数学杂志  2019, Vol. 39 Issue (6): 878-888   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
杨秀桃
杨善朝
α混合样本下积分权回归估计的强相合性
杨秀桃1,2, 杨善朝2    
1. 海口经济学院网络学院应用数学教研室, 海南 海口 571127;
2. 广西师范大学数学与统计学院应用统计教研室, 广西 桂林 541004
摘要:本文在α混合样本下研究Gasser和Müller提出的一类积分权非参数核回归估计的大样本性质.利用α混合序列的概率指数不等式和矩不等式,在较弱的条件下获得了积分权回归函数估计的强相合性与一致强相合性,推广了独立样本下该回归函数估计的相合性结果.
关键词α混合样本    积分权回归估计    强相合性    一致强相合性    
STRONG CONSISTENCY OF INTERGRAL WEIGHT REGRESSION ESTIMATOR FOR α-MIXING SAMPLES
YANG Xiu-tao1,2, YANG Shan-chao2    
1. Teaching and Research Department of Applied Mathematics, Faculty of Network Science, Haikou University of Economics, Haikou 571127, China;
2. Department of Applied Statistics, College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China
Abstract: This paper is to study the large sample properties of a class of integral weight nonparametric kernel regression estimators proposed by Gasser and Müller under α mixing samples. By using the probability exponential inequality and the moment inequality of α mixing sequences, the strong consistency and uniform strong consistency of the integral weight regression function estimator are obtained under weaker conditions, which extend the relevant conclusions of the regression function estimator under independent samples.
Keywords: α-mixing samples     integral weight regression estimator     strong consistency     uniformly strong consistency    
1 引言

$ \mathbf{N} $为自然数集, $ \{X_{i};i\in \mathbf{N}\} $是概率空间$ (\Omega, \mathcal{A}, P) $上的随机变量序列.

定义1.1   对随机变量序列$ \{X_{n};n\geq1\} $, 如果当$ n\rightarrow\infty $时,

$ \alpha(n) = \sup\limits_{k\geq 1}\sup\limits_{\mathcal{A}\in\mathcal{F}_{1}^{k}, \mathcal{B}\in\mathcal{F}_{k+n}^{\infty}} \big|P(\mathcal{A}\mathcal{B})-P(\mathcal{A})P(\mathcal{B})\big|\rightarrow 0, $

其中$ \sigma $$ \mathcal{F}_{1}^{k} = \sigma(X_{j};1\leq j\leq k), \mathcal{F}_{k+n}^{\infty} = \sigma(X_{j};j\geq k+n) $, 则称$ \{X_{n};n\geq 1\} $$ \alpha $混合的.

$ Y_{1}, Y_{2}, \cdots, Y_{n} $是固定点$ x_{1}, x_{2}, \cdots, x_{n} $$ n $个观察值, 适合回归模型

$ \begin{equation} Y_{i} = g(x_{i})+\varepsilon_{i}, i = 1, 2, \cdots, n, \end{equation} $ (1.1)

其中回归函数$ g(x) $是[0, 1]上的未知函数, 且当$ x\notin[0, 1] $时, 令$ g(x) = 0 $, $ \{\varepsilon_{i}\} $是随机误差序列.

假定$ 0 = x_{0}\leq x_{1}\leq\cdots\leq x_{n-1}\leq x_{n} = 1 $.考虑Gasser和Müller[1]对回归函数$ g(x) $提出的一种积分权核估计

$ \begin{equation} g_{n}(x) = {h_{n}^{-1}}\sum\limits_{i = 1}^{n}Y_{i}\int_{x_{i-1}}^{x_{i}}K(\frac{x-s}{h_{n}})\mathrm{d} s, \end{equation} $ (1.2)

其中核函数$ K(u) $$ \mathcal{R}^{1} $上可测函数, 且当$ n\rightarrow \infty $时, $ 0<h_{n}\rightarrow 0 $.

$ \alpha $混合序列是一类重要的非独立序列, 引起了诸多学者的关注.在$ \alpha $混合序列下, 文献[2]研究了回归加权核估计的强大数律; 文献[3]研究了一般回归加权函数估计的一致渐近正态性; 文献[4]研究了核型分位数估计的渐近正态性; 文献[5]讨论了风险度量ES非参数估计部分和的渐近正态性; 文献[6]讨论了回归加权核估计的强相合性.讨论研究该混合序列背景下的非参数估计的大样本极限性质可更好地为进一步的实证研究提供理论基础.不少文献(如[7-15])讨论了在独立情形与混合相依情形下Priestley-Chao加权核回归估计的完全收敛性和强相合性, 获得了很好的结果.早期, 对于文献[1]中Gasser和Müller提出的一种积分权核估计(1.2), 文献[16-18]研究了独立序列情形下估计(1.2)的完全收敛性、渐近正态性等大样本性质.另外, 文献[19-21]给出了研究$ \alpha $混合随机变量序列大样本性质所需的部分和、加权和的不等式工具.较少文献在$ \alpha $混合序列背景下研究估计(1.2)的大样本极限性质.本文则在$ \alpha $混合样本下给出回归函数核估计(1.2)的强相合性与一致强相合性结论.利用文献[21]的指数不等式, 在较弱的条件下, 本文得到较理想的收敛结论.由于在$ \alpha $混合样本下研究具体的统计估计问题还是比较少, 因此本文的研究是有意义的.

$ \tilde{\delta_{i}} = x_{i}-x_{i-1}, \delta_{n} = \max\limits_{1\leq i\leq n}(x_{i}-x_{i-1}) $, 本文用$ C $表示与$ n $无关的大于0常数, $ \|x\|_{r} = (E|x|^{r})^{1/r} $, 且$ [x] $表示不超过$ x $的最大整数, 并使用如下基本条件

(a) $ \int_{-\infty}^{+\infty}K(u)\mathrm{d} u = 1, \int_{-\infty}^{+\infty}|K(u)|\mathrm{d} u<\infty $, $ K(\cdot) $$ \mathcal{R}^{1} $上有界, $ K(\cdot) $$ \mathcal{R}^{1} $上满足$ \beta(\beta>0) $阶Lipschitz条件, 即$ \forall x, y\in\mathcal{R}^{1} $, 有$ |K(x)-K(y)|\leq C|x-y|^{\beta} $;

(b) $ g(\cdot) $在[0, 1]上一致连续;

(c) 当$ n\rightarrow\infty $时, $ h_{n}\rightarrow 0, \delta_{n}\rightarrow 0 $.

