数学杂志  2020, Vol. 40 Issue (1): 99-109   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
赵艳辉
廖春艳
邓春红
单位球上加权Bergman空间到Zygmund型空间上的积分型算子
赵艳辉1,2, 廖春艳1,2, 邓春红1    
1. 湖南科技学院理学院, 湖南 永州 425199;
2. 湖南科技学院理学院计算数学研究所, 湖南 永州 425199
摘要:本文研究了单位球上加权Bergman空间到Zygmund型空间上的积分型算子的有界性和紧性问题.利用泛函分析多复变的方法,获得了$P_{\varphi}^{g}$为有界算子和紧算子的充要条件.同时分别得到了单位圆盘D上和$\varphi(z)=z$时单位球上的相应结论.
关键词加权Bergman空间    Zygmund型空间    积分型算子    有界性    紧性    
AN INTEGRAL-TYPE OPERATORS FROM WEIGHTED BERGMAN SPACE TO ZYGMUND TYPE SPACES ON THE UNIT BALL
ZHAO Yan-hui1,2, LIAO Chun-yan1,2, DENG Chun-hong1    
1. College of Science, Hunan University of Science and Engineering, Yongzhou 425199, China;
2. Institute of Computational Mathematics, School of Science, Hunan University of Science and Engineering, Yongzhou 425199, China
Abstract: Some questions of integral-type operator were studied on Zygmund type spaces on the unit ball. By the methods of functional analysis and several complex variables, the necessary and sufficient conditions are given for integral-type operator to be bounded and compact on Zygmund type spaces on the unit ball. At the same time, the corresponding conclusions are obtained on the disk D and $\varphi(z)=z$, respectively.
Keywords: weighted Bergman space     Zygmund type space     integral-type operator     boundedness     compactness    
1 引言

$B$表示$C^{n}$上的单位球, $\partial$B$表示单位球面, $dv$为标准体测度, 满足$v(B)=1$, $d\sigma$为标准面测度, 满足$\sigma(\partial$B$)=1$, $H(B)$代表$B$上的全纯函数类.

定义1.1 设$0 <p<\infty, \alpha>-1, $

$ \mathcal{A}_\alpha^p=\{f\in H(B):\|f\|_{\mathcal{A}_\alpha^p}=(\int_B|f(z)|^p\text{d}v_\alpha(z))^{\frac{1}{p}}<\infty\} $

表示$B$上的加权Bergman空间$\mathcal{A}_\alpha^p$, 其中$\text{d}v_\alpha(z)=c_\alpha(1-|z|^2)^{\alpha}\text{d}v(z)$, $c_\alpha=\frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)}$.

$1\leq p<\infty$时, $\mathcal{A}_\alpha^p$在范数$\|\cdot\|_{\mathcal{A}^p_\alpha}$下是一个Banach空间.当$0<p<1$时, $\mathcal{A}_\alpha^p$在准范$\|\cdot\|_{\mathcal{A}^p_\alpha}$下构成一个Frechet空间.特别地, $\mathcal{A}^p_0$就是Bergman空间$\mathcal{A}^p$.

定义1.2 设$[0, 1)$上的连续函数$\mu(r)>0$, 如果存在常数$0<a<b$, 使得

(ⅰ) $\frac{\mu(r)}{(1-r)^a}$$[0, 1)$上单调递减且$\lim\limits_{r\rightarrow 1}\frac{\mu(r)}{(1-r)^a}=0, $

(ⅱ) $\frac{\mu(r)}{(1-r)^b}$$[0, 1)$上单调递增且$\lim\limits_{r\rightarrow1}\frac{\mu(r)}{(1-r)^b}=+\infty, $则称$\mu$$[0, 1)$上的正规函数.

$\mu$$[0, 1)$上的正规函数, $f\in H(B)$,

$ \|f\|_{\mu, 1}=\sup\limits_{z\in B}\mu(|z|)|\nabla f(z)|, \quad \|f\|_{\mu, 2}=\sup\limits_{z\in B}\mu(|z|)|Rf(z)|, $

这里$\nabla f$表示$f$的复梯度, $\nabla f(z)=(\frac{\partial f(z)}{\partial z_1}, \cdots, \frac{\partial f(z)}{\partial z_n}), Rf(z)=\sum\limits_{j=1}^nz_j\frac{\partial f(z)}{\partial z_j}.$由文献[1]知$\|f\|_{\mu, 1}$, $ \|f\|_{\mu, 2}$等价.

$\mu$$[0, 1)$上的正规函数, 称$f$属于$\beta_\mu$空间是指: $\|f\|_{\mu, 1}<\infty, $或者$\|f\|_{\mu, 2}<\infty$. $\beta_\mu$空间在范数

$ \|f\|_{\beta_\mu}=|f(0)|+\|f\|_{\mu, 1}, \quad \|f\|_{\beta_\mu}=|f(0)|+\|f\|_{\mu, 2} $

下是一个Banach空间.

由文献[2]中的引理2.1可知, 设$\mu$$[0, 1)$上的正规函数, 称$f\in{\beta_\mu}$当且仅当

$ \|f\|_{\mu, 3}=\sup\limits_{u\in C^n-{0}, z\in B}\frac{\mu(|z|)|\langle\nabla f(z), \overline{u}\rangle|} {\{(1-|z|^2)|u|^2+|\langle z, u\rangle|^2\}^\frac{1}{2}}<+\infty. $

进一步有$\|f\|_{\beta_\mu} \approx |f(0)|+ \|f\|_{\mu, 3}.$

定义1.3 设$\mu$$[0, 1)$上的正规函数, $B$上的全纯函数$f$如果满足

$ \|f\|_{\mathcal{Z}_\mu}=|f(0)|+\sup\limits_{z\in B}\mu(|z|)|R^{(2)}f(z)|<+\infty, $

则称$f$属于Zygmund型空间$\mathcal{Z}_\mu$.若$\lim\limits_{|z|\rightarrow1}\mu(|z|)|R^{(2)}f(z)|=0$, 则称$f$属于小Zygmund型空间$\mathcal{Z}_{\mu, 0}$ (见文献[3-5]).如果$\mu(r)=1-r^2$, Zygmund型空间$\mathcal{Z}_\mu$(小Zygmund型空间$\mathcal{Z}_{\mu, 0}$)就是典型的Zygmund空间$\mathcal{Z}$(小Zygmund空间$\mathcal{Z}_0$), 这里$R^{(2)}f(z)=R(Rf(z))$.

