LP SPACE WITH POWER WEIGHT
XIAO Fu-yu    
Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China
Abstract: We study the boundedness of the weighted bilinear Hardy operator and the weighted bilinear Cesàro operator on the Lp space with power weight and obtain norms of these two operators on the Lp space with power weight. As applications, we also calculate sharp bounds of the bilinear Riemann-Liouville operator and the bilinear Weyl operator on the Lp space with power weight.
Keywords: weighted bilinear Hardy operator     weighted bilinear Cesàro operator     Lp space with power weight     bilinear Riemann-Liouville operator     bilinear Weyl operator     sharp bound    
1 引言

1920年, 英国数学家Hardy在研究双重Hilbert级数的收敛时, 建立了经典Hardy算子, 见文献[1].经典的一维Hardy算子的定义为$H(f)(x)=\frac{1}{x}\int^{x}_{0}f(t)dt, \ x\neq 0, $其中$1<p<+\infty, $ $f$$(0, \infty)$上的非负局部可积函数.经典的一维Hardy不等式的形式为

$ \begin{equation*}\label{eh03} (\int^{\infty}_{0}(H(f)(x))^{p}dx)^{\frac{1}{p}}<\frac{p}{p-1}(\int^{\infty}_{0}f^{p}(x)dx)^{\frac{1}{p}}, \end{equation*} $

其中$1<p<\infty, $$\frac{p}{p-1}$是最佳常数(见文献[2]).借助于简单的变量替换, Hardy算子$H$可以表示为$ H(f)(x)=\int^{1}_{0}f(tx)dt, \ x\neq 0.$

1984年, Carton-Lebrun和Fosset在文献[3]中首先定义了如下的加权Hardy算子:设$\omega: [0, 1]\rightarrow[0, \infty)$是一个函数, $f$$\mathbb{R}^{n}$上的复值可测函数, $ H_{\omega}f(x)=\int^{1}_{0}f(tx)\omega(t)dt, \ x\in\mathbb{R}^{n}.$$\omega(t)\equiv1$$n=1$时, $H_{\omega}$是经典的一维Hardy算子$H.$ 2001年, Xiao在文献[4]中得到了加权Hardy算子在$L^p(\mathbb{R}^{n})$空间中的最佳常数.

定理A[4] 设$p\in[1, \infty], $ $\omega: [0, 1]\rightarrow[0, \infty)$一个函数, 则$H_{\omega}$$L^{p}(\mathbb{R}^{n})$上有界当且仅当$ C_{1}=\int_{0}^{1}t^{-\frac{n}{p}}\omega(t)dt<\infty, $$ \|H_{\omega}f\|_{L^{p}(\mathbb{R}^{n})\rightarrow L^{p}(\mathbb{R}^{n})}=C_{1}. $同时, Xiao在文献[4]中研究了加权Hardy算子的共轭算子, 加权Cesàro算子, 其定义如下.设$\omega: [0, 1]\rightarrow[0, \infty)$是一个函数, $f$$\mathbb{R}^{n}$上的复值可测函数.加权Cesàro算子的定义为$ V_{\omega}f(x)=\int^{1}_{0}f({x}/{t})t^{-n}\omega(t)dt, \ x\in\mathbb{R}^{n}. $$\omega(t)\equiv1$$n=1$时, $V_{\omega}$是经典的Cesàro算子.加权Hardy算子$H_{\omega}$和加权Cesàro算子$V_{\omega}$是一对共轭算子, 即

$ \int_{\mathbb{R}^{n}}g(x)H_{\omega}f(x)dx=\int_{\mathbb{R}^{n}}f(x)V_{\omega}g(x)dx, $

其中$f\in L^{p}(\mathbb{R}^{n}), \ g\in L^{q}(\mathbb{R}^{n}), \ 1<p<\infty, \ {1}/{p}+{1}/{q}=1.$因此$H_{\omega}$$V_{\omega}$满足交换律: $H_{\omega}V_{\omega}=V_{\omega}H_{\omega}$.