定理1.2   设基本条件(a)–(c)成立.又假设(ⅰ) $ E\varepsilon_{i} = 0, i = 1, 2, \cdots, n $, 且$ |\varepsilon_{i}|\leq b $ a.s.; (ⅱ) $ \{\varepsilon_{i}\} $$ \alpha $混合相依, 且$ \alpha(n) = O(n^{-\lambda}) $, 其中$ \lambda>1 $; (ⅲ)当$ n\rightarrow\infty $时,

$ \begin{equation} \frac{\delta_{n}}{h_{n}} = O(n^{-s}), s>0. \end{equation} $ (1.3)

(1) 若

$ \begin{equation} \lambda>\frac{2}{s}-1, \end{equation} $ (1.4)

则有$ \lim\limits_{n\rightarrow\infty}g_{n}(x) = g(x) $ a.s., $ x\in(0, 1); $

(2) 若存在$ d>0 $使得$ n^{d}h_{n}\rightarrow\infty $以及

$ \begin{equation} \lambda>\frac{d(1+\beta)/\beta+2}{s}-1, \end{equation} $ (1.5)

则对任给的$ 0<\tau<1/2 $, 都有$ \lim\limits_{n\rightarrow\infty}\sup\limits_{x\in[\tau, 1-\tau]}|g_{n}(x)-g(x)| = 0 $ a.s..

  定理1.2给出了$ \alpha $混合相依序列有界情形下, 估计(1.2)的强相合与一致强相合性.

下面的定理1.3是在该序列无界条件下得到该估计的强相合与一致强相合性.

定理1.3   设基本条件(a)–(c)成立.又假设(ⅰ) $ E\varepsilon_{i} = 0, i = 1, 2, \cdots, n $, 且$ \sup \limits_{i} E|\varepsilon_{i}|^{r}<\infty $, 其中$ r>2 $; (ⅱ) $ \{\varepsilon_{i}\} $$ \alpha $混合相依, 且$ \alpha(n) = O(n^{-\lambda}) $, 其中$ \lambda>r/(r-2) $; (ⅲ)当$ n\rightarrow\infty $时,

$ \begin{equation} \frac{\delta_{n}}{h_{n}} = O(n^{-s}), \frac{1}{r}<s\leq 1. \end{equation} $ (1.6)

(1) 若

$ \begin{equation} \lambda>\frac{2}{s-1/r}-1, \end{equation} $ (1.7)

则有$ \lim\limits_{n\rightarrow\infty}g_{n}(x) = g(x) $ a.s. $ \; x\in(0, 1); $

(2) 若存在$ d>0 $使得$ n^{d}h_{n}\rightarrow\infty $以及

$ \begin{equation} \lambda>\frac{2+1/(r\beta)+d(1+\beta)/\beta}{s-1/r}-1, \end{equation} $ (1.8)

则对任给的$ 0<\tau<1/2 $, 有$ \lim\limits_{n\rightarrow\infty}\sup\limits_{x\in[\tau, 1-\tau]}|g_{n}(x)-g(x)| = 0 $ a.s..

2 引理

为了证明定理的结论, 本节给出一些引理.

引理2.1[19]  若$ \{X_{i};i\geq1\} $是零均值的$ \alpha $混合随机变量序列, 且$ \{a_{i};i\geq1\} $是实数列.

(ⅰ)如果$ E|X_{i}|^{2+\delta}<\infty $, 这里$ \delta> 0 $, 则

$ \begin{equation} E(|\sum\limits_{i = 1}^{n}a_{i}X_{i}|^{2}) \leq (1+20\sum\limits_{m = 1}^{n}\alpha^{\frac{\delta}{2+\delta}}(m))\sum\limits_{i = 1}^{n}a_{i}^{2}\|X_{i}\|_{2+\delta}^{2}; \end{equation} $ (2.1)

(ⅱ)如果$ |X_{i}|<b_{i} $ a.s., 则

$ \begin{equation} E ( |\sum\limits_{i = 1}^{n}a_{i}X_{i} |^{2} ) \leq (1+8\sum\limits_{m = 1}^{n}\alpha(m) )\sum\limits_{i = 1}^{n}a_{i}^{2}b_{i}^{2}. \end{equation} $ (2.2)

引理2.2[21]  令$ \{X_{i};i\geq1\} $是零均值的$ \alpha $混合随机变量序列, 且$ |X_{i}|\leq b<\infty $ a.s., 进一步假定正整数$ k_{n} $满足$ 1\leq k_{n}\leq n/2 $.则对任意的$ \epsilon>0 $, 有

$ \begin{equation} P ( |\sum\limits_{i = 1}^{n}X_{i} |>n\epsilon ) \leq 4\exp (-\frac{n\epsilon^{2}}{12(3\sigma_{n}^{2}+bk_{n}\epsilon)} )+36b\epsilon^{-1}\alpha(k_{n}), \end{equation} $ (2.3)

其中$ \sigma_{n}^{2} = n^{-1}\sum\limits_{j = 1}^{2m_{n}+1}E|U_{j}|^{2}, \; m_{n} = [\frac{n}{2k_{n}}], U_{j} = \sum\limits_{(j-1)k_{n}<i\leq jk_{n}}\; \; X_{i}\; (j = 1, 2, \cdots, 2m_{n}) $, 和$ U_{2m_{n}+1} = \sum\limits_{i = 2m_{n}k_{n}+1}^{n}X_{i} $.