定义1.4 设$\varphi$$B$上的全纯自映射, $g\in H(B)$$g(0)=0$, 则由$\varphi$$g$诱导的$H(B)$上的算子$P_\varphi^g$定义为

$ P_\varphi^g(f)(z)=\int_0^1f(\varphi(tz))g(tz)\frac{\text{d}t}{t}, z\in B. $

文献[3-11]研究了该类算子的性质.若用$Rg$代替$g$, 且$\varphi(z)=z, $算子$P_g$就是加权Cesàro算子, 它在文献[12]被引入并研究, 文献[13-16]对几个全纯函数空间上的加权Cesàro算子的有界性和紧性进行了讨论.关于Bergman空间上的复合算子和Cesàro算子的有界性和紧性问题的讨论得到了一些很好的结论, 如文献[1, 2, 16-18].

本文的主要工作就是在$C^{n}$中的单位球上来给出$P_\varphi^g$$\mathcal{A}_\alpha^p$空间到$\mathcal{Z}_\mu$型空间上的有界算子和紧算子的充要条件.同时分别得到了单位圆盘$D$上和$\varphi(z)=z$时单位球上的相应结论.本文中用记号$c, c_1, c_2$来表示与变量$z, \omega $无关的正数, $c, c_1, c_2$可以与某些范数或有界量有关, 不同的地方可以表示不同的正常数.

2 有关引理

引理2.1 [7] 设$f, g\in H(B)$, $g(0)=0$, 则$ R(P_\varphi^gf)(z)=f(\varphi(z))g(z). $

引理2.2 [2] 设$0<p<\infty, \alpha>-1, f\in {{\mathcal{A}}^p_\alpha}, \forall z\in B$, 则

(ⅰ) $|f(z)|\leq \frac{\|f\|_{\mathcal{A}_\alpha^p}}{(1-|z|^2)^{\frac{n+1+\alpha}{p}}}, $

(ⅱ) $ f\in\beta_{(1-r^2)^{\frac{n+1+p+\alpha}{p}}}$, 且$\|f\|_{\beta_{(1-r^2)^{\frac{n+1+p+\alpha}{p}}}}\leq c\|f\|_{\mathcal{A}_\alpha^p}.$

引理2.3 设$0<p<+\infty, \alpha>-1$, $\mu$$[0, 1)$上的正规函数, $\varphi$$B$上的全纯自映射, $g\in H(B), g(0)=0$, 则$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间上的紧算子的充要条件是对任意在${\mathcal{A}}^p_\alpha$中有界且在$B$的任一紧子集上一致趋于0的序列$\{f_j\}$, 有$\|P_{\varphi}^g(f_j)\|_{\mathcal{Z}_{\mu}}\rightarrow0$ ($j\rightarrow \infty$).

 由引理2.2和Montel定理按定义可证.

引理2.4 [3]  $\mathcal{Z}_{\mu, 0}$中的闭子集$K$是紧子集的充要条件是$K$是有界集, 且满足

$ \lim\limits_{|z|\rightarrow 1}\sup\limits_{f\in K}\mu(|z|)|R^{(2)}f(z)|=0. $
3 主要结果

定理3.1 设$0 <p<\infty, \alpha>-1, \mu$$[0, 1)$上的正规函数, $\varphi$$B$上的全纯自映射, 且$g\in H(B), g(0)=0$, 则$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的有界算子当且仅当

$ \begin{eqnarray} M=\sup\limits_{z\in B}\frac{\mu(|z|)|g(z)|} {(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}+1}}\cdot \{\frac{(1-|\varphi(z)|^2)|J\varphi(z)u|^2+|\langle\varphi(z), J\varphi(z)u\rangle|^2} {(1-|z|^2)|u|^2+|\langle z, u\rangle|^2}\}^{\frac{1}{2}}<+\infty, \end{eqnarray} $ (3.1)
$ \begin{eqnarray} N=\sup\limits_{z\in B}\frac{\mu(|z|)|Rg(z)|}{(1-|\varphi(z)|^{2})^{\frac{n+1+\alpha}{p}}}<+\infty, \end{eqnarray} $ (3.2)

这里$J\varphi(z)$$\varphi(z)$的Jacobi矩阵, 且

$ J\varphi(z)=(\frac{\partial\varphi_j(z)}{\partial z_k})_{1\leq j, k\leq n}, J\varphi(z)u=(\sum\limits_{k=1}^n\frac{\partial\varphi_1(z)}{\partial z_k}u_k, \cdots, \sum\limits_{k=1}^n\frac{\partial\varphi_n(z)}{\partial z_k}u_k)^T. $

  充分性  $\forall f\in \mathcal{A}_\alpha^p$, 设(3.1) - (3.2)成立, 则由$P_\varphi^g(f)(0)=0$和引理2.1-2.2有

$ \begin{eqnarray*} \|P_\varphi^g(f)\|_{\mathcal{Z}_{\mu}}&=&\sup\limits_{z\in B}\mu(|z|)|R^{(2)}[P_{\varphi}^g(f)(z)]|\\ &\leq& c\sup\limits_{z\in B}\mu(|z|)\{|R(g(z))||f(\varphi(z))|+|g(z)||\nabla(f\circ(\varphi(z)))| \}\\ &\leq& c\sup\limits_{z\in B}\frac{\mu(|z|)|Rg(z)|}{(1-|\varphi(z)|^{2})^{\frac{n+1+\alpha}{p}}}\cdot\|f\|_{{\mathcal{A}}^p_\alpha}+c\sup\limits_{z\in B}\frac{\mu(|z|)|g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+p+\alpha}{p}}}\\ &&\times\{(\frac{(1-|\varphi(z)|^2)|J\varphi(z)u|^2+|\langle\varphi(z), J\varphi(z)u\rangle|^2} {(1-|z|^2)|u|^2+|\langle z, u\rangle|^2})^{\frac{1}{2}}\\ &&\cdot \frac{(1-|\varphi(z)|^2)^{\frac{n+1+p+\alpha}{p}}|\langle\nabla f(\varphi(z)), J\varphi(z)u\rangle|} {\sqrt{(1-|\varphi(z)|^2)|J\varphi(z)u|^2+|\langle\varphi(z), J\varphi(z)u\rangle|^2}}\}\\ &\leq& c(M+N)\|f\|_{{\mathcal{A}}_\alpha^p}\leq c\|f\|_{{\mathcal{A}}_\alpha^p}. \end{eqnarray*} $

所以$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_\mu$型空间的有界算子.

必要性 设$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_\mu$型空间的有界算子.取$f(z)=1\in {\mathcal{A}}^p_\alpha$$f_l(z)=z_l\in{\mathcal{A}}^p_\alpha$, 则由${\mathcal{A}}^p_\alpha$$\beta_\mu$的定义可知$g\in \beta_\mu$, $g\varphi_l\in \beta_\mu (l=1, 2, \cdots, n)$.

