数学杂志  2019, Vol. 39 Issue (5): 775-779   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
徐红梅
王一平
带粘性含不活泼项Cahn-Hilliard方程解的存在性
徐红梅, 王一平    
河海大学理学院, 江苏 南京 211100
摘要:本文研究了带粘性的含不活泼项Cahn-Hilliard方程柯西问题.利用格林函数不同频域的详细分析及不动点原理,得到了方程大初值情形经典解的整体存在性,推广了以往工作集中在弱解或拟强解或小初值情形下的经典解.
关键词带粘性的含不活泼项Cahn-Hilliard方程    经典解    大初值    不动点原理    
EXISTENCE OF SOLUTIONS FOR VISCOUS CAHN-HILLIARD EQUATION WITH INERTIAL TERM
XU Hong-mei, WANG Yi-ping    
College of Science, Hohai University, Nanjing 211100, China
Abstract: Cauchy problem of viscous Cahn-Hilliard equation with inertial term is studied. By detailed analysis of the Green's function in different frequency, based on fixed point theorem, global existence of classical solution with large initial data is obtained, Which extend the formers work which focused on weak solution or quasi-strong solution or classical solution with small initial data.
Keywords: viscous Cahn-Hilliard equation with inertial term     classical solution     large initial data     fixed point theorem    
1 简介

带粘性的含不活泼项Cahn-Hilliard方程柯西问题形式如下:

$ \begin{equation} \left\{ \begin{aligned} &\ {u}_{tt}+{u}_t+\Delta^{2}u-\Delta\partial_{t}u-\Delta f(u) = 0, \ \ x\in {R}^{n}, \; \; t>0, \\ &\ {u}|_{t = 0} = u_{0}(x), {u}_t|_{t = 0} = u_1(x), \\ \end{aligned} \right. \end{equation} $ (1.1)

此处$ n $是空间维数, $ n\geq1 $; 未知函数$ u $表示一个相的相对浓度; 非线性项$ \Delta f(u) $$ f(u) $取成$ u^2 $. ($ 1.1 $)式中若去掉$ u_{tt}-\Delta{\partial_{t}}u $, 方程为

$ \begin{equation} u_t+\Delta^{2}u-\Delta f(u) = 0. \end{equation} $ (1.2)

(1.2)式是著名的Cahn-Hilliard方程[1].近年来, Galenko等[2-5]为模拟在某些玻璃中有深过冷产生的非平衡分解提出在(1.2)式中加上不活泼项$ u_{tt} $, 得

$ \begin{equation} u_{tt}+u_t+\Delta^{2}u-\Delta f(u) = 0. \end{equation} $ (1.3)

(1.3)式详细的物理背景可参看文献[4-6]. (1.3)式是一个带松弛项的双曲方程, 它在有限的时间内的不正则化导致很难得到其解的整体存在性.对(1.3)式, 前面的工作主要集中在弱解和拟强解.如Grasselli等[7, 8]得到2维和3维情况下拟强解的存在性; Wang和Wu [9]得到(1.3)式在$ n\geq3 $时小初值情况下经典解的存在性.为克服不正则化困难, 在数学上经常是对方程加一粘性项, 增加耗散性, 如是得到(1.1)式.本文考虑(1.1)式解的整体存在性.

本文中用$ C $表示常数, $ L_{p}({R}^{n}) $, $ H^l(R^n) $表示通用的龙贝格可测函数空间和Sobolev空间, 其模为$ \|\cdot\|_{L_p}, \|\cdot\|_{H^l} $.

本文先分析(1.1)式的格林函数, 再用压缩映像原理证明(1.1)式解的整体存在性.

2 格林函数分析

定义函数$ {f} $关于变量$ {x} $的傅里叶变换为

$ \begin{equation*} \hat{f}(\xi, t) = \int f(x, t)e^{-\sqrt{-1}x\cdot {\xi}}\, dx, \end{equation*} $

则对$ \hat{f} $关于变量$ {\xi} $的逆傅里叶变换为

$ \begin{equation*} f(x, t) = F^{-1}(\hat{f})(x, t) = (2\pi)^{-\frac{n}{2}}\int \hat{f}(\xi, t)e^{\sqrt{-1}x\cdot {\xi}}\, d\xi. \end{equation*} $

方程(1.1)格林函数定义如下:

