数学杂志  2020, Vol. 40 Issue (1): 90-98   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
蔡春玲
黄守军
具有对数型衰减初值的半线性波动方程解的爆破
蔡春玲, 黄守军    
安徽师范大学数学与统计学院, 安徽 芜湖 241002
摘要:本文研究了一类具有对数型衰减初值的半线性波动方程解的爆破.利用迭代法证明了半线性波动方程组柯西问题的经典解将在有限时间内爆破,同时给出生命区间的下界估计.推广了已有半线性波动方程组柯西问题的有关结果,并给出若干应用.
关键词半线性波动方程    对数型衰减    爆破    生命区间    
BLOW UP OF SOLUTIONS TO SEMILINEAR WAVE EQUATIONS WITH LOGARITHMIC DECAY INITIAL DATA
CAI Chun-ling, HUANG Shou-jun    
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China
Abstract: This paper considers the blow up of solutions to a class of semilinear wave equations with logarithmic decay initial data. By utilizing the method of an iteration argument, we obtain the blow up and the lower bound of lifespan of solutions to the Cauchy problem for the semilinear wave equations, which generalize the existing facts on semilinear wave equations. In addition, some applications are also given.
Keywords: semilinear wave equations     logarithmic decay data     blow up     lifespan    
1 引言

本文主要研究如下低维空间中半线性波动方程的柯西问题

$ \begin{equation}\label{1}\left\{\begin{array}{ll}\square u=F(u), ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(x, t)\in{{R}}^{n}\times(0, +\infty), \\ t=0:~u=\varepsilon f(x), ~~u_t=\varepsilon g(x), ~~~~x\in{{R}}^{n}, \end{array}\right. \end{equation} $ (1.1)

其中$\square =\partial_{t} ^{2}-\sum\limits_{i=1}^n \partial_{x_i} ^{2}$是波算子,

$ \begin{equation} \begin{aligned}F(u)\geq Au^{p}, ~~~~u\geq0, \end{aligned}\end{equation} $ (1.2)

$A>0, p>1, \varepsilon>0$是小参数.考虑$n=2$$n=3$情形, 且$p>p_{0}(n)$, 其中$p_{0}(n)$是下列二次方程的正根

$ \begin{equation*}\begin{aligned}(n-1)p^{2}-(n+1)p-2=0. \end{aligned}\end{equation*} $

对于半线性波动方程柯西问题$(1.1)$, 已经有了很多关于解整体存在和爆破的相关结果.当初值$f(x)$, $g(x)$具有紧支集且$F(u)=|u|^{p}$时, 柯西问题$(1.1)$有Strauss猜想.即:初值“充分小”, $p>p_{0}(n)$, 则式$(1.1)$有整体解; 初值在某种意义下为正, 且$1 <p\leq p_{0}(n)$, 则式$(1.1)$没有整体解.

对于$n=3$情形, John[1, 2]得到如下结果:设$F(u)$满足

$ \begin{equation}\begin{aligned}F(u)\geq A|u|^{p}, ~~~A>0, \end{aligned}\end{equation} $ (1.3)

初值是具有紧支集的光滑函数且充分小, 若$p>p_{0}(3)=1+\sqrt{2}$, 则式$(1.1)$存在整体光滑解.若初值不恒为0, 且$1<p<p_{0}(3)$, 则式(1.1)不存在整体解.对于$n=2$情形, Glassey[3, 4]验证了Strauss猜想, 但是临界情形$p=p_{0}(2)$没有解决.

对于临界情形$p=p_{0}(3)$$p=p_{0}(2)$, Schaeffer[5]已经证明了即使对于小初值, 式$(1.1)$不存在整体解.

至此, 对于$n=2$$n=3$的情形, Strauss猜想已经得到完整验证.

对于高维情形$n\geq4$, 次临界情形$1<p<p_{0}(n)$由Sideris[6]给出证明; 超临界情形$p>p_{0}(n)$被Georgive, Lindblad和Sogge[7]证明.而临界情形$p=p_{0}(n)$ ($n\geq4$)被Yordanov和Zhang[8]以及Zhou[9]分别独立验证, 并且对于情形$n\geq2$, Zhou和Han[10]给出了临界情形$p=p_{0}(n)$解的生命跨度的上界估计, 有关最新结果也可参见Rammaha, Takamura, Uesaka和Wakasa[11].

