寻求非线性偏微分方程的精确解一直是解决和研究非线性问题的关键.近年来, 精确解的求法不断涌现, 如Backlund变换法、Hirota变换法、变量分离法、反散射变换法等.最近, 王明亮等提出的$ (G'/G) $展开法[1-3], 即假设非线性偏微分方程的行波解可用$ (G'/G) $的多项式来表示, 且$ G $满足一类二阶线性常微分方程, 由此得到一个代数方程组, 将求解微分方程的问题转化为求此代数方程组的解.此方法不需要任何初始或边界条件, 可以简洁、有效地求解非线性偏微分方程.目前, 在此方法的基础上, 出现了许多扩展和改进, 这些改进主要是从将$ (G'/G) $展开法的正幂展开推广到正负幂展开[4]; 改变$ (G'/G) $的展开形式[5-7]; 改变函数$ G $满足的方程[8-10]等方面进行了延伸.本文也是以$ (G'/G) $展开法的基本思想为依据, 是将其展开形式改进为$ \left( {\frac{{G - G'}}{{G + G'}}} \right) $的形式, 并首次尝试将函数$ G $满足的常系数方程改进为一类二阶变系数的非线性方程, 以Burgers-KPP方程为例进行了求解, 得到了该方程的多个显式行波解.
Burgers-Kolmogorov-Petrovskii-Piscounov方程
其中$ \alpha , \;\beta , \lambda , \gamma , \delta $均为常数.该类方程是既包含耗散作用又包含频散作用的非线性演化方程, 它广泛应用于流体力学、热传导、理论物理等领域.当$ (\alpha , \;\beta , \lambda , \gamma , \delta ) $取不同参数时, 它囊括着许多著名的方程.例如广义KPP方程, Huxley方程, 广义Fisher方程, Burgers-Fisher方程, Fitzhugh-Nagumo方程, Newell-Whitehead方程等.文献[11]用Cole-Hopf变换法得到了该方程的孤子解, 并对解的渐进性质进行了论证; 通过tanh函数展开法, 该方程的单孤波解和周期波解由文献[12]得到; 文献[13]通过变系数辅助方程并结合齐次平衡法得到了该方程的行波解.
将非线性偏微分方程
作行波变换.令$ u\left( {x, t} \right) = u(\xi ) $, $ \xi = x - ct $, 其中$ c $表示波速, 是一常数, 则方程(2.1)化为
设方程(2.1)的解为
这里$ {a_i}(\xi ) $ $ \left( {i = 0, 1, 2, \cdots , l} \right) $为待定的函数, 参数$ l $可通过齐次平衡法确定, $ G = G(\xi ) $满足一类二阶变系数非线性常微分方程
其中$ p(\xi ), \;q(\xi ) $均为$ \xi $的任意函数.通过借助Mathematica符号计算软件, 可以得到方程(2.4)的解
其中$ {C_1}, {C_2} $为积分常数, 同时可得
将(2.3)式代入(2.2)式, 并结合(2.4)式, 合并$ {\left( {\frac{{G - G'}}{{G + G'}}} \right)} $的各同幂次项, 并令$ {\left( {\frac{{G - G'}}{{G + G'}}} \right)} $的各次幂的系数为零, 从中求出$ {a_i}(\xi ), \;p(\xi ), q(\xi ) $, 再将求得的$ p(\xi ), \;q(\xi ) $代入(2.5)式, 最后将得到的$ \left( {\frac{{G - G'}}{{G + G'}}} \right) $函数及$ {a_i}(\xi ) $代回到(2.3)式, 即得到方程(2.1)的解.
对方程(1.1)作行波变换.令$ u = u(\xi ) = u(x - ct) $, 从而化为
设方程(1.1)的解能够表示成多项式$ u(\xi ) = \sum\limits_{i = 0}^l {{a_i}(\xi ){{\left( {\frac{{G - G'}}{{G + G'}}} \right)}^i}} $, 且$ G = G(\xi ) $满足一类二阶变系数非线性常微分方程
其中$ p(\xi ), \;q(\xi ) $均为$ \xi $的任意函数.利用齐次平衡法, 有$ 3l = l + 2 $, 得$ l = 1 $.则方程(1.1)的解表示为
由方程(2.4)和(3.2)式可得
将上面的$ u $及其各阶导数代入(3.1)式, 合并$ {\left( {\frac{{G - G'}}{{G + G'}}} \right)} $的同幂次项并比较方程两端的系数, 化简可得
由(3.3)和(3.4)式, 可求得
现令$ p(\xi ) = q(\xi ) + f(\xi ) + {k_1}\xi + {k_2} $, 其中$ f(\xi ) $为$ \xi $的任意函数, $ {k_1}, {k_2} $为任意常数, 将其与(3.7)、(3.8)式代入(3.5)式, 借助Mathematica符号计算软件, 得到.若
则有以下情况
(1) 当$ \Delta> 0 $时, 有
其中$ {C_1} $为积分常数, $ R = \pm \frac{{\beta \sqrt \Delta }}{{({\lambda ^2} + 9\alpha \beta )}} $.