$ \begin{equation} \left\{ \begin{aligned} &\ (\partial_{t}^{2}+\partial_{t}+\Delta^2-\Delta\partial_{t})G = 0, \\ &\ {G}|_{t = 0} = 0, \\ &\ {G_t}|_{t = 0} = \delta(x), \\ \end{aligned} \right. \end{equation} $ (2.1)

其中$ \delta(x) $为常用Dirac函数.对(2.1)式关于变量$ {x} $作傅里叶变换, 得常微分方程

$ \begin{equation} \left\{ \begin{aligned} &\ (\partial_{t}^{2}+\partial_{t}+{\left| \xi \right|}^4+{\left|\xi\right|}^{2}\partial_t)\hat{G} = 0, \\ &\ \hat{G}|_{t = 0} = 0, \\ &\ \hat{G_t}|_{t = 0} = 1.\\ \end{aligned} \right. \end{equation} $ (2.2)

($ 2.2 $)式的解为

$ \begin{equation} \hat{G}(\xi, t) = {\frac{1}{\sqrt{(1+{\left|\xi \right|}^{2})^{2}-4{\left| \xi \right|}^4 }}}(e^{\lambda_{+}t}-e^{\lambda_{-}t}), \end{equation} $ (2.3)

其中

$ \begin{equation} \lambda_{\pm} = \frac{1}{2}(-(1+{\left|\xi\right|}^2)\pm\sqrt{(1+{\left|\xi\right|}^2)^2-4{\left|\xi\right|}^4}). \end{equation} $ (2.4)

由($ 2.4 $)式可知

$ \begin{equation} {\rm Re}{\lambda_{-}}\leq-\frac{1}{2}(1+{\left|\xi\right|}^2). \end{equation} $ (2.5)

$ {\left|\xi\right|}^2<1 $时, 有

$ \begin{equation} \begin{aligned} \sqrt{(1+{\left|\xi\right|}^2)^2-4{\left|\xi\right|}^4}& = (1+{\left|\xi\right|}^2)\sqrt{1-\frac{4{\left|\xi\right|}^4}{(1+{\left|\xi\right|}^2)^2}} \\ & = (1+{\left|\xi\right|}^2)(1-\frac{2{\left|\xi\right|}^{4}}{(1+{\left|\xi\right|}^{2})^2}+O({\left|\xi\right|}^6))\\ & = (1+{\left|\xi\right|}^2)-2{\left|\xi\right|}^{4}(1-{\left|\xi\right|}^2)+O({\left|\xi\right|}^6)\\ & = 1+{\left|\xi\right|}^2-2{\left|\xi\right|^4}+O({\left|\xi\right|}^6). \end{aligned} \end{equation} $ (2.6)

$ \left|{\left|\xi\right|^2-1}\right|<\varepsilon $, 其中$ \varepsilon $是一很小的正数, 有$ \lambda_{+}-\lambda_{-}\rightarrow0 $, 此时有

$ \begin{equation} \left|{\frac{e^{\lambda_{+}t}-e^{\lambda_{-}t}}{\lambda_{+}-\lambda_{-}}}\right| = \left|{\frac{e^{\lambda_{+}t}(e^{(\lambda_{+}+\lambda_{-})t}-1)}{\lambda_{+}-\lambda_{-}}}\right| \leq Ce^{\lambda_{+}t}, \end{equation} $ (2.7)
$ \begin{equation} \begin{aligned} \lambda_{+}& = \frac{1}{2}\left(-(1+{\left|\xi\right|}^2)+\sqrt{(1+{\left|\xi\right|}^2)^2-4{\left|\xi\right|}^4}\right) \\ & = \frac{1}{2}\frac{(1+{\left|\xi\right|}^2)^2-4{\left|\xi\right|}^4-(1+{\left|\xi\right|}^2)^2}{\sqrt{(1+{\left|\xi\right|}^2)^2-4{\left|\xi\right|}^4}+(1+{\left|\xi\right|}^2)} \leq\frac{1}{2}\frac{-4{\left|\xi\right|}^4}{2(1+{\left|\xi\right|}^2)} \leq-a{\left|\xi\right|}^2, \end{aligned} \end{equation} $ (2.8)

其中$ a>0. $$ {\left|\xi\right|}^2>1+\varepsilon $时,

$ \begin{equation} {\rm Re}\lambda_{+} = -\frac{1}{2}(1+{\left|\xi\right|}^2). \end{equation} $ (2.9)

由以上分析得到下述定理.