引理2.3   设$ g(x) $在[0, 1]上一致连续, $ \int_{-\infty}^{+\infty}K(u)\mathrm{d}u = 1, \int_{-\infty}^{+\infty}|K(u)\mathrm{d}u<\infty $.如果$ h_n\to 0 $$ \delta_n\to 0 $, 则

$ \begin{equation} \lim\limits_{n\rightarrow\infty}Eg_{n}(x) = g(x), \quad x\in(0, 1). \end{equation} $ (2.4)

对任给的$ 0<\tau<1/2 $, 有

$ \begin{equation} \lim\limits_{n\rightarrow\infty}\sup\limits_{x\in[\tau, 1-\tau]}|Eg_{n}(x)-g(x)| = 0. \end{equation} $ (2.5)

  由(1.1)和(1.2)式, 有

$ \begin{align} Eg_{n}(x)-g(x) = E [h_{n}^{-1}\sum\limits_{i = 1}^{n}Y_{i}\int_{x_{i-1}}^{x_{i}}K (\frac{x-s}{h_{n}} )\mathrm{d}s ]-g(x)\\ = E [h_{n}^{-1}\sum\limits_{i = 1}^{n}(g(x_{i})+\varepsilon_{i})\int_{x_{i-1}}^{x_{i}}K (\frac{x-s}{h_{n}} )\mathrm{d}s ]-g(x)\\ = h_{n}^{-1}\sum\limits_{i = 1}^{n}g(x_{i})\int_{x_{i-1}}^{x_{i}}K (\frac{x-s}{h_{n}} )\mathrm{d}s-g(x). \end{align} $ (2.6)

从而

$ \begin{align} Eg_{n}(x)-g(x) = & [h_{n}^{-1}\sum\limits_{i = 1}^{n}\int_{x_{i-1}}^{x_{i}}g(x_{i})K (\frac{x-s}{h_{n}} )\mathrm{d}s -h_{n}^{-1}\sum\limits_{i = 1}^{n}\int_{x_{i-1}}^{x_{i}}g(s)K (\frac{x-s}{h_{n}} )\mathrm{d}s ]\\ &+ [h_{n}^{-1}\sum\limits_{i = 1}^{n}\int_{x_{i-1}}^{x_{i}}g(s)K (\frac{x-s}{h_{n}} )\mathrm{d}s-g(x) ]\\ : = &I_{n1}(x)+I_{n2}(x). \end{align} $ (2.7)

要证明(2.4)式, 只需分别证明:对$ x\in(0, 1) $, $ I_{n1}(x)\to 0 $$ I_{n2}(x)\to 0 $.记$ B_1 = \int_{-\infty}^{+\infty}|K(u)|\mathrm{d}u<\infty $, 令$ u = \frac{x-s}{h_{n}} $.由$ g(\cdot) $在[0, 1]上一致连续知, $ \forall\varepsilon>0 $, 当$ n $充分大时, 有

$ \begin{align} |I_{n1}(x)|&\leq h_{n}^{-1}\sum\limits_{i = 1}^{n}\int_{x_{i-1}}^{x_{i}}|g(x_{i})-g(s)| |K(\frac{x-s}{h_{n}}) |\mathrm{d} s\\ &\leq \frac{\varepsilon}{2B_1} h_{n}^{-1}\sum\limits_{i = 1}^{n}\int_{x_{i-1}}^{x_{i}} |K(\frac{x-s}{h_{n}}) |\mathrm{d} s\\ & = \frac{\varepsilon}{2B_1} h_{n}^{-1}\int_{0}^{1} |K(\frac{x-s}{h_{n}}) |\mathrm{d} s = \frac{\varepsilon}{2B_1}\int^{x/h_n}_{(x-1)/h_n}|K(u)|\mathrm{d}u\\ &\leq \frac{\varepsilon}{2}. \end{align} $ (2.8)

所以$ I_{n1}(x)\to 0 $.另一方面, 由条件$ \int_{-\infty}^{+\infty}K(u)\mathrm{d}u = 1 $, 有

$ \begin{align} I_{n2}(x) = &h_{n}^{-1}\int_{0}^{1}g(s)K(\frac{x-s}{h_{n}})\mathrm{d}s-g(x) = \int^{x/h_n}_{(x-1)/h_n}g(x-uh_n)K(u)\mathrm{d}u-g(x)\int_{-\infty}^{+\infty}K(u)\mathrm{d}u\\ = &\int^{x/h_n}_{(x-1)/h_n}[g(x-uh_n)-g(x)]K(u)\mathrm{d}u -g(x)\int_{-\infty}^{(x-1)/h_n}K(u)\mathrm{d}u-g(x)\int_{x/h_n}^{\infty}K(u)\mathrm{d}u. \end{align} $ (2.9)

$ n $充分大时, 由条件$ \int_{-\infty}^{+\infty}|K(u)|\mathrm{d}u<\infty, h_n\to 0 $, 知

$ \begin{equation} \int^{(x-1)/h_n}_{-\infty}|K(u)|\mathrm{d}u\to 0, \ \ \int^{\infty}_{x/h_n}|K(u)|\mathrm{d}u\to 0. \end{equation} $ (2.10)

注意到$ g(x) $在[0, 1]上有界, 记$ B_2 = \sup\limits_{x\in[0, 1]}|g(x)| $, 取$ \delta>0 $, 可有

$ \begin{align} \label{eq:19} &\left|\int^{x/h_n}_{(x-1)/h_n}[g(x-uh_n)-g(x)]K(u)\mathrm{d}u \right| \leq\int_{(x-1)/h_n}^{x/h_n}|K(u)|\cdot|g(x-uh_{n})-g(x)|\mathrm{d}u\\ \leq&\int_{|u|<\delta/h_n}|K(u)|\cdot|g(x-uh_{n})-g(x)|\mathrm{d}u +\int_{|u|\geq\delta/h_n}|K(u)|\cdot|g(x-uh_{n})-g(x)|\mathrm{d}u\\ \leq& B_1\sup\limits_{|u|<\delta/h_n} |g(x-uh_{n})-g(x)|+2B_2\int_{|u|\geq\delta/h_n}|K(u)|\mathrm{d}u. \end{align} $ (2.11)