(2) 当$ \Delta < 0 $且$ {C_1} = 0 $时, 有
其中$ R = \pm \frac{{\beta \sqrt { - \Delta } }}{{({\lambda ^2} + 9\alpha \beta )}} $.
将上述得到的(3.7)–(3.13)式代入(3.6)式中, 得到了以下几种情况.
(1) $ c = - \frac{{\gamma \lambda }}{3} $, $ \delta = \frac{{2{\gamma ^2}}}{9} $, 则此时$ \Delta = - 2\alpha \beta + \frac{1}{2}\lambda ( - \lambda \pm \sqrt {{\lambda ^2} + 8\alpha \beta } ) $, 有
① 当$ \Delta > 0 $时, 则$ R = \pm \frac{{\gamma \sqrt \Delta }}{{3\alpha }} $, 结合(3.10)、(3.11)式, 代入(3.7)、(3.8)和(2.5)式, 可得
其中$ {C_1}, {C_2} $为积分常数.再将(3.14)–(3.16)式代入(3.2)式, 则得到了方程(1.1)的解
② 当$ \Delta < 0 $且$ {C_1} = 0 $时, 则$ R = \pm \frac{{\gamma \sqrt { - \Delta } }}{{3\alpha }} $, 结合(3.12)、(3.13)式, 代入(3.7)、(3.8)和(2.5)式, 可得
其中$ {C_2} $为积分常数.再将(3.17)–(3.19)式代入(3.2)式, 则得到了方程(1.1)的解
(2) $ c = \frac{\gamma }{4}( - \lambda + \sqrt {{\lambda ^2} + 8\alpha \beta } ) $, $ \delta = \frac{{{\gamma ^2}(8\alpha \beta (36\alpha \beta + 5{\lambda ^2}) - 2\lambda (6\alpha \beta + {\lambda ^2})( - \lambda + \sqrt {{\lambda ^2} + 8\alpha \beta } ))}}{{16{{({\lambda ^2} + 9\alpha \beta )}^2}}} $, 则此时$ \Delta = - 18\alpha \beta - \frac{1}{2}\lambda (5\lambda + 3\sqrt {{\lambda ^2} + 8\alpha \beta } ) $, 有
① 当$ \Delta > 0 $时, 则$ R = \pm \frac{{\beta \gamma \sqrt \Delta }}{{2({\lambda ^2} + 9\alpha \beta )}} $, 结合(3.10)、(3.11)式, 代入(3.7)、(3.8)和(2.5)式, 可得
其中$ {C_1}, {C_2} $为积分常数.再将(3.20)–(3.22)式代入(3.2)式, 则得到了方程(1.1)的解
② 当$ \Delta < 0 $, 且$ {C_1} = 0 $时, 则$ R = \pm \frac{{\beta \gamma \sqrt { - \Delta } }}{{2({\lambda ^2} + 9\alpha \beta )}} $, 结合(3.12)、(3.13)式, 代入(3.7)、(3.8)和(2.5)式可得
其中$ {C_2} $为积分常数.再将(3.23)–(3.25)式代入(3.2)式, 则得到了方程(1.1)的解
(3) $ c = \frac{\gamma }{4}( - \lambda - \sqrt {{\lambda ^2} + 8\alpha \beta } ) $, $ \delta = \frac{{{\gamma ^2}(8\alpha \beta (36\alpha \beta + 5{\lambda ^2}) - 2\lambda (6\alpha \beta + {\lambda ^2})( - \lambda - \sqrt {{\lambda ^2} + 8\alpha \beta } ))}}{{16{{({\lambda ^2} + 9\alpha \beta )}^2}}} $, 则此时$ \Delta = - 18\alpha \beta + \frac{1}{2}\lambda ( - 5\lambda + 3\sqrt {{\lambda ^2} + 8\alpha \beta } ) $, 有
其中$ {C_1}, {C_2} $为积分常数.再将(3.26)–(3.28)式代入(3.2)式, 则得到了方程(1.1)的解
② 当$ \Delta < 0 $, 且$ {C_1} = 0 $时, 则$ R = \pm \frac{{\beta \gamma \sqrt { - \Delta } }}{{2({\lambda ^2} + 9\alpha \beta )}} $, 结合(3.12)、(3.13)式, 代入(3.7)、(3.8)和(2.5)式, 可得
其中$ {C_2} $为积分常数.再将(3.29)–(3.31)式代入(3.2)式, 则得到了方程(1.1)的解
本文构造了一种满足一类二阶非线性变系数常微分方程的$ \left( {\frac{{G - G'}}{{G + G'}}} \right) $展开法.通过此展开法, 并结合齐次平衡法和Mathematica符号计算软件, 求得了Burgers-KPP方程多个新的三角函数形式和双曲函数形式的显式行波解, 扩大了该类方程的解的范围, 同时也验证了该展开法对于求解非线性偏微分方程的精确解是简单有效的.