受多线性算子理论的影响, 2015年, 傅等在文献[5]中将加权Hardy算子推广到多线性情形.设$\omega:[0, 1]\times\cdots\times[0, 1]\to [0, \infty)$是一个可积函数, $f_{1}, \cdots, f_{m}$$\mathbb{R}^{n}$上的复值可测函数, 加权多线性Hardy算子定义为

$ H_{\omega}^{m}f(x)=\int^{1}_{0}\cdots\int^{1}_{0}f_{1}(t_{1}x)\cdots f_{m}(t_{m}x)\omega(t_{1}, \cdots, t_{m})dt_{1}\cdots t_{m}, \ x\in\mathbb{R}^{n}. $

$m=2$时, $H_{\omega}^{2}$称为加权双线性Hardy算子.傅等在文献[5]得到了加权多线性Hardy算子$H_{\omega}^{m}$$L^{p}(\mathbb{R}^{n})$空间中的有界性和最佳常数.由于$m\geq3$$m=2$的情形并没有本质不同, 为此仅叙述双线性的结果.

定理B[5] 令$1< p<\infty, 1<p_{1}, p_2<\infty$, $1/p=1/p_{1}+1/p_{2}.$则加权双线性Hardy算子$H^{2}_{\omega}$是从Lebesgue乘积空间$L^{p_{1}}(\mathbb{R}^{n})\times L^{p_{2}}(\mathbb{R}^{n})$$L^{p}(\mathbb{R}^{n})$有界当且仅当

$ C_{2}=\int^{1}_{0}\int^{1}_{0}t_{1}^{-\frac{n}{p_{1}}} t_{2}^{-\frac{n}{p_{2}}}\omega(t_{1}, t_{2})dt_{1} dt_{2}<\infty $

$ \|H^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n})\times L^{p_{2}}(\mathbb{R}^{n})\to{L^{p}(\mathbb{R}^{n})}}=C_{2}. $

另一方面, 刘和江在文献[6]定义了加权双线性Cesàro算子.设$\omega:[0, 1]\times[0, 1]\rightarrow[0, \infty)$是一个函数, $f_{1}, f_{2}$$\mathbb{R}^{n}$上的复值可测函数, 加权双线性Cesàro算子的定义为

$ V_{\omega}^{2}(f_{1}, f_{2})(x)=\int^{1}_{0}\int^{1}_{0}f_{1}({x}/{t_{1}})f_{2}({x}/{t_{2}})t_{1}^{-n}t_{2}^{-n}\omega(t_{1}, t_{2})dt_{1}t_{2}, \ x\in\mathbb{R}^{n}. $

很显然加权双线性Cesàro算子与加权双线性Hardy算子$H_{\omega}^{2}$并不是一对共轭算子.

众所周知, 加幂权$L^{p}$空间(记为$L^p(\mathbb{R}^n, |x|^{\alpha}dx)$)是一类重要的函数空间.那么加权双线性Hardy算子和加权双线性Cesàro算子在加幂权$L^{p}$空间中的有界性以及最佳常数是否可以得到呢?其最佳常数与底空间的维数$n$、幂权指标$\alpha$存在何种关系?研究结果将回答这些问题.

2 主要结果

定理1 令$1\leq p<\infty, $ $1<p_{1}, p_{2}<\infty, $ $1/p=1/p_{1}+1/p_{2}, $ $\alpha=\alpha_{1}+\alpha_{2}.$则加权双线性Hardy算子$H^{2}_{\omega}$是从Lebesgue乘积空间$L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)$$L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)$有界当且仅当

$ \begin{equation}\label{e1} C_{3}=\int^{1}_{0}\int^{1}_{0}t_{1}^{-\frac{n}{p_{1}}-\frac{\alpha_{1}}{p}}t_{2}^{-\frac{n}{p_{2}}-\frac{\alpha_{2}}{p}}\omega(t_{1}, t_{2})dt_{1}dt_{2}<\infty \end{equation} $ (2.1)

$ \|H^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}=C_{3}. $

 在定理$1$中, 若取$\alpha_1=\alpha_2=\alpha=0, $则可以得到定理B.

 假设(2.1)成立.由Minkowski不等式有

$ \begin{align*} \|H_{\omega}^{2}(f_{1}, f_{2})\|_{L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)} &=(\int_{\mathbb{R}^{n}}|\int_{0}^{1}\int_{0}^{1}f_{1}(t_{1}x)f_{2}(t_{2}x) \omega(t_{1}, t_{2})dt_{1}dt_{2}|^{p}|x|^{\alpha}dx)^{\frac{1}{p}}\\ &\leq\int_{0}^{1}\int_{0}^{1}(\int_{\mathbb{R}^{n}}|f_{1}(t_{1}x)f_{2}(t_{2}x)|^{p}|x|^{\alpha}dx)^{\frac{1}{p}}\omega(t_{1}, t_{2})dt_{1}dt_{2}. \end{align*} $