(1)  先证(3.1)式成立. $\forall \omega\in B, u\in{C^n-\{0\}}$.

(ⅰ) 当$|\varphi(\omega)|^2\leq \frac{2}{3}$时, 根据$g\in \beta_\mu, g\varphi_l\in\beta_\mu$, 则下列不等式成立

$ \begin{eqnarray*} M&=&\frac{\mu(|\omega|)|g(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}} \cdot\{\frac{(1-|\varphi(\omega)|^2)|J\varphi(\omega)u|^2+|\langle\varphi(\omega), J\varphi(\omega)u\rangle|^2} {(1-|\omega|^2)|u|^2+|\langle \omega, u\rangle|^2}\}^{\frac{1}{2}}\\ &\leq& c\mu(|\omega|)|g(\omega)|\{\frac{(1-|\varphi(\omega)|^2)|J\varphi(\omega)u|^2+|\langle\varphi(\omega), J\varphi(\omega)u\rangle|^2} {(1-|\omega|^2)|u|^2+|\langle \omega, u\rangle|^2}\}^{\frac{1}{2}}\\ \end{eqnarray*} $
$ \begin{eqnarray} &=&c\mu(|\omega|)|g(\omega)|\frac{|J\varphi(\omega)u|} {\sqrt{(1-|\omega|^2)|u|^2+|\langle\omega, u\rangle|^2}}\nonumber\\ &\leq& c\mu(|\omega|)|g(\omega)| \sum\limits_{l=1}^n\frac{|\nabla\varphi_l(\omega)u|}{\sqrt{(1-|\omega|^2)|u|^2+|\langle\omega, u\rangle|^2}} \leq c\mu(|\omega|) \sum\limits_{l=1}^n|g(\omega)\cdot\nabla\varphi_l(\omega)|\nonumber\\ &\leq& c\mu(|\omega|) \sum\limits_{l=1}^n\{|\nabla(g\varphi_l)(\omega)|+|\nabla g(\omega)\cdot\varphi_l(\omega)|\}\leq c(\sum\limits_{l=1}^n\|g\varphi_l\|_{\beta_\mu}+\|g\|_{\beta_\mu}). \end{eqnarray} $ (3.3)

(ⅱ) 当$|\varphi(\omega)|^2> \frac{2}{3}$时, 假设$\varphi(\omega)=r_\omega e_1, $这里$r_\omega=|\varphi(\omega)|, e_1=(1, 0, \cdots, 0)$.

$\sqrt{(1-r_\omega^2)(|\xi_2|^2+\cdots+|\xi_n|^2)}\leq |\xi_1|, $这里$(\xi_1, \cdots, \xi_n)^T=J\varphi(\omega)u, $

$ f_\omega(z)=\frac{z_1-r_\omega}{1-r_\omega z_1}\{\frac{1-r^2_\omega}{(1-r_\omega z_1)^2}\}^{\frac{n+1+\alpha}{p}}, $

$f_\omega(\varphi(\omega))=0$, 且由文献[19]中的定理1.12有

$ \begin{eqnarray*} \|f_\omega\|_{\mathcal{A}_\alpha^p}&=&\{c_\alpha\int\limits_{B}\frac{|z_1-r_\omega|^p}{|1-r_\omega z_1|^p}(\frac{1-r^2_\omega}{|1-r_\omega z_1|^2})^{n+1+\alpha}(1-|z|^2)^\alpha\text{d}v(z)\}^{\frac{1}{p}}\\ &\leq& \{c_1c_\alpha(1-r^2_\omega)^{n+1+p+\alpha}\int\limits_{B}\frac{(1-|z|^2)^\alpha}{|1-r_\omega z_1|^{p+2(n+1+\alpha)}}\text{d}v(z)\}^{\frac{1}{p}}\\ &\leq& \{c_1c_\alpha(1-r^2_\omega)^{n+1+p+\alpha}\frac{c_2}{(1-r_\omega^2)^{n+1+p+\alpha}}\}^{\frac{1}{p}}\leq c, \end{eqnarray*} $

从而$\|f_\omega\|_{\mathcal{A}_\alpha^p}\leq c, f_\omega\in\mathcal{A}_\alpha^p$.因为

$ \begin{eqnarray*} \nabla f_\omega(z)&=&(\frac{1-r_\omega z_1+(z_1-r_\omega)r_\omega}{(1-r_\omega z_1)^2}\{\frac{1-r^2_\omega}{(1-r_\omega z_1)^2}\}^{\frac{n+1+\alpha}{p}}\\ &&+\frac{z_1-r_\omega}{1-r_\omega z_1}\frac{2(n+1+\alpha)}{p}\frac{(1-r^2_\omega)^{\frac{n+1+\alpha}{p}}r_\omega}{(1-r_\omega z_1)^{\frac{2(n+1+\alpha)}{p}+1}}, 0, \cdots, 0), \end{eqnarray*} $

所以$ \nabla f_\omega(\varphi(\omega))=(\frac{1}{(1-r_\omega^2)^{\frac{n+1+\alpha}{p}+1}}, 0, \cdots, 0), $从而$|\langle\nabla f_\omega(\varphi(\omega)), J\varphi(\omega)u\rangle|=\frac{|\xi_1|}{(1-r_\omega^2)^{\frac{n+1+\alpha}{p}+1}}$.由$P_\varphi^g$是有界算子有

$ \begin{eqnarray} c\cdot\|P_\varphi^g\|&\geq&\|P_\varphi^g(f_\omega)\|_{\mathcal{Z}_\mu} \geq \mu(|\omega|)|f_\omega(\varphi(\omega))Rg(\omega)+g(\omega)\nabla(f_\omega\circ\varphi(\omega))|\nonumber\\ &\approx&\frac{\mu(|\omega|)|g(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}} \frac{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}|\langle\nabla f_\omega(\varphi(\omega)), J\varphi(\omega)u\rangle|}{\sqrt{(1-|\omega|^2)|u|^2+|\langle\omega, u\rangle|^2}}\nonumber\\ &=&\frac{c\mu(|\omega|)|g(\omega)||\xi_1|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1} \sqrt{(1-|\omega|^2)|u|^2+|\langle\omega, u\rangle|^2}}. \end{eqnarray} $ (3.4)