若初值不具有紧支集, 则式$(1.1)$解的情况会发生变化.事实上, 对于$n=3$情形, Asakura[12]$F(u)$满足式$(1.3)$, 且$p>p_{0}(3)$, 初值$f(x)\in{C}^{3}({R}^{3}), g(x)\in{C}^{2}({R}^{3})$.如果初值满足

$ \begin{equation} \begin{aligned} D_{x}^{\alpha}f(x), D_{x}^{\beta}g(x)={O}((1+|x|)^{-1-k}), ~~~|x|\rightarrow\infty, ~~~|\alpha|\leq3, ~~~|\beta|\leq2, \end{aligned} \end{equation} $ (1.4)

其中$k>\frac{2}{p-1}$, 那么柯西问题$(1.1)$的整体解存在; 如果初值满足

$ \begin{equation}\begin{aligned}f(x)=0, g(x)\geq\frac{\epsilon}{(1+|x|)^{1+k}}, ~~~\epsilon>0, \end{aligned}\end{equation} $ (1.5)

其中$0<k<\frac{2}{p-1}$, 则方程组$(1.1)$的解在有限时间内一定会产生爆破.对于$n=2$情形, Tsutaya[14]$F(u)$满足式$(1.3)$, 且$p>p_{0}(2)$, 初值$f(x)\in{C}^{3}({R}^{2})$, $g(x)\in{C}^{2}({R}^{2})$满足式$(1.4)$, 且$k>\frac{2}{p-1}$, 那么柯西问题$(1.1)$存在整体解; 如果$F(u)$满足式$(1.2)$, 且$0<p<p_{0}(2)$初值满足式$(1.5)$, 且$0<k<\frac{2}{p-1}$, 则方程组$(1.1)$不存在整体解.

最近, Kong和Liu[15]提出双曲Yamabe问题, 考虑$(1+n)$维Minkowski空间中的Yamabe方程解的整体存在与爆破. Minkowski时空中的双曲Yamabe问题为如下半线性波动方程柯西问题所刻画

$ \left\{ {\begin{array}{*{20}{l}} {\square u = {u^{\frac{{n + 3}}{{n - 1}}}},}\\ {t = 0:u = \varepsilon f(x) > 0,{u_t} = \varepsilon g(x).} \end{array}} \right. $ (1.6)

在文[15]中, Kong和Liu证明:若初值$f(x)\in{C}^{3}({R}^{n})$, $g(x)\in{C}^{2}({R}^{n})$($n$=2或3), 且满足

$ \left\{ {\begin{array}{*{20}{l}} \Sigma_{|\alpha|\leq3}|D_{\alpha}^{x}f(x)|+\Sigma_{|\alpha|\leq2}|D_{\alpha}^{x}g(x)| \leq\frac{\epsilon}{(1+|x|)^{1+k}} ~~~~(k\geq\frac{n-1}{2}), \\ g(x)-|\nabla f(x)|>0, \end{array}} \right. $

则柯西问题$(1.6)$的光滑解整体存在; 若初值$f(x)\in{C}^{3}({R}^{n}), g(x)\in{C}^{2}({R}^{n})$ ($n$ =2或3), 且满足

$ \begin{equation}\begin{aligned}g(x)-|\nabla f(x)|\geq\frac{1}{(1+|x|)^{1+k}}, \end{aligned}\nonumber\end{equation} $

其中$0\leq k<\frac{n-1}{2}$, 则式$(1.6)$的解不会整体存在.

本文研究一类具有衰减初值的半线性波动方程的柯西问题$(1.1)$.不同于Asakura[12]和Kong和Liu[15], 假设初值是具有形如式$(2.1)$的对数型的衰减, 比代数衰减更缓慢一些.得到了半线性方程的柯西问题$(1.1)$的解在有限的时间内爆破, 并得到了生命区间的下界.

2 主要结果

下面给出本文主要结果.

定理2.1  设$f(x)\in{C}^{3}({R}^{n})$, $g(x)\in{C}^{2}({{R}}^{n})$($n$ =2或3).若初值满足如下条件

$ \begin{equation}\label{7}f(x)>0, ~~~ g(x)-|\nabla f(x)|\geq\frac{C}{(1+\log(1+|x|))^{1+k}}, ~~~~~~C>0, \end{equation} $ (2.1)

$0<k<\frac{2}{p-1}$, 则柯西问题$(1.1)$的正解必在有限时间内爆破, 即解存在区间为$[0, T^{*})$, 且生命跨度$T^{*}$满足

$ \begin{equation}\begin{aligned}T^{*}\geq C_{0}\varepsilon^{\frac{p-1}{k(p-1)-2}}, \end{aligned}\end{equation} $ (2.2)

这里$ C_{0}$是与$\varepsilon$无关的正常数.

定理$2.1$中解的正性可由引理$3.3$保证.由定理$2.1$, 可得Yamabe问题$(1.6)$的结论.