定理2.1  对任意多重指标$ \alpha $, 存在常数$ C_\alpha $, 有

$ \|\partial_{x}^{\alpha}G\|_{L_2}\leq C_{\alpha}(1+t)^{-\frac{n}{8}-\frac{\left|\alpha\right|}{4}} \; , \; \|{\partial_{x}^\alpha} \partial_{t} G\|_{L_2}\leq C(1+t)^{-\frac{n}{8}-\frac{\left|\alpha\right|}{4}}. $

  由Plancherel等式,

$ \begin{equation} \begin{aligned} {\|{\partial_{x}^\alpha}G\|}_{L_2}^2 = &{\|{\xi}^{\alpha}\hat{G}\|}_{L_2}^2\\ \leq&\left(\int_{\left|\xi\right|^2\leq{1-\varepsilon}} {{\left|\frac{\xi^{\alpha}e^{{\lambda_+}t}}{\lambda_{+}-\lambda_{-}}\right|}^2} \, d\xi\right) +\left(\int_{\left|{{\left|\xi\right|}^2-1}\right|\leq\varepsilon}{\left|\frac{{\xi^\alpha}e^{{\lambda_+}t}(e^{(\lambda_{-}-\lambda_{+})t}-1)}{\lambda_{+}-\lambda_{-}}\right|}^2 \, d\xi\right)\\ &+\int_{\left|\xi\right|^2\geq{1+\varepsilon}}{{\left|\frac{\xi^{\alpha}e^{{\lambda_+}t}}{\lambda_{+}-\lambda_{-}}\right|}^2} \, d\xi +\int_{\left|{{\left|\xi\right|}^2-1}\right|>\varepsilon}{{\left|\frac{\xi^{\alpha}e^{{\lambda_-}t}}{\lambda_{+}-\lambda_{-}}\right|}^2} \, d\xi. \end{aligned} \end{equation} $ (2.10)

由($ 2.5 $)式,

$ \begin{equation} \begin{aligned} \int_{\left|{{\left|\xi\right|}^2-1}\right|>\varepsilon}{{\left|\frac{\xi^{\alpha}e^{{\lambda_-}t}}{\lambda_{+}-\lambda_{-}}\right|}^2} \, d\xi \leq\frac{1}{\varepsilon^2} \int{{\left|\xi\right|}^{2\left|\alpha\right|}}e^{-{({1+{\left|\xi\right|}^2})t}} \, d\xi \leq Ce^{-t}. \end{aligned} \end{equation} $ (2.11)

由($ 2.6 $)式,

$ \begin{equation} \begin{aligned} \int_{|\xi|^{2} \leq 1-\varepsilon}\left|\frac{\xi^{\alpha} e^{\lambda+t}}{\lambda_{+}-\lambda_{-}}\right|^{2} d \xi \leq \frac{1}{\varepsilon^{2}} \int|\xi|^{2|\alpha|} e^{2 \lambda+t} d \xi\\ \leq \frac{1}{\varepsilon^{2}} \int|\xi|^{2|\alpha|} e^{-4|\xi|^{4} t} d \xi \leq C(1+t)^{-\frac{n}{4}-\frac{|\alpha|}{2}}. \end{aligned} \end{equation} $ (2.12)

由($ 2.9 $)式,

$ \begin{equation} \begin{aligned} \int_{\left|\xi\right|^2\geq{1+\varepsilon}}{{\left|\frac{\xi^{\alpha}e^{{\lambda_+}t}}{\lambda_{+}-\lambda_{-}}\right|}^2} \, d\xi \leq\frac{1}{\varepsilon^2} \int{{{\left|\xi\right|}^{2\left|\alpha\right|}}e^{-({1+{\left|\xi\right|}^2})t}} \, d\xi \leq Ce^{-t}. \end{aligned} \end{equation} $ (2.13)