$ g(x) $$ x $处连续以及$ \int_{-\infty}^{+\infty}|K(u)|\mathrm{d}u<\infty $知, $ \forall\varepsilon>0 $, 当$ n $充分大时, 有

$ \begin{equation} |\int^{x/h_n}_{(x-1)/h_n}[g(x-uh_n)-g(x)]K(u)\mathrm{d}u |<\varepsilon. \end{equation} $ (2.12)

$ \begin{equation} \int^{x/h_n}_{(x-1)/h_n}[g(x-uh_n)-g(x)]K(u)\mathrm{d}u\to 0. \end{equation} $ (2.13)

由(2.9), (2.10)和(2.13)式知, $ I_{n2}(x)\to 0 $.从而(2.4)式成立.由于$ g(x) $有界, 所以上述证明过程对(2.5)式也成立.证毕.

引理2.4   设$ \int_{-\infty}^{+\infty}|K(u)|\mathrm{d}u<\infty $$ h_n\to 0 $, 则对任意的$ x\in(0, 1) $, 有

$ \begin{equation} \lim\limits_{n\rightarrow\infty} h_{n}^{-1}\sum\limits_{i = 1}^{n}\int_{x_{i-1}}^{x_{i}} |K (\frac{x-s}{h_{n}} ) |\mathrm{d} s = \int_{-\infty}^{+\infty}|K(u)|\mathrm{d}u. \end{equation} $ (2.14)

而对任给的$ 0<\tau<1/2 $, 有

$ \begin{equation} \lim\limits_{n\rightarrow\infty}\sup\limits_{x\in[\tau, 1-\tau]} h_{n}^{-1}\sum\limits_{i = 1}^{n}\int_{x_{i-1}}^{x_{i}} |K (\frac{x-s}{h_{n}} ) |\mathrm{d} s = \int_{-\infty}^{+\infty}|K(u)|\mathrm{d} u. \end{equation} $ (2.15)

  对任意的$ x\in(0, 1) $, 令$ u = \frac{x-s}{h_{n}} $, 显然

$ \begin{align} &h_{n}^{-1}\sum\limits_{i = 1}^{n}\int_{x_{i-1}}^{x_{i}} |K(\frac{x-s}{h_{n}}) |\mathrm{d} s-\int_{-\infty}^{+\infty}|K(u)|\mathrm{d}u\\ = &h_{n}^{-1}\int_{0}^{1} |K(\frac{x-s}{h_{n}}) |\mathrm{d} s-h_{n}^{-1}\int_{-\infty}^{+\infty} |K(\frac{x-s}{h_{n}}) |\mathrm{d} s\\ = &-h_{n}^{-1}\int_{-\infty}^{0}|K(\frac{x-s}{h_{n}})|\mathrm{d}s-h_{n}^{-1}\int_{1}^{+\infty}|K(\frac{x-s}{h_{n}})| \mathrm{d} s. \end{align} $ (2.16)

由条件$ \int_{-\infty}^{+\infty}|K(u)|\mathrm{d}u<\infty $$ h_n\to 0, $

$ \begin{equation} h_{n}^{-1}\int_{-\infty}^{0}\|K(\frac{x-s}{h_{n}})|\mathrm{d} s = \int_{x/h_n}^{+\infty}|K(u)|\mathrm{d}u\to 0 \end{equation} $ (2.17)

$ \begin{equation} h_{n}^{-1}\int^{+\infty}_{1}\|K(\frac{x-s}{h_{n}})|\mathrm{d} s = \int^{(x-1)/h_n}_{-\infty}|K(u)|\mathrm{d}u\to 0. \end{equation} $ (2.18)

联合(2.16)–(2.18)式得结论(2.14).另外, 对任给的$ 0<\tau<1/2 $, 有

$ \begin{align} \sup\limits_{x\in[\tau, 1-\tau]}h_{n}^{-1}\int_{-\infty}^{0}|K(\frac{x-s}{h_{n}})|\mathrm{d} s & = \sup\limits_{x\in[\tau, 1-\tau]}\int_{x/h_n}^{+\infty}|K(u)|\mathrm{d}u \leq\int_{\tau/h_n}^{+\infty}|K(u)|\mathrm{d}u \to 0 \end{align} $ (2.19)

$ \begin{align} \sup\limits_{x\in[\tau, 1-\tau]}h_{n}^{-1}\int^{+\infty}_{1}|K\Big(\frac{x-s}{h_{n}}\Big)|\mathrm{d} s & = \sup\limits_{x\in[\tau, 1-\tau]}\int^{(x-1)/h_n}_{-\infty}|K(u)|\mathrm{d}u \leq \int^{-\tau/h_n}_{-\infty}|K(u)|\mathrm{d}u\to 0. \end{align} $ (2.20)

由(2.16), (2.19)和(2.20)式得结论(2.15).证毕.

引理2.5[14]  设$ \{Z_{i};i\geq1\} $是随机变量序列, 若存在常数$ \rho>0 $, 使得$ E|Z_{i}| = O(i^{-(1+\rho)}) $, 则$ \Sigma_{i = 1}^{\infty}Z_{i} $ a.s.收敛.