推论2.1  对于$n$=2和$n$=3情形的Yamabe问题$(1.6)$.设$f(x)\in{C}^{3}({R}^{n}), g(x)\in{C}^{2}({{R}}^{n})$且满足式$(2.1)$, $0<k<\frac{2}{p-1}$ ($n=2$, $0<k<\frac{1}{2}$; $n=3$, $0<k<1$), 则柯西问题$(1.6)$的解存在区间为$ [0, T^{*})$, 生命跨度$T^{*}$的下界由式$(2.2)$给出.

注2.1  Kong和Liu[15]未明确给出Yamabe问题$(1.6)$解的生命跨度的估计.

注2.2 对于$F(u)$满足式$(1.3)$, 初值满足式$(1.5)$, 且$0<k<\frac{2}{p-1}$, Tsutaya[13]指出柯西问题$(1.1)$的解必发生爆破, 并给出同样的下界估计式$(2.2)$.由此, 初值的对数型衰减虽比代数型衰减慢, 但不影响生命跨度的下界估计.

注2.3  在文献[13]中, Tsutaya设$F(u)=A|u|^{p}, A>0$.若初值满足$f(x)=0$, $g(x)\geq\frac{C}{(1+|x|)^{1+k}}$, 且$0<k<\frac{2}{p-1}$$p>1+\sqrt{2}$, 则生命跨度$T^{*}$满足$T^{*}\leq c_{0}C^{\frac{p-1}{k(p-1)-2}}$, 其中$c_{0}$为与$C$无关的正常数.因此, 猜测柯西问题$(1.1)$的生命跨度$T^{*}$也满足$T^{*}\leq c_{1}\varepsilon^{\frac{p-1}{k(p-1)-2}}$, 其中$c_{1}$为与$\varepsilon$无关的正常数.

3 主要结果的证明

在这一节中, 将给出一些引理以及定理$2.1$的证明.尽管所需引理在Kong和Liu[15]和Kubota[16]中已经给出, 但是为了完整起见, 在此依然将其列出, 证明可参见Kong和Liu[15]和Kubota[16].

引理3.1  考虑下列柯西问题

$ \left\{ {\begin{array}{*{20}{l}}\square u=w(t, x), ~~~~~~~~~~~~~~~\quad\quad~~~~~~~(x, t)\in{{R}}^{n}\times(0, +\infty)\\ t=0:u=\varepsilon f(x), ~~u_t=\varepsilon g(x), ~\quad~~x\in{{R}}^{n} \end{array}} \right. $

其中$n$ =2或3.当$f(x)\in{C}^{3}({{R}}^{n})$, $g(x)\in{C}^{2}({{R}}^{n})$, $w(t, x)\in{C}^{2}({{R}}^{n})$, 有

$ \begin{equation}\begin{aligned}u(t, x)=u^{0}(t, x)+Lw(t, x), \end{aligned}\end{equation} $ (3.1)

其中

$ \begin{equation} u^{0}(t, x)=\left\{\begin{array}{ll}\frac{t}{4\pi}\int_{|\xi|=1}\varepsilon g(x+t\xi)dw_{\xi}+\frac{1}{4\pi}\frac{\partial}{\partial t}(t\int_{|\xi|=1}\varepsilon f(x+t\xi)dw_{\xi})~~~~~~~(n=3), \\ \frac{1}{2\pi}\int_{0}^{t}\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}\int_{|\xi=1|}\varepsilon g(x+\rho\xi)dw_{\xi}d\rho\\ + \frac{1}{2\pi}\frac{\partial}{\partial_{t}}(\int_{0}^{t}\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}\int_{|\xi|=1 }\varepsilon f(x+\rho\xi)dw_{\xi}d\rho)~~~~(n=2) \end{array}\right. \end{equation} $ (3.2)

是柯西问题

$ \left\{ {\begin{array}{*{20}{l}}\square u=0, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(x, t)\in{{R}}^{n} \times (0, +\infty)\\ t=0:u=\varepsilon f(x), ~~u_t=\varepsilon g(x), ~~x\in{{R}}^{n} \end{array}} \right. $

的解;

$ \begin{equation}Lw(t, x)=\left\{\begin{array}{ll}\frac{1}{4\pi}\int_{0}^{t}(t-\tau)\int_{|\xi|=1}w(x+(t-\tau)\xi, \tau)dw_{\xi}d\tau~~~~~~~(n=3), \\ \frac{1}{2\pi}\int_{0}^{t}\int_{|x-y|\leq t-\tau}\frac{w(\tau, y)}{\sqrt{(t-\tau)^{2}-(x-y)^{2}}}dyd\tau~~\quad\quad\quad~~~~~(n=2), \end{array}\right. \end{equation} $ (3.3)

是柯西问题

$ \left\{ {\begin{array}{*{20}{l}}\square u=w(t, x), ~(x, t)\in {{R}}^{n} \times (0, +\infty), \\ t=0:u=0, ~~u_t=0 \end{array}} \right. $

的解.