注意$\alpha=\alpha_1+\alpha_2, $利用Hölder不等式($1/p=1/p_{1}+1/p_{2}$)和变量替换$y_{i}=t_{i}x, \ i=1, 2, $

$ \begin{align*} &\|H_{\omega}^{2}(f_{1}, f_{2})\|_{L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\\ \leq&\int_{0}^{1}\int_{0}^{1}(\int_{\mathbb{R}^{n}}|f_{1}(t_{1}x)|^{p_{1}}|x|^{\frac{\alpha_{1}p_{1}}{p}}dx)^{\frac{1}{p_{1}}}(\int_{\mathbb{R}^{n}}|f_{2}(t_{2}x)|^{p_{2}}|x|^{\frac{\alpha_{2}p_{2}}{p}}dx)^{\frac{1}{p_{2}}}\omega(t_{1}, t_{2})dt_{1}dt_{2}\\ =&\int_{0}^{1}\int_{0}^{1}(\prod\limits_{i=1}^{2}(\int_{\mathbb{R}^{n}}|f_{i}(y_{i})|^{p_{i}}|y_{i}|^{\frac{\alpha_{i}p_{i}}{p}}dy_{i})^{\frac{1}{p_{i}}}t_{i}^{-(\frac{n}{p_{i}}+\frac{\alpha_{i}}{p})})\omega(t_{1}, t_{2})dt_{1}dt_{2}\\ =&(\prod\limits_{i=1}^{2}\|f_{i}\|_{L^{p_{i}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{i}p_{i}}{p}}dx)})\int_{0}^{1}\int_{0}^{1}(\prod\limits_{i=1}^{2}t_{i}^{-(\frac{n}{p_{i}}+\frac{\alpha_{i}}{p})})\omega(t_{1}, t_{2})dt_{1}dt_{2}. \end{align*} $

因此$H_{\omega}^{2}$是从Lebesgue乘积空间$L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)$$L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)$上的有界算子, 且

$ \|H^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\leq C_{3}. $

必要性 为了得到合适的下界, 需要选取特殊的函数.对于充分小的$\epsilon\in(0, 1), $

$ \begin{eqnarray*}\label{e222} f_{1}^{\epsilon}(x)= \begin{cases} 0\ &|x| \leq 1, \\ |x|^{-\frac{n}{p_{1}}-\frac{\alpha_{1}}{p}-\frac{p_{2}}{p_{1}}\epsilon}\ &|x|>1 \end{cases}\quad f_{2}^{\epsilon}(x)= \begin{cases} 0\ &|x| \leq 1, \\ |x|^{-\frac{n}{p_{2}}-\frac{\alpha_{2}}{p}-\epsilon}\ &|x|>1. \end{cases} \end{eqnarray*} $

经过简单的计算得

$ \begin{equation*} \|f_{1}^{\epsilon}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)}^{p_{1}}=\|f_{2}^{\epsilon}\|_{L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)}^{p_{2}}=\frac{|\mathbb{S}^{n-1}|}{p_{2}\epsilon}, \end{equation*} $

其中$|\mathbb{S}^{n-1}|$表示$n$维单位球面的面积, 有

$ \begin{align*} &\|H_{\omega}^{2}(f_{1}^{\epsilon}, f_{2}^{\epsilon})\|_{L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\\ =&(\int_{\mathbb{R}^{n}}|\int_{0}^{1}\int_{0}^{1}f_{1}^{\epsilon}(t_{1}x)f_{2}^{\epsilon}(t_{2}x) \omega(t_{1}, t_{2})dt_{1}dt_{2}|^{p}|x|^{\alpha}dx)^{\frac{1}{p}}\\ =&(\int_{\mathbb{R}^{n}}|x|^{-n-p_{2}\epsilon}(\int_{\frac{1}{|x|}}^{1}\int_{\frac{1}{|x|}}^{1}t_{1}^{-\frac{n}{p_{1}}-\frac{\alpha_{1}}{p} -\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{-\frac{n}{p_{2}}-\frac{\alpha_{2}}{p}-\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2})^{p}dx)^{\frac{1}{p}}. \end{align*} $