3 定理的证明

$ S_{n}(x) = \sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i}, W_{ni}(x) = h_{n}^{-1}\int_{x_{i-1}}^{x_{i}}K\big(\frac{x-s}{h_{n}}\big)\mathrm{d} s $.可由积分中值定理, 存在$ \vartheta_{i}\in(0, 1) $, 使得

$ \begin{equation} W_{ni}(x) = h_{n}^{-1}K (\frac{x-x_{i}+\vartheta_{i}\tilde{\delta}_{i}}{h_{n}} )\tilde{\delta}_{i} \leq C\frac{\delta_{n}}{h_{n}}. \end{equation} $ (3.1)

由于

$ \begin{equation} |g_{n}(x)-g(x)|\leq |\sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i} | +|Eg_{n}(x)-g(x)|. \end{equation} $ (3.2)

由(3.2)式、引理2.3以及Borel-Cantelli引理可知, 定理1.2与定理1.3的证明归结为证明如下式子

$ \begin{equation*} |\sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i} |\stackrel{c}\rightarrow 0, \quad x\in(0, 1). \end{equation*} $

与对任给的$ 0<\tau<1/2 $, $ \sup\limits_{x\in[\tau, 1-\tau]} |\sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i} |\stackrel{c}\rightarrow 0. $$ \forall\epsilon>0 $, 有

$ \begin{equation} \sum\limits_{n = 1}^{\infty}P ( |\sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i} |>\epsilon )<\infty, x\in(0, 1) \end{equation} $ (3.3)

$ \begin{equation} \sum\limits_{n = 1}^{\infty}P (\sup\limits_{x\in[\tau, 1-\tau]} |\sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i} |>\epsilon )<\infty. \end{equation} $ (3.4)

又由引理2.4及条件(a), 当$ n\rightarrow\infty $时, 可有

$ \begin{equation} \sum\limits_{i = 1}^{n}|W_{ni}(x)|\rightarrow\int_{-\infty}^{+\infty}|K(u)|\mathrm{d} u<C, \sup\limits_{x\in[\tau, 1-\tau]}\sum\limits_{i = 1}^{n}|W_{ni}(x)|\rightarrow\int_{-\infty}^{+\infty}|K(u)|\mathrm{d} u<C. \end{equation} $ (3.5)

定理1.2的证明  首先证明(3.3)式.记$ X_{i} = W_{ni}(x)\varepsilon_{i} $, 由条件(ⅰ)及(3.1)式, 有$ EX_{i} = 0 $, 且有$ |X_{i}| = |W_{ni}(x)\varepsilon_{i}|\leq C\frac{\delta_{n}}{h_{n}}\leq Cn^{-s} $, 由于$ \alpha(n) = O(n^{-\lambda}) $$ \lambda>1 $, 所以在引理2.1中的$ \sum\limits_{m = 1}^{\infty}\alpha(m)\leq C\sum\limits_{m = 1}^{\infty}m^{-\lambda}<\infty. $根据引理2.1的(2.2)式可得

$ \begin{equation*} \begin{split} E|U_{j}|^{2} = E |\sum\limits_{i = (j-1)k_{n}+1}^{jk_{n}}W_{ni}(x)\varepsilon_{i} |^{2} \leq C\sum\limits_{i = (j-1)k_{n}+1}^{jk_{n}}W_{ni}^{2}(x), \end{split} \end{equation*} $

又根据(3.1)、(3.5)以及(1.3)式, 可有

$ \begin{equation*} \begin{split} \sigma_{n}^{2} = \frac{1}{n}\sum\limits_{j = 1}^{2m_{n}+1}E|U_{j}|^{2} &\leq C\frac{1}{n}\sum\limits_{i = 1}^{n}W_{ni}^{2}(x) \leq C\frac{1}{n}\sup\limits_{x\in(0, 1)}|W_{ni}(x)|\sum\limits_{i = 1}^{n}|W_{ni}(x)|\\ &\leq Cn^{-1}\frac{\delta_{n}}{h_{n}}\leq Cn^{-(1+s)}. \end{split} \end{equation*} $

$ k_{n} = n^{s}/(\log n\log\log n) $, 其中$ 0<s\leq 1 $, 当$ n $充分大时, 可保证$ k_{n}\leq \frac{n}{2} $, 从而由引理2.2, $ \forall\epsilon>0, x\in(0, 1) $, 可有

$ \begin{equation} \begin{split} &P ( |\sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i} |>\epsilon ) = P ( |\sum\limits_{i = 1}^{n}X_{i} |>\epsilon )\\ \leq& C\exp (-\frac{n(\frac{\epsilon}{n})^{2}}{12(3\sigma_{n}^{2}+bk_{n}\epsilon/n)} )+36nb\epsilon^{-1}\alpha(k_{n})\\ \leq& C\exp (-\frac{C}{n^{-s}+n^{-s}k_{n}} )+Cn^{1-s}k_{n}^{-\lambda} \leq C\exp (-\frac{C}{n^{-s}k_{n}} )+Cn^{1-s}k_{n}^{-\lambda}\\ = &C\exp(-C\log n\log\log n)+Cn^{-[s(\lambda+1)-1]}(\log n\log\log n)^{\lambda} \leq Cn^{-[s(\lambda+1)-1]}(\log n\log\log n)^{\lambda}. \end{split} \end{equation} $ (3.6)

由(1.4)式知, (3.3)式成立.

其次证明(3.4)式.选取$ l_{n} $个中心在$ t_{1}, t_{2}, \cdots, t_{l_{n}} $, 半径为$ R_{n} = (h_n^{1+\beta}/(\log n\log\log n))^{1/\beta} $的邻域$ B_{1}, B_{2}, \cdots, B_{l_{n}} $覆盖$ [0, 1] $, 其中$ l_{n} = O\big((h_n^{-(1+\beta)}\log n\log\log n)^{1/\beta}\big) $.由条件(ⅰ)知$ |\varepsilon_{i}|<b $ a.s.和基本条件(a)知$ K(\cdot) $满足$ \beta $阶Lipschitz条件, 对正整数$ k, 1\leq k\leq l_{n} $, 可得