引理3.2  若$b(\lambda)$$(-\infty, \infty)$上连续函数, 则

$ \int_{|w|=1}b(y\cdot w)dS_{w}=w_{n-1}\int_{-1}^{1} b(|y|\eta)(1-\eta^{2})^{\frac{n-3}{2}}d\eta, $

其中$w_{k}=\frac{2\pi^{\frac{k}{2}}}{\Gamma(\frac{k}{2})}~~(k\geq1). $

引理3.3  若$f(x)\in{C}^{3}({R}^{n}), g(x)\in{C}^{2}({R}^{n})$满足式$(2.1)$, 则当$\varepsilon$充分小时, 柯西问题$(1.1)$$[0, +\infty)$上有正的${C}^{2}$解.

证明参见Kong和Liu[15], 此处从略.

定理2.1的证明  利用John[1]和Kong和Liu[15]中的迭代法来证明.由引理$3.3$知, 只要$u$存在, 则$u>0$.当$n=3$时, 由式$(3.2)$$(2.1)$

$ \begin{equation*}\begin{aligned}u^{0}(t, x)&={\frac{t}{4\pi}}\int_{|\xi|=1}\varepsilon g(x+t\xi)dw_{\xi}+\frac{1}{4\pi}\frac{\partial}{\partial t}(t\int_{|\xi|=1}\varepsilon f(x+t\xi)dw_{\xi})\\ &=\frac{\varepsilon t}{4\pi}\int_{|\xi|=1}[g(x+t\xi)+\nabla f(x+t\xi)\xi+\frac{f(x+t\xi)}{t}]dw_{\xi}\\ &\geq\frac{\varepsilon t}{4\pi}\int_{|\xi|=1}[g(x+t\xi)-|\nabla f(x+t\xi)|+\frac{f(x+t\xi)}{t}]dw_{\xi}\\ &\geq\frac{\varepsilon t}{4\pi}\int_{|\xi|=1}[g(x+t\xi)-|\nabla f(x+t\xi)|]dw_{\xi}\\ &\geq\frac{\varepsilon t}{4\pi}\int_{|\xi|=1}\frac{C}{(1+\log(1+|x+t\xi|))^{1+k}}dw_{\xi}, \end{aligned}\end{equation*} $

上式右端项是方程$\square u=0$带有初值$f=0$, $g=(1+\log(1+r))^{-1-k}$的解.令$r=|x|$, 则$|x+t\xi|=\sqrt{(x+t\xi)^{2}}=\sqrt{r^{2}+t^{2}+2tx\xi}$, 由引理$3.2$, 取$y=2tx$, 则

$ \begin{equation*}\begin{aligned}\varphi(t, x)&\triangleq \int_{|\xi|=1}\frac{C}{(1+\log(1+|x+t\xi|))^{1+k}}dw_{\xi}\\ &=w_{2}\int_{-1}^{1}\frac{1}{[1+\log(1+\sqrt{r^{2}+t^{2}+2tr\eta})]^{1+k}}(1-\eta^{2})^{\frac{n-3}{2}}d\eta\\ &=\frac{2\pi}{tr}\int_{|r-t|}^{r+t}\frac{\rho}{[1+\log(1+\rho)]^{1+k}}d\rho. \end{aligned}\end{equation*} $

$ \begin{equation*}\begin{aligned}u^{0}(t, x)\geq\frac{C\varepsilon}{2r}\int_{|r-t|}^{r+t}\frac{\rho}{[1+\log(1+\rho)]^{1+k}}d\rho. \end{aligned}\end{equation*} $

对于$(t, x)\in\Sigma\triangleq\{(t, x):|x|-t\geq R>0\}$, 有

$ \begin{equation*}\begin{aligned}u^{0}(t, x)\geq\frac{C\varepsilon}{2r}\int_{r}^{r+t}\frac{\rho}{[1+\log(1+\rho)]^{1+k}}d\rho &\geq\frac{C\varepsilon}{2r}\frac{1}{[1+\log(1+r+t)]^{1+k}}\int_{r}^{r+t}\rho d\rho\\ &\geq\frac{C\varepsilon t}{2}\frac{1}{[1+\log(1+r+t)]^{1+k}}. \end{aligned}\end{equation*} $

若函数$p(t, x)$$\bf{C}^{m}(m\geq2)$光滑的, 记$\overline{p}(t, r)$$p(t, x)$在半径为$r$的球面上的平均值, 即$\overline{p}(t, r)=\frac{1}{4\pi}\int_{|\xi|=1}p(t, r\xi)dw_{\xi}. $由式$(3.3)$