所以由(3.4)式有

$ \begin{eqnarray} M&=&\frac{\mu(|\omega|)|g(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}} \cdot\{\frac{(1-|\varphi(\omega)|^2)|J\varphi(\omega)u|^2+|\langle\varphi(\omega), J\varphi(\omega)u\rangle|^2} {(1-|\omega|^2)|u|^2+|\langle \omega, u\rangle|^2}\}^{\frac{1}{2}}\nonumber\\ &\leq&\frac{c\mu(|\omega|)|g(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}} \cdot\{\frac{(1-|\varphi(\omega)|^2)(|\xi_2|^2+\cdots+|\xi_n|^2)+|\xi_1|^2} {(1-|\omega|^2)|u|^2+|\langle \omega, u\rangle|^2}\}^{\frac{1}{2}}\nonumber\\ &\leq&\frac{\mu(|\omega|)|g(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}} \cdot\{\frac{\sqrt{2}|\xi_1|} {(1-|\omega|^2)|u|^2+|\langle \omega, u\rangle|^2}\}^{\frac{1}{2}}\leq c\|P_\varphi^g\|. \end{eqnarray} $ (3.5)

$\sqrt{(1-r_\omega^2)(|\xi_2|^2+\cdots+|\xi_n|^2)}>|\xi_1|, $$\theta_j=$arg$\xi_j, $且当$\xi_j\neq0$时, $a_j=e^{-i\theta_j}$, 当$\xi_j=0$时, $a_j=0, j=2, \cdots, n$.取

$ f_\omega(z)=(a_2z_2+\cdots+a_nz_n)\{\frac{1-r_\omega^2}{(1-r_\omega z_1)^2}\}^{\frac{n+1+\alpha}{p}}\cdot \frac{1}{1-r_\omega z_1}, $

$f_\omega(\varphi(\omega))=0$, 且由文献[20]中的命题1.4.10有

$ \begin{eqnarray*} \|f_\omega\|_{\mathcal{A}_\alpha^p}&=&\{c_\alpha\int\limits_{B}|a_2z_2+\cdots+a_nz_n|^p(\frac{1-r_\omega^2} {|1-r_\omega z_1|^2})^{n+1+\alpha}\frac{(1-|z|^2)^\alpha}{|1-r_\omega z_1|^p}\text{d}v(z)\}^{\frac{1}{p}}\\ &\leq& \{c_1c_\alpha(1-r^2_\omega)^{n+1+\alpha}\int\limits_{B}\frac{(|z_2|^2+\cdots+|z_n|^2)^p(1-|z|^2)^\alpha}{|1-r_\omega z_1|^{p+2(n+1+\alpha)}}\text{d}v(z)\}^{\frac{1}{p}}\\ &\leq&\{c_1c_\alpha(1-r^2_\omega)^{n+1+\alpha}\int\limits_{B}\frac{[(n-1)(1-|z_1|^2)]^{\frac{p}{2}}(1-|z|^2)^\alpha}{|1-r_\omega z_1|^{p+2(n+1+\alpha)}}\text{d}v(z)\}^{\frac{1}{p}}\leq\frac{c}{\sqrt{1-r_\omega^2}}, \end{eqnarray*} $

从而$f_\omega\in\mathcal{A}_\alpha^p$.由$P_\omega^g$是有界算子, 类似(3.4)式的证明有

$ \begin{eqnarray} \frac{\mu(|\omega|)|g(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}} \cdot \frac{|\xi_2|+\cdots+|\xi_n|}{\sqrt{(1-|\omega|^2)|u|^2+|\langle\omega, u\rangle|^2}}\leq\frac{c\cdot\|P_\varphi^g\|} {\sqrt{1-r_\omega^2}}. \end{eqnarray} $ (3.6)

所以类似(3.5)式的证明, 结合(3.6)式有

$ \begin{eqnarray} M&\leq&\frac{\mu(|\omega|)|g(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}} \cdot\{\frac{2(1-|\varphi(\omega)|^2)(|\xi_2|^2+\cdots+|\xi_n|^2)} {(1-|\omega|^2)|u|^2+|\langle \omega, u\rangle|^2}\}^{\frac{1}{2}}\nonumber\\ &\leq&\frac{\sqrt{2}\mu(|\omega|)|g(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}} \cdot\frac{\sqrt{1-|\varphi(\omega)|^2}(|\xi_2|+\cdots+|\xi_n|)} {\sqrt{(1-|\omega|^2)|u|^2+|\langle \omega, u\rangle|^2}}\leq c\|P_\varphi^g\|. \end{eqnarray} $ (3.7)

一般地, 若$\varphi(\omega)\neq|\varphi(\omega)|e_1, $则可找到酉变换$U_\omega$, 使得$\varphi(\omega)=\rho_\omega e_1U_\omega, $这里$\rho_\omega=|\varphi(\omega)|>\sqrt{\frac{2}{3}}$, 取$g_\omega=f_\omega\circ U_\omega^{-1}$, 经简单计算知$\|g_\omega\|_{\mathcal{A}_\alpha^p}=\|f_\omega\|_{\mathcal{A}_\alpha^p}$, 所以结合(3.5)式及(3.7)式可知(3.1)式成立.

下面证明(3.2)式成立.取

$ h_\omega(z)=(\frac{1-|\varphi(\omega)|^2}{(1-\langle z, \varphi(\omega)\rangle)^2})^{\frac{n+1+\alpha}{p}}, $

$h_\omega(\varphi(\omega))=\frac{1}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}}}$, 且由文献[20]中的命题1.4.10有

$ \|h_\omega\|_{\mathcal{A}_\alpha^p}=\{c_\alpha\int\limits_{B}(\frac{1-|\varphi(\omega)|^2}{|1-\langle z, \varphi(\omega)\rangle|^2})^{n+1+\alpha}(1-|z|^2)^\alpha\text{d}v(z)\}^{\frac{1}{p}}\\ =\{c_\alpha(1-|\varphi(\omega)|^2)^{n+1+\alpha}\int\limits_{B}\frac{(1-|z|^2)^\alpha} {|1-\langle z, \varphi(\omega)\rangle|^{2(n+1+\alpha)}} \text{d}v(z)\}^{\frac{1}{p}}\leq c, $

从而$h_\omega\in\mathcal{A}_\alpha^p$.由$P_\varphi^g$是有界算子并且$|\langle\nabla h_\omega(\varphi(\omega)), J\varphi(\omega)u\rangle|=\frac{2(n+1+\alpha)|\langle\varphi(\omega), J\varphi(\omega)u\rangle|}{p(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}}$, 结合(3.1)式有