借助简单的计算, 得到

$ \begin{align*} &\|H_{\omega}^{2}(f_{1}^{\epsilon}, f_{2}^{\epsilon})\|_{L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}^{p}\\ \geq&\int_{|x|>\frac{1}{\epsilon}}|x|^{-n-p_{2}\epsilon}(\int_{\epsilon}^{1}\int_{\epsilon}^{1}t_{1}^{-\frac{n}{p_{1}}-\frac{\alpha_{1}}{p}-\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{-\frac{n}{p_{2}}-\frac{\alpha_{2}}{p}-\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2})^{p}dx\\ =&\frac{\epsilon^{p_{2}\epsilon}|\mathbb{S}^{n-1}|}{p_{2}\epsilon}(\int_{\epsilon}^{1}\int_{\epsilon}^{1}t_{1}^{-\frac{n}{p_{1}}-\frac{\alpha_{1}}{p}-\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{-\frac{n}{p_{2}}-\frac{\alpha_{2}}{p}-\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2})^{p}\\ =&\epsilon^{p_{2}\epsilon}\prod\limits_{i=1}^{2}\|f_{i}^{\epsilon}\|_{L^{p_{i}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{i}p_{i}}{p}}dx)}^{p}\times(\int_{\epsilon}^{1}\int_{\epsilon}^{1}t_{1}^{-\frac{n}{p_{1}}-\frac{\alpha_{1}}{p}-\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{-\frac{n}{p_{2}}-\frac{\alpha_{2}}{p}-\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2})^{p}. \end{align*} $

因此

$ \begin{align*}&\|H^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\\ \quad\geq&\epsilon^{\frac{p_{2}\epsilon}{p}}\int_{\epsilon}^{1}\int_{\epsilon}^{1}t_{1}^{-\frac{n}{p_{1}}-\frac{\alpha_{1}}{p}-\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{-\frac{n}{p_{2}}-\frac{\alpha_{2}}{p}-\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2}. \end{align*} $

$\epsilon\to 0^{+}$时, 则$\epsilon^{\frac{p_{2}\epsilon}{p}}\to 1.$从而$\|H^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\geq C_{3}.$

综上所证, 定理$1$得证.

定理2 令$1\leq p<\infty$, $1<p_{1}, p_{2}<\infty$, $1/p=1/p_{1}+1/p_{2}, $ $\alpha=\alpha_{1}+\alpha_{2}.$则加权双线性Ces$\grave{a}$ro算子$V^{2}_{\omega}$是从Lebesgue乘积空间$L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)$$L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)$有界当且仅当

$ \begin{equation}\label{e2} C_{4}=\int^{1}_{0}\int^{1}_{0}t_{1}^{\frac{n(1-p_{1})}{p_{1}}+\frac{\alpha_{1}}{p}} t_{2}^{\frac{n(1-p_{2})}{p_{2}}+\frac{\alpha_{2}}{p}}\omega(t_{1}, t_{2})dt_{1}dt_{2}<\infty \end{equation} $ (2.2)

$ \|V^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}=C_{4}. $

 定理$2$的证明类似于定理$1$的证明.假设(2.2)成立.由Minkowski不等式有

$ \begin{align*} &\|V_{\omega}^{2}(f_{1}, f_{2})\|_{L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\\ =&(\int_{\mathbb{R}^{n}}|\int_{0}^{1}\int_{0}^{1}f_{1}({x}/{t_{1}})f_{2}({x}/{t_{2}})t_{1}^{-n}t_{2}^{-n}\omega(t_{1}, t_{2})dt_{1}dt_{2}|^{p}|x|^{\alpha}dx)^{\frac{1}{p}}\\ \leq&\int_{0}^{1}\int_{0}^{1}(\int_{\mathbb{R}^{n}}|f_{1}({x}/{t_{1}})f_{2}({x}/{t_{2}})|^{p} |x|^{\alpha}dx)^{\frac{1}{p}}t_{1}^{-n}t_{2}^{-n}\omega(t_{1}, t_{2})dt_{1}dt_{2}. \end{align*} $