由($ 2.7 $), ($ 2.8 $)式得

$ \begin{equation} \begin{aligned} & \int_{{\left|{{\left|\xi\right|}^2-1}\right|}\leq\varepsilon}{\left|{\frac{\xi^{\alpha}e^{{\lambda_+}t} (e^{-(\lambda_{+}-\lambda_{-})t}-1)}{\lambda_{+}-\lambda_{-}}}\right|^2} \, d\xi \leq \int_{{\left|{{\left|\xi\right|}^2-1}\right|}\leq \varepsilon}{{\left|\xi\right|}^{2\left|\alpha\right|}}e^{2\lambda_{+}t} \, d\xi\\ \leq& \int_{{\left|{{\left|\xi\right|}^2-1}\right|}\leq \varepsilon}{{\left|\xi\right|}^{2\left|\alpha\right|}}e^{-2a{\left|\xi\right|^2}t} \, d\xi\leq C(1+t)^{-\frac{n}{2}-\left|\alpha\right|}. \end{aligned} \end{equation} $ (2.14)

由式($ 2.10 $)–($ 2.14 $), 得到$ \|{\partial_{x}^{\alpha}}G\|_{L_2}\leq C(1+t)^{-\frac{n}{8}-\frac{\left|\alpha\right|}{4}}. $

因为

$ \begin{equation*} \partial_{t}\hat{G} = \frac{\lambda_{+}e^{\lambda_{+}t}-\lambda_{-}e^{\lambda_{-}t} }{\lambda_{+}-\lambda_{-}} = \lambda_{+}e^{\lambda_+t}\frac{1-e^{(\lambda_{+}-\lambda_{-})t}}{\lambda_{+}-\lambda_{-}}+e^{\lambda_-t} . \end{equation*} $

用同样的方法, 得到$ \|{\partial_{x}^{\alpha}}{\partial_t}G\|_{L_2}\leq C(1+t)^{-\frac{n}{8}-\frac{\left|\alpha\right|}{4}}. $

下面将由不动点定理证明(1.1)解的存在性.

3 解的整体存在性

$ \begin{equation} T(u) = G(\cdot, t)\ast(u_0+u_1-\Delta u_0)+\partial_t G(\cdot, t)\ast u_0+\int_{0}^{t} G(\cdot, t-\tau)\ast \Delta f(u)(\tau)\, d\tau, \end{equation} $ (3.1)

其中$ \ast $是对变量$ {x} $的卷积.

$ E = \max[\|u_0\|_{L_1}, \|u_1\|_{L_1}] $, 记$ X = \{u(x, t)\in H^1({R}^n)|D_X(u)\leq CE\} $, 其中$ D_X(u) = \sup\limits_{t\geq0}(1+t)^{\frac{n}{8}}\|u\|_{H^1} $.显然$ X $为一非空完备度量空间, $ X $内任两函数$ u_1 $, $ u_2 $距离为$ \rho(u_1, u_2) = D_X{(u_1, u_2)} $, 则当$ u\in X $时, 有$ \|u\|_{H^1}\leq C(1+t)^{-\frac{n}{8}} $.

定理3.1  $ T $是从$ X $$ X $的压缩映射.

  由定理2.1, 当$ \left|\alpha\right|\leq1 $, 有

$ \begin{eqnarray*} \|\partial_x^\alpha G(\cdot, t)\ast(u_0+u_1-\Delta u_0)\|_{L_2} &\leq&\|\partial_x^\alpha G\|_{L_2}(\|u_0\|_{L_1}+\|u_1\|_{L_1})+\|\Delta\partial_x^\alpha G\|_{L_2}\|u_0\|_{L_1}\\ &\leq &C(1+t)^{-\frac{n}{8}}E, \\ \|\partial_x^\alpha\partial_ t G\ast u_0\|_{L_2}&\leq& \|\partial_x^\alpha\partial_ t G\|_{L_2}\|u_0\|_{L_1}\leq C(1+t)^{-\frac{n}{8}}E. \end{eqnarray*} $

由定理2.1, Minkowski不等式及$ f(u) = u^2 $, 当$ \left|\alpha\right|\leq1 $, 有

$ \begin{equation*} \begin{aligned} &\left\|\int_{0}^{t}\partial_x^\alpha G(\cdot, t-\tau)\ast \Delta f(u)(\tau)\, d\tau \right\|_{L_2} \leq \left( \int_{0}^{t}{\|\partial_x^\alpha\Delta G(\cdot, t-\tau)\|^2_{L_2}}{\|f(u)\|^2_{L_1}}\, d\tau \right)^{\frac{1}{2}}\\ \leq& \left( \int_{0}^{t}(1+t-\tau)^{-\frac{n}{4}-1}\|u\|_{L_2}^4\, d\tau \right)^{\frac{1}{2}}\leq \left( \int_{0}^{t}(1+t-\tau)^{-\frac{n}{4}-1}(1+\tau)^{-\frac{n}{2}}\, d\tau \right)^{\frac{1}{2}}E^2\\ \leq& CE^2(1+t)^{-\frac{n}{8}-\frac{1}{8}}. \end{aligned} \end{equation*} $