$ \begin{equation*} \begin{split} \sup\limits_{x\in B_{k}}|S_{n}(x)-S_{n}(t_{k})| = &\sup\limits_{x\in B_{k}} |h_{n}^{-1}\sum\limits_{i = 1}^{n}\varepsilon_{i}\int_{x_{i-1}}^{x_{i}} [K (\frac{x-s}{h_{n}} ) -K (\frac{t_{k}-s}{h_{n}} ) ]\mathrm{d} s |\\ \leq&C h_{n}^{-1}\sup\limits_{x\in B_{k}}\sum\limits_{i = 1}^{n}\tilde{\delta}_{i} |\frac{x-t_{k}}{h_{n}} |^{\beta} \ \ \text {a.s. } \leq C h_{n}^{-1-\beta}R_{n}^{\beta}\\ = &Ch_{n}^{-(1+\beta)}[(h_n^{1+\beta}/\log n\log\log n)^{1/\beta}]^{\beta} = (\log n\log\log n)^{-1}. \end{split} \end{equation*} $

$ \forall\epsilon>0 $, 当$ n $充分大时,

$ \begin{equation} \begin{split} \sup\limits_{x\in B_{k}}|S_{n}(x)-S_{n}(t_{k})|<\epsilon/2 \ \ \text {a.s.}. \end{split} \end{equation} $ (3.7)

对上述$ \forall\epsilon>0 $, 当$ n $充分大时, 由(3.6)与(3.7)式, 以及条件(2)中$ n^{d}h_{n}\rightarrow\infty $可知$ h_{n}^{-1}\leq Cn^{d} $, 从而有

$ \begin{equation*} \begin{split} P (\sup\limits_{x\in[\tau, 1-\tau]}|S_{n}(x)|>\epsilon ) \leq& P (\bigcup\limits_{k = 1}^{l_{n}}(\sup\limits_{x\in B_k}|S_{n}(x)|>\epsilon) )\\ \leq&\sum\limits_{k = 1}^{l_{n}}P(\sup\limits_{x\in B_k}|S_{n}(x)-S_{n}(t_{k})|+|S_{n}(t_{k})|>\epsilon)\\ \leq& C\sum\limits_{k = 1}^{l_{n}} P(|S_{n}(t_{k})|>\epsilon/2)\\ \leq& Cl_{n}n^{-[s(\lambda+1)-1]}(\log n\log\log n)^{\lambda}\\ \leq& C(h_n^{-(1+\beta)}\log n\log\log n)^{1/\beta}n^{-s(\lambda+1)+1}(\log n\log\log n)^{\lambda}\\ \leq& Cn^{\frac{d(1+\beta)}{\beta}-s(\lambda+1)+1}(\log n\log\log n)^{\lambda+1/\beta}. \end{split} \end{equation*} $

由(1.5)式知, (3.4)式成立.

定理1.3的证明  令

$ \xi_{i} = \varepsilon_{i}I(|\varepsilon_{i}|\leq n^{1/r})-E\varepsilon_{i}I(|\varepsilon_{i}|\leq n^{1/r}), \tilde{\xi}_{i} = \varepsilon_{i}I(|\varepsilon_{i}|>n^{1/r})-E\varepsilon_{i}I(|\varepsilon_{i}|>n^{1/r}) $

则有

$ S_{n}(x) = \sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i} = \sum\limits_{i = 1}^{n}W_{ni}(x)\xi_{i}+\sum\limits_{i = 1}^{n}W_{ni}(x)\tilde{\xi}_{i}: = S_{1n}(x)+S_{2n}(x). $

首先证明$ |S_{1n}(x)|\rightarrow 0 $ a.s., $ x\in(0, 1) $$ \sup\limits_{x\in[\tau, 1-\tau]}|S_{1n}(x)|\rightarrow 0 $ a.s..为此只需证明:对$ \forall\epsilon>0 $, 有

$ \begin{equation} \sum\limits_{n = 1}^{\infty}P\big(|S_{1n}(x)|>\epsilon\big)<\infty, x\in(0, 1) \end{equation} $ (3.8)

$ \begin{equation} \sum\limits_{n = 1}^{\infty}P\Big(\sup\limits_{x\in[\tau, 1-\tau]}|S_{1n}(x)|>\epsilon\Big)<\infty. \end{equation} $ (3.9)

$ V_{i} = W_{ni}(x)\xi_{i} $, 显然有$ EV_{i} = 0 $, 且由条件(3.1)式有$ |V_{i}| = |W_{ni}(x)\xi_{i}|\leq Cn^{1/r}\frac{\delta_{n}}{h_{n}}\leq Cn^{-s+1/r} $.现在对序列$ V_1, V_2, \cdots $, 利用引理2.2, 为此令$ U_{j} = \sum\limits_{i = (j-1)k_{n}+1}^{jk_{n}}V_{i} $.由于$ \alpha(n) = O(n^{-\lambda}) $$ \lambda>r/(r-2) $, 所以在引理2.1中的

$ \sum\limits_{m = 1}^{\infty}\alpha^{\delta/(2+\delta)}(m) = \sum\limits_{m = 1}^{\infty}\alpha^{(r-2)/r}(m)\leq C\sum\limits_{m = 1}^{\infty}m^{-\lambda(r-2)/r}<\infty. $

根据引理2.1的(2.1)式可得

$ \begin{equation*} \begin{split} E|U_{j}|^{2} = E |\sum\limits_{i = (j-1)k_{n}+1}^{jk_{n}}W_{ni}(x)\xi_{i} |^{2} \leq C\sum\limits_{i = (j-1)k_{n}+1}^{jk_{n}}W_{ni}^{2}(x). \end{split} \end{equation*} $

又根据(3.1)、(3.5)以及(1.6)式, 可有

$ \begin{equation*} \begin{split} \sigma_{n}^{2} = \frac{1}{n}\sum\limits_{j = 1}^{2m_{n}+1}E|U_{j}|^{2}\leq C\frac{1}{n}\sum\limits_{i = 1}^{n}W_{ni}^{2}(x)\leq Cn^{-(1+s)}. \end{split} \end{equation*} $

$ k_{n} = n^{s-1/r}/(\log n\log\log n) $, 其中$ 0<s\leq 1 $, 当$ n $充分大时, 可保证$ k_{n}\leq \frac{n}{2} $, 从而由引理2.2, $ \forall\epsilon>0, x\in(0, 1) $, 可有

