数学杂志  2020, Vol. 40 Issue (1): 1-6   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LIU Jun-li
XU Qiu-li
JIANG Wei
LEONARD PAIRS CONSTRUCTED FROM THE QUANTUM ALGEBRA νq(sl2)
LIU Jun-li, XU Qiu-li, JIANG Wei    
College of Science, Langfang Normal University, Langfang 065000, China
Abstract: In this paper, we study the construction of Leonard pairs. By using the finite dimensional irreducible representations of quantum algebra νq(sl2), we get Leonard pairs, and give the classification of Leonard pairs, which provide more help in studying Leonard triples.
Keywords: Leonard pair     quantum algebra     irreducible representation     split basis    
勒纳德对与量子代数νq(sl2)
刘军丽, 徐秋丽, 姜伟    
廊坊师范学院理学院, 河北 廊坊 065000
摘要:本文研究了勒纳德对的构造问题.利用量子代数νqsl2)的有限维既约表示,获得了一系列的勒纳德对,并讨论了它们的分类.为进一步研究勒纳德三元组提供了帮助.
关键词勒纳德对    量子代数    既约表示    分裂基    
1 Introduction

Leonard pairs were introduced by Terwilliger in [1], which gave some examples to illustrate how Leonard pairs arise in representation theory, combinatorics, and the theory of orthogonal polynomials. Because these polynomials frequently arise in connection with the finite-dimensional representations of good Lie algebras and quantum groups, it is natural to find Leonard pairs associated with these algebraic objects. Leonard pairs of Krawtchouk type have been described in [2] using split basis and normalized semisimple generators of sl2. Leonard pairs of q-Krawtchouk type have been described in [3] using split basis of Uq(sl2). Recently, Alnajjar and Curtin in [4] gave general construction of Leonard pairs of Racah, Hahn, dual Hahn and Krawtchouk type using equitable basis of sl2. Alnajjar in [5, 6] gave general construction of Leonard pairs of q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, and affine q-Krawtchouk type using equitable generators of Uq(sl2). The Leonard pairs and Leonard triples of q-Racah type from the quantum algebra Uq(sl2) were also discussed by Hou in [7] and [8]. Equitable presentations for Uq(sl2) were introduced in [9].

Given a Leonard pair it is often more natural to work with a split basis rather than a standard basis. In this paper, we illustrate this with an example based on the quantum algebra νq(sl2). Let M denote a finite-dimensional irreducible νq(sl2)-module and assume $\mathbb{A}$ (resp. $\mathbb{B}$) is an arbitrary linear combination of F, K (resp. EH-1, H-1). We give the necessary and sufficient conditions on the coefficients for $\mathbb{A}$, $\mathbb{B}$ to act on M as a Leonard pair.

The rest of this paper is organized as follows. In Section 2, we introduce some facts concerning the Leonard pairs. In Section 3, we recall some facts concerning irreducible finite-dimensional νq(sl2)-modules. In Section 4, we define two linear transformations $\mathbb{A}$ and $\mathbb{B}$ using the elements in νq(sl2) and describe their properties. At last, we characterize when the pair $\mathbb{A}$, $\mathbb{B}$ is a Leonard pair.

2 Leonard Pairs

In this section, we will recall the definitions and some related facts concerning Leonard pairs, for more details about the Leonard pairs can be found in [3]. Throughout this paper $\mathcal{F}$ denotes an algebraically closed field. Fix a nonzero scalar q$\mathcal{F}$ which is not a root of unity. Md+1($\mathcal{F}$) denote the $\mathcal{F}$-algebra consisting of all (d+1) by (d+1) matrices having rows and columns indexed by 0, 1, 2, ..., d for a nonnegative integer d.

Let V denote a $\mathcal{F}$-vector space of dimension d+1. Let End(V) denote the $\mathcal{F}$-algebra consisting of all linear transformations from V to V. Let {vi}i=0d denote a basis for V. For $\mathbb{A}$ ∈ End(V) and XMd+1($\mathcal{F}$), we say X represents $\mathbb{A}$ with respect to {vi}i=0d whenever $\mathbb{A}$${v_j} = \sum\limits_{i = 0}^d {{X_{ij}}{v_i}} $for 0≤jd, where Xij is the element in the matrix X.