由Hölder不等式和变量替换$y_{1}=x/t_{1}, y_{2}=x/t_{2}, $

$ \begin{align*} &\|V_{\omega}^{2}(f_{1}, f_{2})\|_{L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\\ \leq&\int_{0}^{1}\int_{0}^{1}(\int_{\mathbb{R}^{n}}|f_{1}({x}/{t_{1}})|^{p_{1}} |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)^{\frac{1}{p_{1}}}(\int_{\mathbb{R}^{n}}|f_{2}({x}/{t_{2}})|^{p_{2}} |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)^{\frac{1}{p_{2}}}t_{1}^{-n}t_{2}^{-n}\omega(t_{1}, t_{2})dt_{1}dt_{2}\\ =&\int_{0}^{1}\int_{0}^{1}(\prod\limits_{i=1}^{2}(\int_{\mathbb{R}^{n}}|f_{i}(y_{i})|^{p_{i}}|y_{i}|^{\frac{\alpha_{i}p_{i}}{p}} dy_{i})^{\frac{1}{p_{i}}}t_{i}^{\frac{n(1-p_{i})}{p_{i}}+\frac{\alpha_{i}}{p}})\omega(t_{1}, t_{2})dt_{1}dt_{2}\\ =&(\prod\limits_{i=1}^{2}\|f_{i}\|_{L^{p_{i}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{i}p_{i}}{p}}dx)})\int_{0}^{1}\int_{0}^{1}(\prod\limits_{i=1}^{2}t_{i}^{\frac{n(1-p_{i})}{p_{i}}+\frac{\alpha_{i}}{p}})\omega(t_{1}, t_{2})dt_{1}dt_{2}. \end{align*} $

因此$V_{\omega}^{2}$是从$L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)$$L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)$上的有界算子, 且

$ \|V^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\leq C_{4}. $

必要性 对充分小的$\epsilon\in(0, 1), $$f_{1}^{\epsilon}, \ f_{2}^{\epsilon}$为定理$1$中如(2.2)所表示的函数, 则

$ \begin{align*} &\|V_{\omega}^{2}(f_{1}^{\epsilon}, f_{2}^{\epsilon})\|_{L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\\ =&(\int_{\mathbb{R}^{n}}|\int_{0}^{1}\int_{0}^{1}f_{1}^{\epsilon}({x}/{t_{1}})f_{2}^{\epsilon}({x}/{t_{2}})t_{1}^{-n}t_{2}^{-n}\omega(t_{1}, t_{2})dt_{1}dt_{2}|^{p}|x|^{\alpha}dx)^{\frac{1}{p}}\\ =&(\int_{\mathbb{R}^{n}}|x|^{-n-p_{2}\epsilon}(\int_{0}^{|x|}\int_{0}^{|x|}t_{1}^{\frac{\alpha_{1}}{p}+\frac{n(1-p_{1})}{p_{1}}+\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{\frac{\alpha_{2}}{p}+\frac{n(1-p_{2})}{p_{2}}+\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2})^{p}dx)^{\frac{1}{p}}. \end{align*} $

注意到当$0<\epsilon<1$时, 若$|x|>1/{\epsilon}$时, 进一步计算得到

$ \begin{align*} &\|V_{\omega}^{2}(f_{1}^{\epsilon}, f_{2}^{\epsilon})\|_{L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}^{p}\\ \geq&\int_{|x|>\frac{1}{\epsilon}}|x|^{-n-p_{2}\epsilon}(\int_{0}^{1}\int_{0}^{1}t_{1}^{\frac{\alpha_{1}}{p}+\frac{n(1-p_{1})}{p_{1}}+\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{\frac{\alpha_{2}}{p}+\frac{n(1-p_{2})}{p_{2}}+\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2})^{p}dx\\ =&\frac{\epsilon^{p_{2}\epsilon}|\mathbb{S}^{n-1}|}{p_{2}\epsilon}(\int_{0}^{1}\int_{0}^{1}t_{1}^{\frac{\alpha_{1}}{p}+\frac{n(1-p_{1})}{p_{1}}+\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{\frac{\alpha_{2}}{p}+\frac{n(1-p_{2})}{p_{2}}+\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2})^{p}\\ =&\epsilon^{p_{2}\epsilon}\prod\limits_{i=1}^{2}\|f_{i}^{\epsilon}\|_{L^{p_{i}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{i}p_{i}}{p}}dx)}^{p}\times(\int_{0}^{1}\int_{0}^{1}t_{1}^{\frac{\alpha_{1}}{p}+\frac{n(1-p_{1})}{p_{1}}+\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{\frac{\alpha_{2}}{p}+\frac{n(1-p_{2})}{p_{2}}+\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2})^{p}. \end{align*} $

因此

$ \begin{align*} &\|V^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\\ \quad \geq&\epsilon^{\frac{p_{2}\epsilon}{p}}\int_{0}^{1}\int_{0}^{1}t_{1}^{\frac{\alpha_{1}}{p}+\frac{n(1-p_{1})}{p_{1}}+\frac{p_{2}\epsilon}{p_{1}}}t_{2}^{\frac{\alpha_{2}}{p}+\frac{n(1-p_{2})}{p_{2}}+\epsilon}\omega(t_{1}, t_{2})dt_{1}dt_{2}. \end{align*} $

$\epsilon\rightarrow0^{+}, $$ \|V^{2}_{\omega}\|_{L^{p_{1}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}^{n}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}^{n}, |x|^{\alpha}dx)}\geq C_{4}. $

定理$2$得证.