$ \begin{equation} \begin{split} &P ( |S_{1n}(x) |>\varepsilon ) = P ( |\sum\limits_{i = 1}^{n}V_{i} |>\varepsilon )\\ \leq& C\exp (-\frac{n\big(\varepsilon/n\big)^{2}}{12(3\sigma_{n}^{2}+bk_{n}\varepsilon/n)} )+36nb\varepsilon^{-1}\alpha(k_{n})\\ \leq& C\exp (-\frac{C}{n^{-s}+n^{-s+1/r}k_{n}} )+Cn^{1-s+1/r}k_{n}^{-\lambda}\\ = &C\exp(-C\log n\log\log n)+Cn^{1-s+1/r-\lambda(s-1/r)}(\log n\log\log n)^{\lambda}\\ \leq& Cn^{-[(s-1/r)(\lambda+1)-1]}(\log n\log\log n)^{\lambda}. \end{split} \end{equation} $ (3.10)

由(1.7)式知, (3.8)式成立.

选取$ \tilde{l}_{n} $个中心在$ \tilde{t}_{1}, \tilde{t}_{2}, \cdots, \tilde{t}_{\tilde{l}_{n}} $, 半径为$ \tilde{R}_{n} = (n^{-1/r}h_n^{1+\beta}/(\log n\log\log n))^{1/\beta} $的邻域$ \tilde{B}_{1}, \tilde{B}_{2}, \cdots, \tilde{B}_{\tilde{l}_{n}} $覆盖$ [0, 1] $, 其中$ \tilde{l}_{n} = O\big((n^{1/r}h_n^{-(1+\beta)}\log n\log\log n)^{1/\beta}\big) $.注意到$ |\xi_{i}|\leq 2n^{1/r} $和基本条件(a)知$ K(\cdot) $满足$ \beta $阶Lipschitz条件, 对正整数$ k, 1\leq k\leq \tilde{l}_{n} $, 可得

$ \begin{equation*} \begin{split} \sup\limits_{x\in \tilde{B}_{k}}|S_{1n}(x)-S_{1n}(\tilde{t}_{k})| = &\sup\limits_{x\in \tilde{B}_{k}} |h_{n}^{-1}\sum\limits_{i = 1}^{n}\xi_{i}\int_{x_{i-1}}^{x_{i}} [K (\frac{x-s}{h_{n}} ) -K (\frac{\tilde{t}_{k}-s}{h_{n}} ) ]\mathrm{d} s |\\ \leq& Cn^{1/r}h_{n}^{-1}\sup\limits_{x\in \tilde{B}_{k}}\sum\limits_{i = 1}^{n}\tilde{\delta}_{i} |\frac{x-\tilde{t}_{k}}{h_{n}} |^{\beta} \ \ \text {a.s.}\\ \leq& C n^{1/r} h_{n}^{-(1+\beta)}\tilde{R}_{n}^{\beta} \leq C(\log n\log\log n)^{-1}. \end{split} \end{equation*} $

$ \forall\epsilon>0 $, 当$ n $充分大时,

$ \begin{equation} \begin{split} \sup\limits_{x\in \tilde{B}_{k}}|S_{1n}(x)-S_{1n}(\tilde{t}_{k})|<\epsilon/2 \ \ \text {a.s.}. \end{split} \end{equation} $ (3.11)

对上述$ \forall\epsilon>0 $, 当$ n $充分大时, 由(3.10)与(3.11)式, 以及条件(2)中$ n^{d}h_{n}\rightarrow\infty $可知$ h_{n}^{-1}\leq Cn^{d} $, 从而有

$ \begin{equation*} \begin{split} &P (\sup\limits_{x\in[\tau, 1-\tau]}|S_{1n}(x)|>\epsilon ) \leq P (\bigcup\limits_{k = 1}^{\tilde{l}_{n}}\Big(\sup\limits_{x\in \tilde{B}_k}|S_{1n}(x)|>\epsilon\Big) )\\ \leq&\sum\limits_{k = 1}^{\tilde{l}_{n}}P\Big(\sup\limits_{x\in \tilde{B}_k}|S_{1n}(x)-\tilde{S}_{1n}(\tilde{t}_{k})|+|\tilde{S}_{1n}(\tilde{t}_{k})|>\epsilon\Big) \leq C\sum\limits_{k = 1}^{\tilde{l}_{n}} P(|S_{1n}(\tilde{t}_{k})|>\epsilon/2)\\ \leq &C\tilde{l}_{n}n^{-[(s-1/r)(\lambda+1)-1]}(\log n\log\log n)^{\lambda}\\ \leq &C(n^{1/r}h_n^{1+\beta}\log n\log\log n)^{1/\beta}n^{-(s-1/r)(\lambda+1)+1}(\log n\log\log n)^{\lambda}\\ \leq& Cn^{\frac{1}{r\beta}+\frac{d(1+\beta)}{\beta}-(s-1/r)(\lambda+1)+1}(\log n\log\log n)^{\lambda+1/\beta}. \end{split} \end{equation*} $

结合条件(1.8)知, (3.9)式成立.

其次, 证明$ \forall\epsilon>0 $, 有

$ \begin{equation} |S_{2n}(x)|\rightarrow 0\; \text {a.s.}\; \; x\in(0, 1) \end{equation} $ (3.12)

$ \begin{equation} \sup\limits_{x\in[\tau, 1-\tau]}|S_{2n}(x)|\rightarrow 0\; \text {a.s.}. \end{equation} $ (3.13)

$ \widetilde{S}_{2n}(x) = \sum\limits_{i = 1}^{n}W_{ni}(x)\varepsilon_{i}I(|\varepsilon_{i}|>n^{1/r}) $.由引理2.4及条件(ⅰ)中的$ \sup\limits_{i}E|\varepsilon_{i}|^{r}<\infty $, 这里$ r>2 $, 当$ n $充分大时, 可有