$ \begin{equation*}\begin{aligned}\overline{Lw}(t, r)&=\frac{1}{(4\pi)^{2}}\int_{0}^{t}(t-\tau)d\tau \int_{|\xi|=1}dw_{\xi}\int_{|\eta|=1}w(r\xi+(t-\tau)\eta, \tau)dw_{\eta}\\ &=\int_{0}^{t}d\tau\int_{|r-t+\tau|}^{r+t-\tau}\frac{\lambda}{8\pi r}d\lambda\int_{|\zeta|=1}w(\lambda\zeta, \tau)dw_{\zeta}\\ &=\int_{0}^{t}d\tau\int_{|r-t+\tau|}^{r+t-\tau}\frac{\lambda}{2r}\overline{w}(\tau, \lambda)d\lambda. \end{aligned}\end{equation*} $

因此有$\overline{Lw}=P\overline{w}, $其中$P$算子定义为$P\overline{w}=\int_{0}^{t}d\tau\int_{|r-t+\tau|}^{r+t-\tau}\frac{\lambda}{2r}\overline{w}(\lambda, \tau)d\tau. $假设式$(1.1)$存在整体的$\bf{C}^{2}$解, 接下来通过推出矛盾来证明定理$2.1$.由式$(3.1)$

$ \begin{equation}\begin{aligned}u(t, x)=u^{0}(t, x)+LF(u)(t, x). \end{aligned}\end{equation} $ (3.4)

$\overline{u}$$u(t, x)$在半径为$r$的球面上的平均值, 则有$\overline{u}(t, r)=\overline{u^{0}}(t, r)+\overline{LF}(t, r)\geq\overline{u^{0}}(t, r)+A\overline{Lu^{p}}(t, r), $$p> p_{0}=1+\sqrt{2}$.故$u^{p}$是凸的, 所以$\overline{u^{p}}(t, r)\geq\overline{u}^{p}(t, r), $

$ \begin{equation}\begin{aligned}\overline{u}(t, r)\geq\overline{u^{0}}(t, r)+AL\overline{u}^{p}(t, r). \end{aligned}\end{equation} $ (3.5)

又由$u>0$, 成立

$ \begin{equation*}\begin{aligned}\overline{u}(t, r)\geq\overline{u^{0}}(t, r) &\geq\frac{1}{4\pi}\int_{|\xi|=1}\frac{C\varepsilon t}{2[1+\log(1+r+t)]^{1+k}}dw_{\xi}\\ &=\frac{C\varepsilon t}{2[1+\log(1+r+t)]^{1+k}}, ~~~\forall(t, x)\in\Sigma. \end{aligned}\end{equation*} $

进一步设$\overline{u}$有下列估计

$ \begin{equation}\begin{aligned}\overline{u}(t, r)\geq\frac{ct^{a}}{[1+\log(1+r+t)]^{b}}, ~~~\forall(t, x)\in\Sigma, \end{aligned}\end{equation} $ (3.6)

其中$a, b, c$均为正常数.显然当$a=1, b=1+k, c=\frac{C\varepsilon}{2}$, 式$(3.6)$是满足的.由式$(3.5)$-$(3.6)$,

$ \begin{equation}\begin{aligned}\overline{u}(t, r)\geq AL\overline{u}^{p}(t, r) &\geq A\int_{0}^{t}d\tau\int_{|r-t+\tau|}^{r+t-\tau}\frac{\lambda}{2r}[\frac{c\tau^{a}}{(1+\log(1+\lambda+\tau))^{b}}]^{p}d\lambda \\ &\geq\frac{Ac^{p}}{2r}\frac{1}{(1+\log(1+r+t))^{bp}}\int_{0}^{t}\tau^{ap}d\tau\int_{r}^{r+t-\tau}\lambda d\lambda\\ &\geq\frac{Ac^{p}}{2(ap+2)^{2}}\frac{t^{ap+2}}{(1+\log(1+r+t))^{bp}}, ~~~\forall(t, x)\in\Sigma. \end{aligned}\end{equation} $ (3.7)

一直迭代下去, 并比较式$(3.6)$$(3.7)$, 可定义如下序列$\{a_{j}\}, \{b_{j}\}, \{c_{j}\}$,

$ \left\{ {\begin{array}{*{20}{l}}a_{j}=pa_{j-1}+2, ~~~~~a_{0}=1, \\ b_{j}=pb_{j-1}, ~~~~~b_{0}=1+k, \\ c_{j}=\frac{Ac_{j-1}^{p}}{2(pa_{j-1}+2)^{2}}, ~~~~~c_{0}=\frac{C\varepsilon}{2}. \end{array}} \right. $

从而有

$ \begin{equation}\begin{aligned}a_{j}=\frac{p+1}{p-1}p^{j}-\frac{2}{p-1}, ~~b_{j}=(1+k)p^{j} \end{aligned}\end{equation} $ (3.8)