下面首先给出两个常见的算子.设$0<\beta<1, $$f$$[0, +\infty)$上一个局部可积函数, 则Riemann-Liouville分数积分算子$R_{\beta}$的定义为$R_{\beta}f(x)=\frac{1}{\Gamma(\beta)}\int_{0}^{x}f(t)(x-t)^{\beta-1}dt.$$p>1, \ \beta>0, $则不等式(见文献[2, 定理3.29])

$ \begin{eqnarray*} (\int_{0}^{\infty}(\frac{R_{\beta}f(x)}{x^{\beta}})^{p}dx)^{1/p}<\frac{\Gamma(1-1/p)}{\Gamma(1+\beta-1/p)}(\int_{0}^{\infty}f^{p}(x)dx)^{1/p} \end{eqnarray*} $

成立, 其中$\Gamma(1-1/p)/(\Gamma(1+\beta-1/p))$是最佳常数.

$0<\beta<1, $$f$$[0, +\infty)$上一个局部可积函数, 则Weyl分数积分算子$W_{\beta}$的定义为

$ \begin{eqnarray*} W_{\beta}f(x)=\frac{1}{\Gamma(\beta)}\int_{x}^{\infty}f(t)(t-x)^{\beta-1}dt. \end{eqnarray*} $

$p>1, \ \beta>0, $则不等式(见文献[2, 定理3.29])

$ (\int_{0}^{\infty}(W_{\beta}f(x))^{p}dx)^{1/p}<\frac{\Gamma(1/p)}{\Gamma(\beta+1/p)}(\int_{0}^{\infty}(x^{\beta}f(x))^{p}dx)^{1/p} $

成立, 其中$\Gamma(1/p)/\Gamma(\beta+1/p)$是最佳常数.

Weyl算子$W_{\beta}$和Riemann-Liouville算子$R_{\beta}$是一对共轭算子, 见文献[7].即

$ \int_{0}^{\infty}f(x)W_{\beta}g(x)dx=\int_{0}^{\infty}R_{\beta}f(x)g(x)dx, $

其中$f, g$都是$[0, +\infty)$上非负函数.

作为应用, 当$H^{2}_{\omega}$$V^{2}_{\omega}$中的$\omega$取特殊的函数, 可以得到某些双线性平均算子.

(1) 令$n=1, \ 0\leq t_{1}, t_2<1, \ 0<\beta<2, \ |(1-t_{1}, 1-t_{2})|=\sqrt{(1-t_{1})^2+(1-t_{2})^2}, $$ \omega(t_{1}, t_{2})=\frac{1}{\Gamma(\beta)|(1-t_{1}, 1-t_{2})|^{2-\beta}}, $

$ \begin{equation*} H_{\omega}^{2}(f_{1}, f_{2})(x)=x^{-\beta}\textbf{R}_{\beta}^{2}(f_{1}, f_{2})(x), \ x>0, \end{equation*} $

这里$\textbf{R}_{\beta}^{2}$表示双线性Riemann-Liouvile算子, 定义如下

$ \begin{equation*} \textbf{R}_{\beta}^{2}(f_{1}, f_{2})(x)=\frac{1}{\Gamma(\beta)}\int_{0}^{x}\int_{0}^{x}\frac{f_{1}(t_{1})f_{2}(t_{2})}{|(x-t_{1}, x-t_{2})|^{2-\beta}}dt_{1}dt_{2}. \end{equation*} $

由定理$1$可得推论1.