A square matrix is said to be tridiagonal if each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal. A tridiagonal matrix is said to be irreducible if each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero. We now define a Leonard pair.

Definition 2.1   Let V be a vector space over $\mathcal{F}$ with finite positive dimension. A Leonard pair on V is an ordered pair of linear transformations $\mathbb{A}$:VV and $\mathbb{A}$*:VV that satisfy both the conditions below.

(1) There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A* is irreducible tridiagonal.

(2) There exists a basis for V with respect to which the matrix representing A* is diagonal and the matrix representing A is irreducible tridiagonal.

There are so many examples of Leonard pairs which arise in representation theory, combinatorics, and the theory of orthogonal polynomials, for details can be found in [3].

Given a Leonard pair $\mathbb{A}$, $\mathbb{A}$*, it is natural to represent one of $\mathbb{A}$, $\mathbb{A}$* by an irreducible tridiagonal matrix and the other by a diagonal matrix. In order to distinguish the two representations, Terwilliger introduced the standard basis and split basis for this pair in [3]. A square matrix is said to be lower bidiagonal whenever every nonzero entry lies on either the diagonal or the subdiagonal. A lower bidiagonal is said to be irreducible lower bidiagonal whenever each entry on the subdiagonal is nonzero. A matrix is upper bidiagonal (resp. irreducible upper bidiagonal) whenever its transpose is lower bidiagonal (resp. irreducible lower bidiagonal).

Definition 2.2   Let V denote a vector space over $\mathcal{F}$ with finite positive dimension and let $\mathbb{A}$, $\mathbb{A}$* denote a Leonard pair on V. A standard basis for this pair is a basis for V with respect to which the matrix representing $\mathbb{A}$ is irreducible tridiagonal and the matrix representing $\mathbb{A}$* is diagonal.

Definition 2.3   Let V denote a vector space over $\mathcal{F}$ with finite positive dimension and let $\mathbb{A}$, $\mathbb{A}$* denote a Leonard pair on V. A split basis for this pair is a basis for V with respect to which the matrix representing $\mathbb{A}$ is irreducible lower bidiagonal and the matrix representing $\mathbb{A}$* is irreducible upper bidiagonal.

The following theorem in [3] provides a way to recognize a Leonard pair.

Theorem 2.4   (see [3]) Let V denote a vector space over $\mathcal{F}$ with finite positive dimension. Let $\mathbb{A}$ : VV and $\mathbb{B}$ : VV denote linear transformations. Let us assume there exists a basis for V with respect to which the matrices representing $\mathbb{A}$ and $\mathbb{B}$ have the following form.

$ A: \left( \begin{array}{ccccc} θ_0 & & & & \\ 1 & θ_1& & & \\ & 1 & θ_2 & & \\ & & \ddots & \ddots & \\ & & & 1 & θ_d \\ \end{array} \right)\hbox{, } B:\left( \begin{array}{ccccc} θ^*_0 &φ_1 & & & \\ & θ^*_1&φ_2 & & \\ & & θ^*_2 & \ddots & \\ & & & \ddots & φ_3 \\ & & & & θ^*_d \\ \end{array} \right) $ (2.1)

Then the pair $\mathbb{A}$, $\mathbb{B}$ is a Leonard pair on V if and only if there exist scalars ϕi (1≤id) in $\mathcal{F}$ such that conditions (i)-(v) hold below.

(i) φi≠ 0, ϕi≠ 0, 1≤id;

(ii) θiθj, θi*θj* if ij, 0≤i, jd;

(iii) ${\varphi _i} = {\phi _1}\sum\limits_{h = 0}^{i - 1} {\frac{{{\theta _h} - {\theta _{d - h}}}}{{{\theta _0} - {\theta _d}}}} + \left( {\theta _i^ * - \theta _0^ * } \right)\left( {{\theta _{i - 1}} - {\theta _d}} \right), 1 \le i \le d;$

(iv) ${\phi _i} = {\varphi _1}\sum\limits_{h = 0}^{i - 1} {\frac{{{\theta _h} - {\theta _{d - h}}}}{{{\theta _0} - {\theta _d}}}} + \left( {\theta _i^ * - \theta _0^ * } \right)\left( {{\theta _{d - i + 1}} - {\theta _0}} \right), 1 \le i \le d;$

(v) The expressions $\frac{{{\theta _i}_{ - 2} - {\theta _{i + 1}}}}{{{\theta _i}_{ - 1} - {\theta _i}}}$, $\frac{{\theta _{i - 2}^ * - \theta _{i + 1}^ * }}{{\theta _{i - 1}^ * - \theta _i^ * }}$ are equal and independent of i for 2≤id-1. In the rest of this paper, we will use the theorem to get Leonard pairs.