$ \begin{equation*}\begin{aligned}c_{j}>\frac{Ac_{j-1}^{p}}{2(\frac{p+1}{p-1})^{2}p^{2j}}. \end{aligned}\end{equation*} $

因此可以得到

$ \begin{equation}\begin{aligned}c_{j}>(\frac{A}{2}(\frac{P-1}{P+1})^{2})^{\frac{p^{j}-1}{p-1}}\frac{c_{0}^{p^{j}}}{p^{2s_{j}}}, ~~~s_{j}=p^{j}\sum\limits_{k=1}^{j}\frac{k}{p^{k}}. \end{aligned}\end{equation} $ (3.9)

联立式$(3.6)$, $(3.8)$$(3.9)$得到$\overline{u}(t, r)\geq(\frac{A}{2}(\frac{p-1}{p+1})^{2})^{\frac{1}{1-p}}t^{\frac{2}{1-p}}e^{p^{j}L(t, r)}, ~\forall(t, x)\in\Sigma, $其中

$ \begin{equation*}\begin{aligned} L(t, r)=&\frac{1}{p-1}\log\frac{A}{2}(\frac{p-1}{p+1})^{2}+\log c_{0}-2\sum\limits_{k=1}^{\infty}\frac{k}{p^{k}}\log p+\frac{p+1}{p-1}\log t\\ &-(1+k)\log(1+\log(1+r+t)). \end{aligned}\end{equation*} $

由于$0 <k\leq\frac{2}{p-1}$, 故存在$(t_{0}, r_{0})\in\Sigma$, 使得$L(t_{0}, r_{0})>0$.当$j\rightarrow\infty$时, 有$\overline{u}(t_{0}, r_{0})\rightarrow\infty $与假设矛盾.由$L(t, r)>0$

$ \begin{equation*}\begin{aligned}\{\frac{A}{2}(\frac{p-1}{p+1})^{2}\}^{\frac{1}{p-1}}c_{0}\frac{1}{p^{2\sum\limits_{k=1}^{\infty}\frac{k}{p^{k}}}}\frac{t^{\frac{p+1}{p-1}}}{(1+\log(1+r+t))^{1+k}}>1. \end{aligned}\end{equation*} $

固定$p$, 从而有

$ \begin{equation}\begin{aligned}C_{0}\varepsilon\frac{t^{\frac{p+1}{p-1}}}{(1+\log(1+r+t))^{1+k}}>1, \end{aligned}\end{equation} $ (3.10)

其中$C_{0}=\frac{1}{2}\{\frac{A}{2}(\frac{P-1}{P+1})^{2}\}^{\frac{1}{P-1}}\frac{1}{p^{2\sum\limits_{k=1}^{\infty}\frac{k}{p^{k}}}}. $从而由式$(3.10)$可得生命区间的下界估计

$ \begin{equation}\begin{aligned}T^{*}\geq C_{0}\varepsilon^{\frac{p-1}{k(p-1)-2}}. \end{aligned}\end{equation} $ (3.11)

$n=2$时, 由式$(2.1)$$(3.2)$

$ \begin{equation*} \begin{aligned} u^{0}(t, x)=&\frac{\varepsilon}{2\pi}\int_{0}^{t}\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}\int_{|\xi|=1}g(x+\rho\xi)dw_{\xi} d\rho\\ &+\frac{\varepsilon}{2\pi t}\int_{0}^{t}\{\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}\int_{|\xi|=1}f(x+\rho\xi)dw_{\xi}+\frac{\rho^{2}}{\sqrt{t^{2}-\rho^{2}}}\int_{|\xi|=1}\xi\nabla f(x+\rho\xi)dw_{\xi}\}d\rho\\ =&\frac{\varepsilon}{2\pi}\int_{0}^{t}\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}\int_{|\xi|=1}(g(x+\rho\xi)+\frac{\rho}{t}\xi\nabla f(x+\rho\xi))dw_{\xi}d\rho\\ \geq&\frac{\varepsilon}{2\pi}\int_{0}^{t}\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}\int_{|\xi|=1}\frac{C}{(1+\log(1+|x+\rho\xi|))^{1+k}}dw_{_{\xi}}d\rho\\ \end{aligned} \end{equation*} $
$ \begin{equation*} \begin{aligned} \geq&\frac{4C\varepsilon}{2\pi}\int_{0}^{t}\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}\int_{|\rho-r|}^{\rho+r}\frac{1}{(1+\log(1+\lambda))^{1+k}}\frac{\lambda}{\sqrt{\lambda^{2}-(\rho-r)^{2}}\sqrt{(\rho+r)^{2}-\lambda^{2}}}d\lambda d\rho\\ \geq&\frac{4C\varepsilon}{2\pi}\int_{0}^{t}\frac{\rho}{\sqrt{t^{2}-\rho^{2}}}\frac{1}{(1+\log(1+\rho+r))^{1+k}}\frac{1}{\sqrt{(\rho+r)^{2}-(\rho-r)^{2}}\sqrt{(\rho+r)^{2}-(\rho-r)^{2}}}\\ &\int_{|\rho-r|}^{\rho+r}\lambda d\lambda d\rho\\ \geq&\frac{C\varepsilon}{2\pi}\frac{t}{(1+\log(1+r+t))^{1+k}}, ~~~\forall t>0. \end{aligned} \end{equation*} $