$ \begin{eqnarray*} c\cdot\|P_\varphi^g\|&\geq&\|P_\varphi^g(h_\omega)\|_{\mathcal{Z}_\mu} \geq \mu(|\omega|)|h_\omega(\varphi(\omega))Rg(\omega)+g(\omega)\nabla(h_\omega\circ\varphi(\omega))|\\ &\geq&\frac{\mu(|\omega|)|Rg(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}}}- c_1\mu(|\omega|)|g(\omega)|\frac{|\langle\nabla h_\omega(\varphi(\omega)), J\varphi(\omega)u\rangle|}{\sqrt{(1-|\omega|^2)|u|^2+|\langle\omega, u\rangle|^2}}\\ &=&\frac{\mu(|\omega|)|Rg(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}}}- \frac{c_12(n+1+\alpha)\mu(|\omega|)|g(\omega)||\langle\varphi(\omega), J\varphi(\omega)u\rangle|} {p(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}+1}\sqrt{(1-|\omega|^2)|u|^2+|\langle\omega, u\rangle|^2}}\\ &\geq&\frac{\mu(|\omega|)|Rg(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}}} -Mc_1\frac{2(n+1+\alpha)}{p}, \end{eqnarray*} $

所以

$ \frac{\mu(|\omega|)|Rg(\omega)|}{(1-|\varphi(\omega)|^2)^{\frac{n+1+\alpha}{p}}} \leq c_2M+c\cdot\|P_\varphi^g\|\leq c. $

所以(3.2)式成立.

综上所述, 定理3.1得证.

$\varphi(z)=z$时, 易知下列结论成立.

推论3.2 设$0<p<\infty, \alpha>-1, \mu$$[0, 1)$上的正规函数, 且$g\in H(B), g(0)=0$, 则$P_g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的有界算子当且仅当

$ \sup\limits_{z\in B}\frac{\mu(|z|)|g(z)|} {(1-|z|^2)^{\frac{n+1+\alpha}{p}+1}}<+\infty, \quad \sup\limits_{z\in B}\frac{\mu(|z|)|Rg(z)|}{(1-|z|^{2})^{\frac{n+1+\alpha}{p}}}<+\infty. $

而对于单位圆盘则有以下结论成立.

推论3.3 设$0<p<\infty, \alpha>-1, n=1, \mu$$[0, 1)$上的正规函数, $\varphi$是单位圆盘$D$上的全纯自映射, 且$g\in H(D), g(0)=0$, 则$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的有界算子当且仅当

$ \sup\limits_{z\in D}\frac{\mu(|z|)|g(z)||\varphi'(z)|} {(1-|\varphi(z)|^2)^{\frac{2+\alpha}{p}+1}}<+\infty , \quad \sup\limits_{z\in D}\frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}}<+\infty . $

定理3.4 设$0<p<\infty, \alpha>-1, \mu$$[0, 1)$上的正规函数, $\varphi$$B$上的全纯自映射, 且$g\in H(B), g(0)=0$, 则$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的紧算子当且仅当$g\in\beta_\mu, g\varphi_l\in\beta_\mu, $

$ \begin{equation} \lim\limits_{|\varphi(z)|\rightarrow1}\sup\limits_{u\in {C^n-\{0\}}, z\in B}\frac{\mu(|z|)|g(z)|} {(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}+1}}\cdot \{\frac{(1-|\varphi(z)|^2)|J\varphi(z)u|^2+|\langle\varphi(z), J\varphi(z)u\rangle|^2} {(1-|z|^2)|u|^2+|\langle z, u\rangle|^2}\}^{\frac{1}{2}}=0, \end{equation} $ (3.8)
$ \begin{eqnarray} \lim\limits_{|\varphi(z)|\rightarrow1}\sup\limits_{z\in B}\frac{\mu(|z|)|Rg(z)|} {(1-|\varphi(z)|^{2})^{\frac{n+1+\alpha}{p}}}=0, \end{eqnarray} $ (3.9)

证 充分性 假设(3.8)和(3.9)式成立, 则对任意$\varepsilon>0$, 存在$0<\delta<1$, 当$|\varphi(z)|^2>1-\delta$时,

$ \begin{equation} \sup\limits_{u\in {C^n-\{0\}}}\frac{\mu(|z|)|g(z)|} {(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}+1}}\cdot \{\frac{(1-|\varphi(z)|^2)|J\varphi(z)u|^2+|\langle\varphi(z), J\varphi(z)u\rangle|^2} {(1-|z|^2)|u|^2+|\langle z, u\rangle|^2}\}^{\frac{1}{2}}<\varepsilon, \end{equation} $ (3.10)
$ \begin{eqnarray} \frac{\mu(|z|)|Rg(z)|} {(1-|\varphi(z)|^{2})^{\frac{n+1+\alpha}{p}}}<\varepsilon. \end{eqnarray} $ (3.11)

$\{f_j\}$是在$B$的任一紧子集上一致收敛于0并满足$\|f_j\|_{\mathcal{A}_\alpha^p}\leq1$的全纯函数列, 则$\{f_j\}$$\{\nabla f_j\}$$E=\{\omega:|\omega|^2\leq1-\delta\}$上一致收敛于0.

$|\varphi(z)|^2>1-\delta$, 由(3.10)-(3.11)式及引理2.2, 有

$ \begin{eqnarray} &&\sup\limits_{u\in {C^n-\{0\}}}\mu(|z|)|R^{(2)}[(P_\varphi^g)(f_j)](z)|~\nonumber\\ &\leq&\sup\limits_{u\in {C^n-\{0\}}}\frac{\mu(|z|)|g(z)||\langle\nabla f_j(\varphi(z)), J_{\varphi(z)}u\rangle|}{\sqrt{(1-|z|^2)|u|^2+|\langle z, u\rangle|^2}}+c\mu(|z|)|Rg(z)||f_j(\varphi(z))|\nonumber\\ &\leq&\sup\limits_{u\in {C^n-\{0\}}}\frac{c\mu(|z|)|g(z)|} {(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}+1}}\cdot \{\frac{(1-|\varphi(z)|^2)|J\varphi(z)u|^2+|\langle\varphi(z), J\varphi(z)u\rangle|^2} {(1-|z|^2)|u|^2+|\langle z, u\rangle|^2}\}^{\frac{1}{2}}\nonumber\\ &&\times\frac{(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}+1}\cdot|\langle\nabla f_j(\varphi(z)), J_{\varphi(z)}u\rangle|}{\sqrt{(1-|\varphi(z)|^2)|J\varphi(z)u|^2+|\langle\varphi(z), J\varphi(z)u\rangle|^2}} +\frac{c\mu(|z|)|Rg(z)|\|f_j\|_{\mathcal{A}_\alpha^p}}{(1-|\varphi(z)|^2)^{\frac{n+1+\alpha}{p}}}\nonumber\\ &\leq& c\varepsilon \|f_j\|_{\beta_{(1-r^2)^{(n+1+p+\alpha)/p}}}+c\varepsilon\|f_j\|_{\mathcal{A}_\alpha^p}\leq c\varepsilon \quad (j\rightarrow\infty). \end{eqnarray} $ (3.12)