3 νq(sl2)-Modules

In this section, we recall some facts concerning irreducible finite-dimensional νq(sl2)-modules in [10].

Definition 3.1   The quantum algebra νq(sl2) is defined as the associative algebra (with 1 and over $\mathcal{F}$) with the generators E, F, K, K-1, H, H-1 and the following relations

$ \begin{eqnarray*} KK^{-1} = HH^{-1}= 1=K^{-1}K =H^{-1}H, KH =H K, \\ K E K^{-1} =q^2E, H E H^{-1} =q^2E , \\ K F K ^{-1}=q^{-2}F , H F H^{-1} =q^{-2}F, \\ EF-q^{-2}FE= q^{-2}(KH-1). \end{eqnarray*} $

Lemma 3.2   Let t≥ 1 be an integer. Then we have the following formulas in νq(sl2),

$ \begin{align} & E{{F}^{t}}={{q}^{-2t}}{{F}^{t}}E+{{F}^{t-1}}[{{q}^{-4(t-1)}}{{(t)}_{q}}HK-{{(t)}_{{{q}^{-1}}}}]{{q}^{-2}}, \\ & F{{E}^{t}}={{q}^{2t}}{{E}^{t}}F+{{E}^{t-1}}[{{(t)}_{q}}-{{q}^{4(t-1)}}{{(t)}_{{{q}^{-1}}}}HK], \\ \end{align} $

where (t)q=1+q2+...+q2(t-1).

Lemma 3.3   Given an nonnegtative integer n and a, b$\mathcal{F}$ with ab=q2n. Let M be a n+1-dimensional vector space with basis {m0, m1, ..., mn}. We define the νq(sl2)-action on M as follows,

$ K{m_i} = a{q^{ - 2i}}{m_i}H{m_i} = b{q^{ - 2i}}{m_i}\;\;{\rm{for}}\;\;0 \le i \le n, $
$ E{m_i} = \left\{ {\begin{array}{*{20}{c}} {\left[ {q{ - ^{ - 4\left( {i - 1} \right)}}{{\left( i \right)}_q}ab - {{\left( i \right)}_{{q^{ - 1}}}}} \right]{q^{ - 2}}{m_{i - 1}}, {\rm{if}}\;\;0 < i < n, }\\ {0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;\;i = 0, } \end{array}} \right. $
$ F{m_i} = \left\{ {\begin{array}{*{20}{c}} {{m_{i + 1}}, \;\;\;{\rm{if}}\;\;0 \le i < n, }\\ {0, \;\;\;\;\;\;\;\;{\rm{if}}\;\;i = n.} \end{array}} \right. $

Then M becomes a νq(sl2)-module, we denote by M(n, a, b).

Theorem 3.4   Suppose that V is a finite dimensional irreducible νq(sl2)-module with dimension n+1, then V is isomorphic to M(n, a, b) for some a, b$\mathcal{F}$ with ab=q2n.

We will describe the construction of Leonard pairs from νq(sl2)-modules by using generators of νq(sl2) in the next section.

4 Leonard pairs from νq(sl2)

In this section, we define two linear transformations $\mathbb{A}$ and $\mathbb{B}$ of elements in νq(sl2) and characterize when the pair $\mathbb{A}$, $\mathbb{B}$ is a Leonard pair.

Definition 4.1   Referring to Definition 3.1 and Lemma 3.3, let α, β denote nonzero scalars in $\mathcal{F}$. Then define two linear transformations $\mathbb{A}$, $\mathbb{B}$ as follows.

$ \begin{equation}\label{eq5} \mathbb{A}=α F+\frac{a^{-1}K}{q^2-1}, \mathbb{B}=\frac{b}{q^2-1}β E H^{-1}+\frac{bH^{-1}}{q^2-1}. \end{equation} $ (4.1)

Now we give the main result in this paper.