类似地, 设$u$有下列形式的估计

$ \begin{equation}\begin{aligned}u(t, x)\geq\frac{ct^{a}}{(1+\log(1+r+t))^{b}}, \end{aligned}\end{equation} $ (3.12)

其中$a, b, c$均为正常数.显然当$a=1, b=1+k, c=\frac{C\varepsilon}{2\pi}$时, 式$(3.12)$是满足的.由式$(3.4)$$(3.12)$, 可知

$ \begin{equation}\begin{aligned}u(t, x)\geq&\frac{1}{2\pi}\int_{0}^{t}\int_{|x-y|\leq t-\tau}\frac{Au^{p}}{\sqrt{(t-\tau)^{2}-|x-y|^{2}}}dyd\tau\\ =&\frac{1}{2\pi}\int_{0}^{t}\int_{0}^{t-\tau}\frac{\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}\int_{|\xi|=1}Au^{p}(t, x+\rho\xi)dw_{\xi}d\rho d\tau\\ \geq&\frac{Ac^{p}}{2\pi}\int_{0}^{t}\int_{0}^{t-\tau}\frac{\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}\int_{|\xi|=1}\frac{\tau^{ap}}{(1+\log(1+\tau+|x+\rho\xi|))^{bp}}dw_{\xi}d\rho d\tau\\ \geq&\frac{Ac^{p}}{(1+\log(1+r+t))^{bp}}\int_{0}^{t}\tau^{ap}\int_{0}^{t-\tau}\frac{\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}d\rho d\tau\\ =&\frac{Ac^{p}}{(1+\log(1+r+t))^{bp}}\int_{0}^{t}\tau^{ap}(t-\tau)d\tau\\ \geq&\frac{Ac^{p}}{(ap+2)^{2}}\frac{t^{ap+2}}{(1+\log(1+r+t))^{bp}}. \end{aligned}\end{equation} $ (3.13)

一直迭代下去, 并比较式$(3.12)$$(3.13)$, 可定义如下序列$\{a_{j}\}, \{b_{j}\}, \{c_{j}\}$,

$ \left\{ {\begin{array}{*{20}{l}}a_{j}=pa_{j-1}+2, ~~~~~a_{0}=1, \\ b_{j}=pb_{j-1}, ~~~~~b_{0}=1+k, \\ c_{j}=\frac{Ac_{j-1}^{p}}{(pa_{j-1}+2)^{2}}, ~~~~~c_{0}=\frac{C\varepsilon}{2\pi}. \end{array}} \right. $

从而可求得

$ \begin{equation}\begin{aligned}a_{j}=\frac{p+1}{p-1}p^{j}-\frac{2}{p-1}, ~~b_{j}=(1+k)p^{j} \end{aligned}\end{equation} $ (3.14)

$ \begin{equation*}\begin{aligned}c_{j}>\frac{Ac_{j-1}^{p}}{(\frac{p+1}{p-1})^{2}p^{2j}}. \end{aligned}\end{equation*} $

因此可以得到

$ \begin{equation}\begin{aligned}c_{j}>(A(\frac{P-1}{P+1})^{2})^{\frac{p^{j}-1}{p-1}}\frac{c_{0}^{p^{j}}}{p^{2s_{j}}}, ~~~s_{j}=p^{j}\sum\limits_{k=1}^{j}\frac{k}{p^{k}}. \end{aligned}\end{equation} $ (3.15)

联立式$(3.12)$, $(3.14)$$(3.15)$, 可得

$ \begin{equation*}\begin{aligned}u(t, r)\geq(A(\frac{p-1}{p+1})^{2})^{\frac{1}{1-p}}t^{\frac{2}{1-p}}e^{p^{j}L(t, r)}, ~~~\forall(t, x)\in\Sigma, \end{aligned}\end{equation*} $

其中

$ \begin{equation*}\begin{aligned}L(t, r)&=\frac{1}{p-1}\log A(\frac{p-1}{p+1})^{2}+\log c_{0}-2\sum\limits_{k=1}^{\infty}\frac{k}{p^{k}}\log p+\frac{p+1}{p-1}\log t\\&-(1+k)\log(1+\log(1+r+t)). \end{aligned}\end{equation*} $