所以$ \|\partial_x^\alpha T(u)\|_{L_2}\leq CE(1+t)^{-\frac{n}{8}}+CE^2(1+t)^{-\frac{n}{8}-\frac{1}{8}} $.得$ \sup(1+t)^{\frac{n}{8}}\|\partial_x^\alpha T(u)\|_{L_2}\leq CE+CE^2(1+t)^{-\frac{1}{8}}\leq CE $.所以$ T $$ X $$ X $的映射.当$ u_1, u_2\in X $时, 若$ \left|\alpha\right|\leq1 $,

$ \begin{equation*} \begin{aligned} \left\|\partial_x^\alpha (T(u_1)-T(u_2))\right\|_{L_2}&\leq \left(\int_{0}^{t}\|\partial_x^\alpha\Delta G(t-\tau)\|^2_{L_2}\; \|{u_1}^2-{u_2}^2\|^2_{L_1}\, d\tau \right)^{\frac{1}{2}}\\ &\leq \left(\int_{0}^{t}(1+t-\tau)^{-\frac{n}{4}-1} \; \left\|u_1-u_2\right\|^2_{L_2} \left\|u_1+u_2\right\|^2_{L_2} \, d\tau\right)^\frac{1}{2}\\ &\leq C\left(\int_{0}^{t}( 1+t-\tau)^{-\frac{n}{4}-1}E^2\; \left\|u_1-u_2\right\|^2_{H^1}(1+\tau)^{-\frac{n}{4}}\, d\tau\right)^\frac{1}{2}\\ &\leq C(1+t)^{-\frac{n}{8}}E\|u_1-u_2\|_{H^1}. \end{aligned} \end{equation*} $

所以$ \rho(T(u_1), T(u_2))\leq CE(1+t)^{-\frac{n}{4}}\rho(u_1, u_2) $, 当$ t $充分大, 有$ CE(1+t)^{-\frac{n}{4}}<1 $.所以$ T $$ X $$ X $的压缩映射.定理得证.

因为方程(1.1)的解为$ u = T(u) $, $ X $又为完备度量空间, 于是得到本文结论.

定理3.2  若$ u_0, u_1\in L_1({R}^{n}) $, 则方程(1.1)有整体经典解存在, 且$ u\in L_\infty(0, +\infty;H^1({R}^n)), $ $ \|u\|_{H^1(R)^n}\leq C(1+t)^{-\frac{n}{8}}. $

参考文献
[1] Cahn J W, Hilliard J E. Free energy of a nonuniform system I:interfacial free energy[J]. J. Chemi. Phys., 1958, 28: 258–267. DOI:10.1063/1.1744102
[2] Galenko P. Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system[J]. Phys. Lett. A, 2001, 287: 190–197. DOI:10.1016/S0375-9601(01)00489-3
[3] Galenko P, Jou D. Diffuse-interface model for rapid phase transformations in nonequilibrium systems[J]. Phys. Rev. E, 2005, 71(4): 1–13.
[4] Galenko P, Lebedev V. Analysis of the dispersion relation in spinodal decomposition of a binary system[J]. Philosophical Magazine Lett., 2007, 87: 821–827. DOI:10.1080/09500830701395127
[5] Galenko P, Lebedev V. Local nonequilibrium effect on spinodal decomposition in a binary system[J]. Intern. J. Ther., 2008, 11: 21–28.
[6] Gatti S, Grasselli M, Miranville A, Pata V. Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D[M]. Math. Model. Meth. Appl. Sci., 2005, 15: 165-198.
[7] Grasselli M, Schimperna G, Segatti A, Zelik S. On the 3D Cahn-Hilliard equation with inertial term[M]. J. Evol. Equ., 2009, 9: 371-404.
[8] Grasselli M, Schimperna G, Zelik S. On the 2D Cahn-Hilliard equation with inertial term[J]. Commun. Part. Diff., 2009, 34: 137–170. DOI:10.1080/03605300802608247
[9] Wang W, Wu Z. Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions[J]. J. Math. Anal. Appl., 2012, 387: 349–358. DOI:10.1016/j.jmaa.2011.09.016