Theorem 4.2   Let n be an nonnegative integer and a, b$\mathcal{F}$ with ab=q2n. Then the pair $\mathbb{A}$, $\mathbb{B}$ defined in (4.1) acts on M(n, a, b) as a Leonard pair provided αβ is not among q-2, q-4..., q-2n.

To prove the above theorem, we apply Theorem 2.4. Before do this, we first give some lemmas.

Lemma 4.3   There exists a basis for M(n, a, b) with respect to which the matrices representing $\mathbb{A}$, $\mathbb{B}$ have the form of(2.1).

Proof   We can obtain this basis by modifying the basis {m0, m1, ..., mn} given in Lemma 3.3. For 0≤in, we define ui=αi mi. We observe {u0, u1, ..., un} is a basis for M(n, a, b). The elements E, F, K, H act on this basis as follows.

$ \begin{array}{l} K{u_i} = a{q^{ - 2i}}{u_i}H{u_i} = b{q^{ - 2i}}{u_i}\;\;{\rm{for}}\;\;0 \le i \le n, \\ E{u_i} = \left\{ {\begin{array}{*{20}{c}} {\alpha \left[ {q{ - ^{ - 4\left( {i - 1} \right)}}{{\left( i \right)}_q}ab - {{\left( i \right)}_{{q^{ - 1}}}}} \right]{q^{ - 2}}{u_{i - 1}}, {\rm{if}}\;\;0 < i < n, }\\ {0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;\;i = 0, } \end{array}} \right.\\ F{u_i} = \left\{ {\begin{array}{*{20}{c}} {{\alpha ^{ - 1}}{u_{i + 1}}, \;\;\;{\rm{if}}\;\;0 \le i < n, }\\ {0, \;\;\;\;\;\;\;\;{\rm{if}}\;\;i = n.} \end{array}} \right. \end{array} $ (4.2)

Take ab=q2n into (4.2), we can get the coefficient of ui-1 as below.

$ \begin{eqnarray*} % \nonumber to remove numbering (before each equation) α [q^{-4(i-1)}(i)_qab-(i)_{q^{-1}}]q^{-2}&=& α [q^{-4(i-1)}(i)_qq^{2n}-(i)_{q^{-1}}]q^{-2} \\ &=& α q^{-2i} [q^{2n-2i+2}(i)_q-(i)_{q^{-1}}q^{2i-2}]\\ &=& α q^{-2i} (i)_q (n-i+1)_{q}(q^{2}-1) \end{eqnarray*} $

Using these comments we can get

$ \mathbb{A}{{u}_{i}}={{u}_{i+1}}+\frac{{{q}^{-2i}}}{{{q}^{2}}-1}{{u}_{i}}, \ \ \ \mathbb{B}{{u}_{i}}=\alpha \beta {{(i)}_{q}}{{(n-i+1)}_{q}}{{u}_{i-1}}+\frac{{{a}^{-1}}{{q}^{2i}}}{{{q}^{2}}-1}{{u}_{i}} $

where u-1=un+1=0. Thus, with respect to the basis {u0, u1, ..., un} the matrices representing $\mathbb{A}$, $\mathbb{B}$ are given in (2.1), where

$ \begin{eqnarray*} θ_i &=& \frac{q^{-2i}}{q^2-1}, \hbox{ }θ^*_i=\frac{q^{2i}}{q^2-1}\hbox{ }(0≤ i≤ n), \\ φ_i &=& αβ(i)_q(n-i+1)_q (0≤ i≤ n). \end{eqnarray*} $

Lemma 4.4   Referring to Lemma 4.3, the following two equations hold.

$ \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \frac{θ_{i-2}-θ_{i+1}}{θ_{i-1}-θ_i}&=& q^2+q^{-2}+1, \\ \\ \frac{θ_{i-2}^*-θ_{i+1}^*}{θ_{i-1}^*-θ_i^*} &=& q^2+q^{-2}+1. \end{eqnarray*} $

Proof   Immediate from Lemma 4.3 and a simple calculation.

Lemma 4.5   Referring to Lemma 4.3, the scalars θi also satisfy the following equation.