$ \begin{equation} \begin{split} |E\widetilde{S}_{2n}(x)| &\leq\sum\limits_{i = 1}^{n}|W_{ni}(x)|E\big[|\varepsilon_{i}|I(|\varepsilon_{i}|>n^{1/r})\big]\\ &\leq n^{-(r-1)/r}\sum\limits_{i = 1}^{n}|W_{ni}(x)|E\big[|\varepsilon_{i}|^{r}I(|\varepsilon_{i}|>n^{1/r})\big]\\ &\leq Cn^{-(r-1)/r}\rightarrow 0. \end{split} \end{equation} $ (3.14)

由(1.6)与(3.1)式, 可得

$ \begin{equation*} \begin{split} |\widetilde{S}_{2n}(x)| \leq \sum\limits_{i = 1}^{n}|W_{ni}(x)||\varepsilon_{i}|I(|\varepsilon_{i}|>n^{1/r}) \leq Cn^{-s}\sum\limits_{i = 1}^{n}|\varepsilon_{i}|I(|\varepsilon_{i}|>i^{1/r}): = CJ_{n}. \end{split} \end{equation*} $

$ \eta_{i} = i^{-s}|\varepsilon_{i}|I(|\varepsilon_{i}|>i^{1/r}) $, 可有$ E|\eta_{i}|\leq i^{-s}i^{\frac{1-r}{r}}E|\varepsilon_{i}|^{r}\leq Ci^{-1-(s-\frac{1}{r})} $, 得到$ E|\eta_{i}| = O(i^{-1-(s-\frac{1}{r})}) $, 又由引理2.5可知$ \sum\limits_{i = 1}^{\infty}\eta_{i} $ a.s.收敛, 根据Kronecker引理(见文献[22]), 当$ n\rightarrow\infty $时, 有$ J_{n}\rightarrow 0 $ a.s., 从而(3.12)式成立.在前面两式的左边加上$ \sup\limits_{x\in[\tau, 1-\tau]} $运算符, 不等式仍然成立, 所以(3.13)式也成立.

因此(3.3)与(3.4)式成立, 定理1.3得证.

参考文献
[1] Gasser T, Müller H G. Kernel estimation of regression functions[C]. Smoothing Techniques for Curve Estimation, Heidelberg: Springer-Verlag, 1979: 23-68.
[2] 杨善朝. α-混合序列和的强大数定律及其应用[J]. 高校应用数学学报(A辑), 1996, 11(4): 443–450.
[3] 杨善朝, 李永明. 强混合样本下回归加权估计的一致渐近正态性[J]. 数学学报, 2006, 49(5): 1163–1170.
[4] 韦香兰, 杨善朝, 赵翌. α混合序列下的核型分位数估计的Bahadur表示[J]. 广西师范大学学报(自然科学版), 2008, 26(1): 50–53.
[5] 刘静, 杨善朝. 风险度量ES的非参数估计[J]. 工程数学学报, 2009, 26(4): 577–585.
[6] Yang X T, Yang S C. Strong consistency of non parametric kernel regression estimator for strong mixing samples[J]. Communications in Statistics: Theory and Methods, 2017, 46(21): 10537–10548. DOI:10.1080/03610926.2016.1239110
[7] Priestley M B, Chao M T. Nonparametric function fltting[J]. Journal of the Royal Statistical Society (Methodological Series B), 1972, 34(3): 385–392. DOI:10.1111/j.2517-6161.1972.tb00916.x
[8] Benedetti J K. On the nonparametric estimation of regression functions[J]. Journal of the Royal Statistical Society (Methodological Series B), 1977, 39(2): 248–253. DOI:10.1111/j.2517-6161.1977.tb01622.x
[9] Schuster E. Contributions to the theory of nonparametric regression, with application to system identiflcation[J]. Annals Statistics, 1979, 7(1): 139–149. DOI:10.1214/aos/1176344560
[10] 秦永松. 非参数回归函数估计的一个结果[J]. 工程数学学报, 1989, 6(3): 120–123.
[11] 秦永松. 相依误差下非参数回归函数估计的强相合性[J]. 广西师范大学学报(自然科学版), 1992, 10(2): 24–27.
[12] 杨善朝. $\varphi$混合误差下非参数回归函数加权核估计的相合性[J]. 高校应用数学学报, 1995, 10(2): 174–180.
[13] 杨善朝. 混合序列矩不等式和非参数估计[J]. 数学学报, 1997, 40(2): 271–279.
[14] 杨善朝, 王岳宝. NA样本回归函数估计的强相合性[J]. 应用数学学报, 1999, 22(4): 522–530.
[15] 杨秀桃, 杨善朝. $\tilde{\rho}$混合样本下非参数回归估计的渐近性质[J]. 应用数学, 2018, 31(2): 422–428.
[16] Cheng K F, Lin P E. Nonparametric estimation of a regression function[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1981, 57: 223–233. DOI:10.1007/BF00535491
[17] Cheng K F, Lin P E. Nonparametric estimation of a regression function: limiting distribution[J]. Australian & New Zealand Journal of Statistics, 1981, 23(2): 186–195.
[18] Eubank R L. Nonparametric regression and spline smoothing (2nd ed.) [M]. San Bernardino: Macsource Press, 1999.
[19] Yang S C. Moment bounds for strong mixing sequences and their application[J]. Journal of Mathematical Research and Exposition, 2000, 20(3): 349–359.
[20] Yang S C. Maximal moment inequality for partial sums of strong mixing sequences and application[J]. Acta Mathematica Sinica, 2007, 23(6): 1013–1024. DOI:10.1007/s10114-005-0841-9
[21] Wei X L, Yang S C, Yu K M, Yang X, Xing G D. Bahadur representation of linear kernel quantile estimator of VaR under α-mixing assumptions[J]. Journal of Statistical Planning and Inference, 2010, 140(7): 1620–1634. DOI:10.1016/j.jspi.2010.01.002
[22] 林正炎, 陆传荣, 苏中根. 概率极限理论基础[M]. 北京: 高等教育出版社, 1999.