$|\varphi(z)|^2\leq1-\delta$, 因为$g\in\beta_\mu, g\varphi_l\in\beta_\mu, $所以由$\{f_j\}$$\{\nabla f_j\}$$E=\{\omega:|\omega|^2\leq1-\delta\}$上一致收敛于0, 有

$ \begin{eqnarray} &&\sup\limits_{u\in {C^n-\{0\}}}\mu(|z|)|R^{(2)}[(P_\varphi^g)(f_j)](z)|\nonumber\\ &\leq&\sup\limits_{u\in {C^n-\{0\}}}\frac{\mu(|z|)|g(z)||\nabla f_j(\varphi(z))|(|\nabla\varphi_1(z)u|+\cdots+|\nabla\varphi_n(z)u|)}{\sqrt{(1-|z|^2)|u|^2+|\langle z, u\rangle|^2}}\nonumber\\ &&+\sup\limits_{u\in {C^n-\{0\}}}c\mu(|z|)|Rg(z)||f_j(\varphi(z))|\nonumber\\ &\leq& c\sum\limits_{l=1}^n(\|g\varphi_l\|_{\beta_\mu}+\|g\|_{\beta_\mu})|\nabla f_j(\varphi(z))|+c\|g\|_{\beta_\mu}|f_j(\varphi(z))|\rightarrow0 \quad (j\rightarrow\infty). \end{eqnarray} $ (3.13)

注意到$\{g(0)f_j(\varphi(0))\}$一致收敛于0, 结合(3.12)式和(3.13)式, 有$\lim\limits_{j\rightarrow\infty}\sup\limits_{z\in B}\|P_\varphi^gf_j\|_{\mathcal{Z}_\mu}=0$, 从而根据引理2.3知$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的紧算子.

必要性 设$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的紧算子, 由有界性的证明知$g\in\beta_\mu, g\varphi_l\in\beta_\mu$.

假设(3.8)式不成立, 则存在$\{z^j\}\subset B, \{u^j\}\subset C^n-\{0\}$和常数$\varepsilon_0>0$, 使得$r_j=|\varphi(z^j)|\rightarrow1 ~(j\rightarrow\infty)$, 有

$ \begin{equation} \frac{\mu(|z^j|)|g(z^j)|} {(1-|\varphi(z^j)|^2)^{\frac{n+1+\alpha}{p}+1}}\cdot \{\frac{(1-|\varphi(z^j)|^2)|J\varphi(z^j)u^j|^2+|\langle\varphi(z^j), J\varphi(z^j)u^j\rangle|^2} {(1-|z^j|^2)|u^j|^2+|\langle z^j, u^j\rangle|^2}\}^{\frac{1}{2}}\geq \varepsilon_0. \end{equation} $ (3.14)

(ⅰ) 假设$\varphi(z^j)=r_j e_1, (j=1, 2, \cdots, n), $$\sqrt{(1-r_j^2)(|\omega_2^j|^2+\cdots+|\omega_n^j|^2)}\leq |\omega_1^j|, $这里$(\omega_1^j, \cdots, \omega_n^j)^T=J\varphi(z^j)u^j, $

$ f_j(z)=\frac{z_1-r_j}{1-r_j z_1}\{\frac{1-r^2_j}{(1-r_j z_1)^2}\}^{\frac{n+1+\alpha}{p}}, $

$f_j(\varphi(z^j))=0$.类似定理3.1中的证明易知$\|f_j\|_{\mathcal{A}_\alpha^p}\leq c$.

下面证明$\{f_j\}$$B$的任一紧子集$E\subseteq\{z:|z|\leq r\}, 0<r<1$上一致趋于0.因为

$ \sup\limits_{z\in E}|f_j(z)|=\sup\limits_{z\in E}|\frac{z_1-r_j}{1-r_j z_1}|\{\frac{1-r^2_j}{|1-r_j z_1|^2}\}^{\frac{n+1+\alpha}{p}}\leq\{\frac{1-r^2_j}{(1-r)^2}\}^{\frac{n+1+\alpha}{p}}\rightarrow0 \quad (j\rightarrow\infty). $

所以$\{f_j\}$$B$的任一紧子集上一致趋于0.但由(3.14)式, 类似定理3.1中的证明有

$ \begin{eqnarray} \|P_\varphi^g(f_j)\|_{\mathcal{Z}_\mu}&\geq&\frac{c\mu(|z^j|)|g(z^j)||\langle\nabla f_j(\varphi(z^j)), J\varphi(z^j)u^j\rangle|}{\sqrt{(1-|z^j|^2)|u^j|^2+|\langle z^j, u^j\rangle|^2}}-\mu(|z^j|)|Rg(z^j)||f_j(\varphi(z^j))|\nonumber\\ &=&\frac{c\mu(|z^j|)|g(z^j)|} {(1-|\varphi(z^j)|^2)^{\frac{n+1+\alpha}{p}+1}}\cdot \{\frac{(1-|\varphi(z^j)|^2)|J\varphi(z^j)u^j|^2+|\langle\varphi(z^j), J\varphi(z^j)u^j\rangle|^2} {(1-|z^j|^2)|u^j|^2+|\langle z^j, u^j\rangle|^2}\}^{\frac{1}{2}}\nonumber\\ &&\times\frac{|\omega_1^j|}{\sqrt{(1-|\varphi(z^j)|^2)(|\omega_2^j|^2+\cdot+|\omega_n^j|^2)+|\omega_1^j|^2}} \geq \frac{c\varepsilon_0}{\sqrt{2}}. \end{eqnarray} $ (3.15)

根据引理2.3, 这与$P_{\varphi}^g$是紧算子矛盾, 所以(3.8)式成立.