推论1 若$1\leq p< \infty, 1<p_{1}, p_{2}<\infty, 1/p=1/p_{1}+1/p_{2}, \alpha=\alpha_{1}+\alpha_{2}.$则算子$\textbf{R}_{\beta}^{2}$是从Lebesgue乘积空间$L^{p_{1}}(\mathbb{R}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)$$L^{p}(\mathbb{R}, |x|^{\alpha-p\beta}dx)$有界当且仅当

$ C_{5}=\frac{1}{\Gamma(\beta)}\int^{1}_{0}\int^{1}_{0}t_{1}^{-\frac{1}{p_{1}}-\frac{\alpha_{1}}{p}}t_{2}^{-\frac{1}{p_{2}}-\frac{\alpha_{2}}{p}}|(1-t_{1}, 1-t_{2})|^{\beta-2}dt_{1}dt_{2}<\infty, $

$\|\textbf{R}_{\beta}^{2}\|_{L^{p_{1}}(\mathbb{R}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}, |x|^{\alpha-p\beta}dx)} =C_{5}.$

(2) 令$n=1, \ 0< t_{i}<1, \ i=1, 2, \ 0<\beta<2, $$ \omega(t_{1}, t_{2})=\frac{1}{\Gamma(\beta)t_{1}t_{2}|(\frac{1}{t_{1}}-1, \frac{1}{t_{2}}-1)|^{2-\beta}}, $则得到

$ \begin{equation*} V_{\omega}^{2}(f_{1}, f_{2})(x)=x^{-\beta}W_{\beta}^{2}(f_{1}, f_{2})(x), \ x>0, \end{equation*} $

其中$W_{\beta}^{2}$表示双线性Weyl算子, 定义如下

$ \begin{equation*} W_{\beta}^{2}(f_{1}, f_{2})(x)=\frac{1}{\Gamma(\beta)}\int_{x}^{\infty}\int_{x}^{\infty}\frac{f_{1}(x_{1})f_{2}(x_{2})}{|(t_{1}-x, t_{2}-x)|^{2-\beta}}dt_{1}dt_{2}. \end{equation*} $

由定理$2, $可得推论2.

推论2 若$1\leq p< \infty, 1<p_{1}, p_{2}<\infty, 1/p=1/p_{1}+1/p_{2}, \alpha=\alpha_{1}+\alpha_{2}.$则算子$\textbf{W}_{\beta}^{2}$是从Lebesgue乘积空间$L^{p_{1}}(\mathbb{R}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)$$L^{p}(\mathbb{R}, |x|^{\alpha-p\beta}dx)$有界当且仅当

$ C_{6}=\frac{1}{\Gamma(\beta)}\int^{1}_{0}\int^{1}_{0}t_{1}^{\frac{\alpha_{1}}{p}+\frac{1}{p_{1}}-2}t_{2}^{\frac{\alpha_{2}}{p}+\frac{1}{p_{2}}-2}|(\frac{1}{t_{1}}-1, \frac{1}{t_{2}}-1)|^{\beta-2}dt_{1}dt_{2}<\infty $

$ \|\textbf{W}_{\beta}^{2}\|_{L^{p_{1}}(\mathbb{R}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}, |x|^{\alpha-p\beta}dx)} =C_{6}. $

(3) 令$n=1, \ 0\leq t_{1}, t_2<1, \ 0<\beta_{1}, \beta_{2}<1, \ $$\omega(t_{i})=\frac{1}{\Gamma(\beta_{i})(1-t_{i})^{1-\beta_{i}}}, \ i=1, 2.$$\omega(t_{1}, t_{2})=\omega(t_{1})\omega(t_{2}), $

$ H_{\omega}^{2}(f_{1}, f_{2})(x)=x^{-(\beta_{1}+\beta_{2})}R_{\beta_{1}}(f_{1})(x)\cdot R_{\beta_{2}}(f_{2})(x), \ x>0, $

其中算子$R_{\beta_{i}}$的定义如下

$ R_{\beta_{i}}(f)(x)=\frac{1}{\Gamma(\beta_{i})}\int_{0}^{x}\frac{f(t_{i})}{(x-t_{i})^{1-\beta_{i}}}dt_{i}, \ x>0, \ i=1, 2. $

由定理$1, $可得推论3.