$ \begin{eqnarray}\label{eq2} % \nonumber to remove numbering (before each equation) \sum\limits_{h=0}^{i-1}\frac{θ_h-θ_{n-h}}{θ_0-θ_n}&=&\frac{(i)_q(n-i+1)_q}{(n)_q}. \end{eqnarray} $ (4.3)

Proof   Using the sum of the geometric progression, we have

$ \begin{equation}\label{equ} (q^2-1)(t)_q=q^{2t}-1. \end{equation} $ (4.4)

Then from (4.4), the equation (4.3) holds.

Proof of Theorem 4.1   Define ${{\phi }_{i}}={{(i)}_{q}}{{(n-i+1)}_{q}}(\alpha \beta -{{q}^{-2(n-i+1)}})$, 1≤ in. Let us assume αβ is not among q-2, q-4..., q-2n. Then the above scalars θi, θi*, φi, ϕi satisfy conditions (i)-(v) of Theorem 2.4 by Lemmas 4.3, 4.4 and 4.5.

Remark 1   Applying Theorem 2.4 we find the pair $\mathbb{A}$, $\mathbb{B}$ acts on M(n, a, b) as a Leonard pair. With respect to the basis {u0, u1, ..., un}, the matrix representing $\mathbb{A}$ (resp. $\mathbb{B}$) is irreducible lower bidiagonal (resp. irreducible upper bidiagonal). Therefore this basis is a split basis for $\mathbb{A}$, $\mathbb{B}$ in view of Definition 2.3.

Remark 2   By the classification of Leonard pairs in [11], those with $\frac{{{\theta }_{i-2}}-{{\theta }_{i+1}}}{{{\theta }_{i-1}}-{{\theta }_{i}}}={{q}^{2}}+{{q}^{-2}}+1$ are the families q-Racah, q-Hahn, dual q-Hahn, quantum q-Krawtchouk, affine q- Krawtchouk, q-Krawtchouk, or dual q-Krawtchouk, and since the pair $\mathbb{A}$, $\mathbb{A}$ has this property(see Lemma 4.4), it's easy to show that this pair is of quantum q-Krawtchouk type.

References
[1] Terwilliger P. The subconstituent algebra of an association scheme[J]. J. Algebraic Combin., 1992, 1: 363–388. DOI:10.1023/A:1022494701663
[2] Nomura K, Terwilliger P. Krawtchouk polynomials, the Lie algebra sl2, and Leonard pairs[J]. Linear Algebra Appl., 2012, 437: 345–375. DOI:10.1016/j.laa.2012.02.006
[3] Terwilliger P. Introduction to Leonard pairs[J]. J. Comput. Appl. Math., 2003, 153(2): 463–475.
[4] Alnajjar H, Curtin B. Leonard pairs from the equitable basis of sl2[J]. Electron. J. Linear Algebra, 2010, 20(8): 490–505.
[5] Alnajjar H. Leonard pairs from the equitable generators of Uq(sl2)[J]. Dirasat Pure Sci., 2010, 37(2): 31–35.
[6] Alnajjar H. Leonard pairs associated with the equitable generators of the quantum algebra Uq(sl2)[J]. Linear Multilin. Algebra, 2011, 59(10): 1127–1142. DOI:10.1080/03081087.2011.565757
[7] Hou B, Gao S. Leonard pairs and Leonard triples of q-Racah type from the quantum algebra Uq(sl2)[J]. Commun. Algebra, 2013, 41(10): 3762–3774. DOI:10.1080/00927872.2012.677082
[8] Sang M, Gao S, Hou B. Leonard pairs and quantum algebra Uq(sl2)[J]. Linear Algebra Appl., 2016, 510: 346–360. DOI:10.1016/j.laa.2016.08.034
[9] Ito T, Terwilliger P, Weng C W. The quantum algebra Uq(sl2) and its equitable presentation[J]. J. Algebra, 2006, 298: 284–301. DOI:10.1016/j.jalgebra.2005.07.038
[10] Li L, Wei J. Irreducible representations of quantum group νq(sl2)[J]. J. Math., 2001, 2: 155–160.
[11] Terwilliger P. Two linear transformations each tridiagonal with respect to an eigenbasis of the other, comments on the parameter array[J]. Des. Codes Cryptogr., 2005, 34: 307–332. DOI:10.1007/s10623-004-4862-7