$\sqrt{(1-r_j^2)(|\omega^j_2|^2+\cdots+|\omega^j_n|^2)}>|\omega^j_1|, $$\theta_k^j=$arg$\omega_k^j, k=2, \cdots, n$.取

$ f_j(z)=(e^{-i\theta_2^j}z_2+\cdots+e^{-i\theta_n^j}z_n)\{\frac{1-r_j^2}{(1-r_j z_1)^2}\}^{\frac{n+1+\alpha}{p}}\cdot \frac{\sqrt{1-r_j^2}}{1-r_j z_1}, $

$f_j(\varphi(z^j))=0$.经计算易知$f_j\in\mathcal{A}_\alpha^p$, 且$\{f_j\}$$B$的任一紧子集$E\subseteq\{z:|z|\leq r\}, 0 <r<1$上一致趋于0.但由(3.14)式有

$ \begin{eqnarray} \|P_\varphi^g(f_j)\|_{\mathcal{Z}_\mu}&\geq&\frac{c\mu(|z^j|)|g(z^j)||\langle\nabla f_j(\varphi(z^j)), J\varphi(z^j)u^j\rangle|}{\sqrt{(1-|z^j|^2)|u^j|^2+|\langle z^j, u^j\rangle|^2}}-\mu(|z^j|)|Rg(z^j)||f_j(\varphi(z^j))|\nonumber\\ &=&\frac{c\mu(|z^j|)|g(z^j)|} {(1-|\varphi(z^j)|^2)^{\frac{n+1+\alpha}{p}+1}}\cdot \{\frac{(1-|\varphi(z^j)|^2)|J\varphi(z^j)u^j|^2+|\langle\varphi(z^j), J\varphi(z^j)u^j\rangle|^2} {(1-|z^j|^2)|u^j|^2+|\langle z^j, u^j\rangle|^2}\}^{\frac{1}{2}}\nonumber\\ &&\times\frac{(|\omega_2^j|+\cdots+|\omega_n^j|)\sqrt{1-r^2_j}}{\sqrt{(1-|\varphi(z^j)|^2)(|\omega_2^j|^2+\cdot+|\omega_n^j|^2)+|\omega_1^j|^2}} \geq \frac{c\varepsilon_0}{\sqrt{2}}. \end{eqnarray} $ (3.16)

根据引理2.3, 这与$P_{\varphi}^g$是紧算子矛盾, 所以此时(3.8)式成立.

(ⅱ) 一般地, 若$\varphi(z^j)\neq|\varphi(z^j)|e_1, $则可找到酉变换$U_j$, 使得$\varphi(z^j)=\rho_j e_1U_j, $这里$\rho_j=|\varphi(z^j)|$, 取$g_j=f_j\circ U_j^{-1}, j\in{\{1, 2, \cdots, n\}}$, 经简单计算知$\|g_\omega\|_{\mathcal{A}_\alpha^p}=\|f_\omega\|_{\mathcal{A}_\alpha^p}$, 所以结合(3.15)式及(3.16)式可知(3.8)式成立.

下面证明(3.9)式成立.假设(3.9)式不成立, 则存在$\{z^j\}\subset B$和常数$\varepsilon_0>0$, 使得$|\varphi(z^j)|\rightarrow1~(j\rightarrow\infty)$, 有

$ \begin{eqnarray} \frac{\mu(|z^j|)|Rg(z^j)|} {(1-|\varphi(z^j)|^2)^{\frac{n+1+\alpha}{p}}}\geq \varepsilon_0. \end{eqnarray} $ (3.17)

$ h_j(z)=(\frac{1-|\varphi(z^j)|^2}{(1-\langle z, \varphi(z^j)\rangle)^2})^{\frac{n+1+\alpha}{p}}, $

$ h_j(\varphi(z^j))=\frac{1}{(1-|\varphi(z^j)|^2)^{\frac{n+1+\alpha}{p}}}$, 且经简单计算易知$h_j\in\mathcal{A}_\alpha^p$, $\{h_j\}$$B$的任一紧子集$E\subseteq\{z:|z|\leq r\}, 0<r<1$上一致趋于0.所以

$ \begin{eqnarray} &&\|P_\varphi^g(h_j)\|_{\mathcal{Z}_\mu}\nonumber\\ &\geq&\mu(|z^j|)|Rg(z^j)||h_j(\varphi(z^j))| -\sup\limits_{u\in C^n-\{0\}}\frac{c\mu(|z^j|)|g(z^j)||\langle\nabla h_j(\varphi(z^j)), J\varphi(z^j)u\rangle|}{\sqrt{(1-|z^j|^2)|u|^2+|\langle z^j, u\rangle|^2}}\\ &=&\frac{\mu(|z^j|)|Rg(z^j)|}{(1-|\varphi(z^j)|^2)^{\frac{n+1+\alpha}{p}}} -\sup\limits_{u\in C^n-\{0\}}\frac{2(n+1+\alpha)\mu(|z^j|)|g(z^j)||\langle\varphi(z^j), J\varphi(z^j)u\rangle|}{p(1-|\varphi(z^j)|^2)^{\frac{n+1+\alpha}{p}+1}\sqrt{(1-|z^j|^2)|u|^2+|\langle z^j, u\rangle|^2}}\nonumber. \end{eqnarray} $ (3.18)

由(3.17)-(3.18)及(3.8)式有$\lim\limits_{j\rightarrow\infty}\|(P_\varphi^g)(h_j)\|_{\mathcal{Z}_\mu}\neq0$, 根据引理2.3, 这与$P_{\varphi}^g$是紧算子矛盾, 所以(3.9)式成立.综上所述, 定理3.4得证.

$\varphi(z)=z$时, 易知下列结论成立.

推论3.5 设$0<p<\infty, \alpha>-1, \mu$$[0, 1)$上的正规函数, 且$g\in H(B), g(0)=0$, 则$P_g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的紧算子当且仅当$g\in\beta_\mu, g\varphi_l\in\beta_\mu, $

$ \lim\limits_{|z|\rightarrow1}\sup\limits_{z\in B}\frac{\mu(|z|)|g(z)|} {(1-|z|^2)^{\frac{n+1+\alpha}{p}+1}}=0, \quad \lim\limits_{|z|\rightarrow1}\sup\limits_{z\in B}\frac{\mu(|z|)|Rg(z)|} {(1-|z|^{2})^{\frac{n+1+\alpha}{p}}}=0. $

而对于单位圆盘则有以下结论成立.

推论3.6 设$0<p<\infty, \alpha>-1, n=1, \mu$$[0, 1)$上的正规函数, $\varphi$是单位圆盘$D$上的全纯自映射, 且$g\in H(D), g(0)=0$, 则$P_{\varphi}^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的紧算子当且仅当$g\in\beta_\mu$

$ \lim\limits_{|\varphi(z)|\rightarrow1}\frac{\mu(|z|)|g(z)||\varphi'(z)|} {(1-|\varphi(z)|^2)^{\frac{2+\alpha}{p}+1}}=0, \quad \lim\limits_{|\varphi(z)|\rightarrow1}\frac{\mu(|z|)|g'(z)|}{(1-|\varphi(z)|^{2})^{\frac{2+\alpha}{p}}}=0. $

定理3.7 设$0<p<\infty, \alpha>-1, \mu$$[0, 1)$上的正规函数, $\varphi$$B$上的全纯自映射且$g\in H(B), g(0)=0$, 则下列条件等价

(1) $P_\varphi^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu, 0}$型空间的紧算子;

(2) $P_\varphi^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu, 0}$型空间的有界算子;

(3) $P_\varphi^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu}$型空间的紧算子.