由于$0<k\leq\frac{2}{p-1}$, 故存在$(t_{0}, r_{0})\in\Sigma$, 使得$L(t_{0}, r_{0})>0$.于是当$j\rightarrow\infty$时, 有$u(t_{0}, x_{0})\rightarrow\infty. $与假设矛盾.由$L(t, r)>0$

$ \begin{equation*}\begin{aligned}\{A(\frac{p-1}{p+1})^{2}\}^{\frac{1}{p-1}}c_{0}\frac{1}{p^{2\sum\limits_{k=1}^{\infty}\frac{k}{p^{k}}}}\frac{t^{\frac{p+1}{p-1}}}{(1+\log(1+r+t))^{1+k}}>1. \end{aligned}\end{equation*} $

固定$p$, 从而有

$ \begin{equation}\begin{aligned}C_{0}\varepsilon\frac{t^{\frac{p+1}{p-1}}}{(1+\log(1+r+t))^{1+k}}>1, \end{aligned}\end{equation} $ (3.16)

其中

$ \begin{equation*}\begin{aligned}C_{0}=\frac{1}{2}\{A(\frac{P-1}{P+1})^{2}\}^{\frac{1}{P-1}}\frac{1}{p^{2\sum\limits_{k=1}^{\infty}\frac{k}{p^{k}}}}. \end{aligned}\end{equation*} $

从而由式$(3.16)$可得$n=2$情形下生命区间的下界估计

$ \begin{equation}\begin{aligned}T^{*}\geq C_{0}\varepsilon^{\frac{p-1}{k(p-1)-2}}. \end{aligned}\end{equation} $ (3.17)

因此柯西问题$(1.1)$的解不会整体存在, 解的生命跨度由式$(3.11)$$(3.17)$给出.证毕.

参考文献
[1] John F. Blow-up of solutions of nonlinear wave equations in three space dimensions[J]. Manuscripta Math., 1979, 28(1-3): 235–268. DOI:10.1007/BF01647974
[2] John F. Nonlinear wave equations, formations of singularities[J]. American Mathematical Society, 1990, 2: 64.
[3] Glassey R T. Finite-time blow-up for solutions of nonlinear wave equations[J]. Mathematische Zeitschrift, 1981, 177(3): 323–340.
[4] Glassey R T. Existence in the large for □u=F(u) in two space dimensions[J]. Mathematische Zeitschrift, 1981, 178(2): 233–261.
[5] Schaeffer J. The equation uttu=|u|p for the critical value of P[J]. Proceedings of the Royal Society of Edinburgh, 1985, 101(1-2): 31–44. DOI:10.1017/S0308210500026135
[6] Sideris T C. Nonexistence of global solutions to semilinear wave equations in high dimensions[J]. Journal of Differential Equations, 1984, 52(2): 378–406.
[7] Geoegiev V, Lindblad H, Sogge C D. Weighted strichartz estimates and global existence for semilinear wave equations[J]. American Journal of Mathematics, 1997, 119(6): 1291–1319. DOI:10.1353/ajm.1997.0038
[8] Yordanov O B, Zhang Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231(2): 361–374. DOI:10.1016/j.jfa.2005.03.012
[9] Zhou Y. Blow up of solutions to semilinear wave equations with critical exponent in high dimensions[J]. Chinese Annals of Mathematicals (Series B), 2007, 28(2): 205–212.
[10] Zhou Y, Han W. Life-span of solutions to critical semilinear wave equations[J]. Communications in Partial Differential Equations, 2014, 39(3): 439–451.
[11] Ramaha M, Takamura H, Uesaka H. Blow-up of positive solutions to wave equations in high space dimensions[J]. Differential and Integral Equations, 2016, 29(1-2): 1–18.
[12] Asakura F. Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimnensions[J]. Communications in Partial Differential Equations, 1986, 11(13): 1459–1487. DOI:10.1080/03605308608820470
[13] Tsutaya K. Global existence and the life span of solutions of semilinear wave equtions with data of non compact support in three space dimensions[J]. Funkcialaj Ekvacioj, 1994, 37(1): 1–18.
[14] Tsutaya K. Global existence theorem for semilinear wave equations with non compact data in two space dimensions[J]. Journal of Differential Equations, 1993, 104(2): 332–360. DOI:10.1006/jdeq.1993.1076
[15] Kong D X, Liu Q. Hyperbolic Yamabe problem[J]. Applied Mathematics:A Journal of Chinese Universities, 2017, 32(2): 147–163. DOI:10.1007/s11766-017-3422-7
[16] Kubota K. Existence of a global solutions to a semi-linear wave equation with initial data of noncompact support in low space dimensions[J]. Hokkaido Mathematical Journal, 1993, 22(2): 123–180. DOI:10.14492/hokmj/1381413170