推论3 若$1\leq p< \infty, 1<p_{1}, p_{2}<\infty, 1/p=1/p_{1}+1/p_{2}, \alpha=\alpha_{1}+\alpha_{2}, \alpha_{i}<\frac{p(p_{i}-1)}{p_{i}}, i=1, 2.$则算子$R_{\beta_{1}}\cdot R_{\beta_{2}}$是从Lebesgue乘积空间$L^{p_{1}}(\mathbb{R}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)$$L^{p}(\mathbb{R}, |x|^{\alpha-p(\beta_{1}+\beta_{2})}dx)$有界且

$ \begin{align*} &\|R_{\beta_{1}}\cdot R_{\beta_{2}}\|_{L^{p_{1}}(\mathbb{R}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}, |x|^{\alpha-p(\beta_{1}+\beta_{2})}dx)} =\prod\limits_{i=1}^{2}\frac{\Gamma(1-\frac{1}{p_{i}}-\frac{\alpha_{i}}{p})}{\Gamma(\beta_{i}+1-\frac{1}{p_{i}}-\frac{\alpha_{i}}{p})}. \end{align*} $

(4) 令$n=1, \ 0< t_{1}, t_2<1, \ 0<\beta_{1}, \beta_{2}<1.$$\omega(t_{i})=\frac{1}{\Gamma(\beta_{i})t_{i}(\frac{1}{t_{i}}-1)^{1-\beta_{i}}}, \ i=1, 2.$$\omega(t_{1}, t_{2})=\omega(t_{1})\omega(t_{2}), $

$ V_{\omega}^{2}(f_{1}, f_{2})(x)=x^{-(\beta_{1}+\beta_{2})}W_{\beta_{1}}(f_{1})(x)\cdot W_{\beta_{2}}(f_{2})(x), \ x>0, $

其中算子$W_{\beta_{i}}$的定义为

$ W_{\beta_{i}}(f)(x)=\frac{1}{\Gamma(\beta_{i})}\int_{0}^{x}\frac{f(x_{i})}{(x-t_{i})^{1-\beta_{i}}}dt_{i}, \ x>0, \ i=1, 2. $

由定理$2, $可得推论4.

推论4 若$1\leq p < \infty, 1<p_{1}, p_{2}<\infty, 1/p=1/p_{1}+1/p_{2}, \alpha=\alpha_{1}+\alpha_{2}, \ \alpha_{i}>\frac{p(p_{i}\beta_{i}-1)}{p_{i}}, \ i=1, 2.$则算子$W_{\beta_{1}}\cdot W_{\beta_{2}}$是从Lebesgue乘积空间$L^{p_{1}}(\mathbb{R}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)$$L^{p}(\mathbb{R}, |x|^{\alpha-p(\beta_{1}+\beta_{2})}dx)$有界且

$ \|W_{\beta_{1}}\cdot W_{\beta_{2}}\|_{L^{p_{1}}(\mathbb{R}, |x|^{\frac{\alpha_{1}p_{1}}{p}}dx)\times L^{p_{2}}(\mathbb{R}, |x|^{\frac{\alpha_{2}p_{2}}{p}}dx)\rightarrow L^{p}(\mathbb{R}, |x|^{\alpha-p(\beta_{1}+\beta_{2})}dx)} =\prod\limits_{i=1}^{2}\frac{\Gamma(\frac{1}{p_{i}}+\frac{\alpha_{i}}{p}-\beta_{i})}{\Gamma(\frac{1}{p_{i}}+\frac{\alpha_{i}}{p})}. $

值得注意的是, 推论$3$和推论$4$中的常数可以由Hölder不等式得到上界, 但是说明这两个常数是最佳的似乎并不是很显然的事情.

参考文献
[1] Hardy G H. Note on a theorem of Hilbert[J]. Math. Z., 1920, 6(3-4): 314–317. DOI:10.1007/BF01199965
[2] Hardy G H, Littlewood J E, Pólya G. Inequalities (2nd ed) [M]. Cambridge: Cambridge University Press, 1952.
[3] Carton-Lebrun C, Fosset M. Moyennes et quotients de Taylor dans BMO[J]. Bull Soc. Roy. Sci. Liège, 1984, 53(2): 85–87.
[4] Xiao J. Lp and BMO bounds of weighted Hardy-Littlewood averages[J]. J. Math. Anal. Appl., 2001, 262(2): 660–666. DOI:10.1006/jmaa.2001.7594
[5] Fu Z W, Gong S L, Lu S Z, Yuan W. Weighted multilinear Hardy operators and commutators[J]. Forum. Math., 2015, 27(5): 2825–2851.
[6] Liu X, Jiang Y S. A bilinear version of weighted Hardy operator[J]. J. Xinjiang Univ. Natur. Sci., 2014, 32(2): 155–157.
[7] Andersen K F, Sawyer E T. Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators[J]. Trans. Amer. Math. Soc., 1988, 308(2): 547–558. DOI:10.1090/S0002-9947-1988-0930071-4