 因为紧算子是有界算子, 所以$(1)\Rightarrow(2)$成立, 由${\mathcal{Z}}_{\mu, 0}$空间的定义及定理3.4知$(2)\Rightarrow(3)$也成立.再证$(3)\Rightarrow(1)$, 先证$(3)\Rightarrow(2)$.由定理3.4, 对任意的$f\in\mathcal{A}_\alpha^p$, 类似于定理3.1中充分性的证明有

$ \begin{eqnarray} \|P_\varphi^g(f)\|_{\mathcal{Z}_{\mu}}&=&\sup\limits_{z\in B}\mu(|z|)|R^{(2)}[P_{\varphi}^g(f)(z)]|\nonumber\\ &\leq& c\{\sup\limits_{z\in B}\frac{\mu(|z|)|Rg(z)|}{(1-|\varphi(z)|^{2})^{\frac{n+1+\alpha}{p}}}+c\sup\limits_{z\in B}\frac{\mu(|z|)|g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+p+\alpha}{p}}}\\ &&\times(\frac{(1-|\varphi(z)|^2)|J\varphi(z)u|^2+|\langle\varphi(z), J\varphi(z)u\rangle|^2} {(1-|z|^2)|u|^2+|\langle z, u\rangle|^2})^{\frac{1}{2}}\}\cdot\|f\|_{{\mathcal{A}}^p_\alpha}\rightarrow0 \quad (|\varphi(z)|\rightarrow1).\nonumber \end{eqnarray} $ (3.19)

于是$P_\varphi^g\in\mathcal{Z}_{\mu, 0}$, 又因为$P_\varphi^g$${\mathcal{A}}^p_\alpha$空间到 ${\mathcal{Z}}_{\mu}$型空间的紧算子, 所以 $P_\varphi^g$${\mathcal{A}}^p_\alpha$空间到 ${\mathcal{Z}}_{\mu}$型空间的有界算子, 从而$P_\varphi^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu, 0}$空间的有界算子.

再证$(3)\Rightarrow(1)$.若条件(3)成立, 则条件(2)成立.集合$P_\varphi^g\{f\in\mathcal{A}_\alpha^p:\|f\|_{\mathcal{A}_\alpha^p}\leq1\}$${\mathcal{Z}}_{\mu, 0}$空间中是有界的, 由定理3.4并结合(3.19)式有

$ \lim\limits_{|\varphi(z)|\rightarrow1}\sup\limits_{\|f\|_{\mathcal{A}_\alpha^p}\leq1} \mu(|z|)|R^{(2)}(P_\varphi^g)(f)|=0, $

所以由引理2.4知$P_\varphi^g$${\mathcal{A}}^p_\alpha$空间到${\mathcal{Z}}_{\mu, 0}$空间的紧算子.定理3.7得证.

参考文献
[1] 张学军, 刘竞成. 加权Bergman空间到μ-Bloch空间的复合算子[J]. 数学年刊, 2007, 28A(2): 255–266. DOI:10.3321/j.issn:1000-8134.2007.02.011
[2] Zhang X J. Composition type operator from Bergman space to μ-Bloch type space in Cn[J]. J. Math. Anal. Appl., 2014, 298(2004): 710–721.
[3] Li S, Stević S. Integral-type operators from Bloch type spaces to Zygmund type spaces[J]. Appl. Math. Comput., 2009, 215(2): 464–473.
[4] Li S, Stević S. On An integral-type operator from ω-Bloch spaces to μ-Zygmund spaces[J]. Appl. Math. Comput., 2010, 215(12): 4385–4391.
[5] Stević S. On An integral operator from the Zygmund spaces to Bloch type spaces on the unit ball[J]. Glasgow Math. J., 2009, 51(2): 275–287. DOI:10.1017/S0017089508004692
[6] Liu Y, Yu Y. On an integral-type operator from the mixed-norm spaces to Zygmund type spaces on the unit ball[J]. Acta. Math. Sinica (Chinese series), 2013, 56(3): 381–390.
[7] Stević S. On a new operator from H to the Bloch type spaces on the unit ball[J]. Util. Math., 2008, 77: 257–263.
[8] Stević S. On a new integral-type operator from the weighted Bergman space to the Bloch type spaces on the unit ball[J]. Discrete Dyn. Nat. Soc., 2008. DOI:10.1155/2008/154263
[9] Stević S. On an integral-type operator from Zygmund type spaces to the mixed-norm spaces on the unit ball[J]. Abstr. Appl. Anal., 2010, Art.ID 198608, 7 pp.
[10] 赵艳辉, 张学军. 单位球上Zygmund型空间上的积分型算子[J]. 数学进展, 2016, 45(5): 755–766.
[11] 赵艳辉, 张学军. 单位球上Dirichlet型空间到Zμ型空间的积分型算子[J]. 数学物理学报, 2017, 37A(2): 217–227. DOI:10.3969/j.issn.1003-3998.2017.02.001
[12] Hu Z J. Extended Cesàro operator on mixed norm space[J]. Proc. Amer. Math. Soc., 2003, 131(7): 2171–2179. DOI:10.1090/S0002-9939-02-06777-1
[13] 赵艳辉. 单位球上μ-Bloch型空间上的加权Cesàro算子[J]. 数学学报(中文版), 2008, 51(3): 601–606.
[14] 赵艳辉. 单位球上F(p, q, s)空间到Zygmund型空间的加权Cesàro算子[J]. 高校应用数学学报, 2012, 27(1): 112–120. DOI:10.3969/j.issn.1000-4424.2012.01.013
[15] 张学军. Cn中Dirichlet型空间和Bloch型空间上的加权Cesàro算子[J]. 数学年刊A辑, 2005, 26(1): 139–150. DOI:10.3321/j.issn:1000-8134.2005.01.017
[16] 李俊锋, 刘竟成, 张学军. Bergman型空间的Cesàro算子[J]. 数学研究, 2009, 42(2): 209–217. DOI:10.3969/j.issn.1006-6837.2009.02.011
[17] 张学军, 肖建斌, 李敏, 关莹. 单位球上加权Bergman空间的复合型算子[J]. 中国科学:数学, 2015, 45(2): 141–150.
[18] 高进寿, 贾厚玉. Bergman空间上复合算子的紧性刻划[J]. 高校应用数学学报A辑, 2003, 18(4): 446–454. DOI:10.3969/j.issn.1000-4424.2003.04.011
[19] Zhu K H. Spaces of holomorphic functions in the unit ball[M]. New York: Springer-Verlag, 2004.
[20] Rudin W. Function theory in the unit ball of Cn[M]. New York: Springer-Verlag, 1980.