数学杂志  2019, Vol. 39 Issue (5): 748-756   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
王鑫鑫
叶亚盛
关于Hayman问题的差分模拟的值分布
王鑫鑫, 叶亚盛    
上海理工大学理学院, 上海 200093
摘要:本文研究了Hayman问题的一些经典结果的差分模拟问题.利用Nevanlinna理论,获得了一类差分多项式零点密指量下界的精确估计,改进了已有的一些结论.
关键词差分多项式    值分布    零点    
VALUE DISTRIBUTION OF DIFFERENCE ANSLOGUES OF HAYMAN PROBLEM
WANG Xin-xin, YE Ya-sheng    
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract: In this paper, we study difference analogues of some classical results about Hayman problem. By the Nevanlinna theory, we obtain the precise estimation of the lower bound of the zero counting function of a class of difference polynomials and improve some previously results.
Keywords: difference polynomials     value distribution     zero    
1 引言

本文采用常用的Nevanlinna理论的标准记号和基本结果[1-2].特别地, $ \lambda $表示为$ f(z) $的级, $ \sigma_{2}(f) $表示为$ f(z) $的超级.本世纪, 随着亚纯函数差分模拟的值分布理论的建立[3-4], 国内外学者做了大量的研究, 得到了很多的研究成果[5-8].特别, 值分布论中的一些经典结果也被相应的差分模拟.通常, 平移差分$ \Delta_{c} f(z) = f(z+c)-f(z) $被看作是$ f'(z) $的差分对应, $ f(z)^{n}\Delta_{c} f(z) $$ f(z)^{n}+a\Delta_{c} f(z) $被看作是微分多项式$ f(z)^{n}f'(z) $$ f(z)^{n}+af'(z) $的差分对应. 1959年, Hayman [9]证明了如下的两个定理.

定理A  设$ f(z) $为超越亚纯函数, $ n $为正整数, $ b $为非零有穷复数, 则$ n\geq3 $时, $ f(z)^{n}f'(z)-b $有无穷多个零点.

定理B  设$ f(z) $为超越亚纯函数, $ n $为正整数, $ a(\neq0) $$ b $为两个有穷复数, 则$ n\geq5 $时, $ f'(z)+af(z)^{n}-b $有无穷多个零点.

后来, Ye和Fang等人[10-11]将定理B中的$ f $$ f' $交换位置, 得到了下面的定理C.

定理C  设$ f(z) $为超越亚纯函数, $ n $为正整数, $ a(\neq0) $$ b $为两个有穷复数, 则$ n\geq2 $时, $ f(z)+af'(z)^{n}-b $有无穷多个零点.

2011年, Liu [12]等人对定理A中的$ f(z)^{n}f'(z) $进行差分模拟, 得到了下面的定理D.

定理D  设$ f(z) $为有限级超越亚纯函数, $ c $为非零复常数, $ n $为正整数, $ \alpha(z) $$ f(z) $的小函数, 则$ n\geq6 $时, $ f(z)^{n}f(z+c)-\alpha(z) $有无穷多个零点.

2014年, Li [13]等人得到了更为细致的定理E.

定理E  设$ f(z) $为有限级超越亚纯函数, $ c $为非零复常数, $ n $为正整数, 多项式$ p(z)\not\equiv 0 $, 则

$ \begin{align*} \overline{N}(r, \frac{1}{f(z)^{n}f(z+c)-p(z)}) \geq& nT(r, f(z))+m(r, f(z))-2\overline{N}(r, f(z))\\ &-2\overline{N}(r, \frac{1}{f(z)})-N(r, \frac{1}{f(z)})+o(\frac{T(r, f(z))}{r^{1-\varepsilon}})+O(1). \end{align*} $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

本文主要研究了下面的问题.

(ⅰ)若将定理E中的$ f(z+c) $改为$ f(z) $的差分多项式, 可以得到怎样的结论?

注1.1  亚纯函数$ f(z) $的差分多项式$ H(z, f) $定义如下

$ \begin{equation} H(z, f) = \sum\limits_{i\in\lambda}a_{i}(z)\prod\limits_{j = 1}^{\tau_{i}}f(z+c_{i, j})^{\mu_{i, j}}, \end{equation} $ (1.1)

其中$ \lambda $为指标集, 包含$ m\; (\geq1) $个不同的$ i $, $ c_{i, j} $为复常数, $ \mu_{i, j} $为非负整数, 系数$ a_{i}(z)(\not\equiv 0) $$ f(z) $的小函数, 对$ H(z, f) $的每一个单项式$ a_{i}(z)\prod\limits_{j = 1}^{\tau_{i}}f(z+c_{i, j})^{\mu_{i, j}} $, 定义其次数为$ d_{i} = \sum\limits_{j = 1}^{\tau_{i}}\mu_{i, j} $, 再将$ H(z, f) $所有单项式的最高次数定义为$ H(z, f) $的次数, 即

$ \begin{equation} d_{H} = \deg_{f}H(z, f) = \max\limits_{i\in\lambda}d_{i}. \end{equation} $ (1.2)

(ⅱ)定理C中的微分多项式$ f(z)+af'(z)^{n}-b $, 对应的差分模拟的零点情况如何?

对于问题(ⅰ), 首先在一般差分多项式的情况下, 证明了定理1.1.

定理1.1  设$ f(z) $为超越亚纯函数, $ \sigma_{2}(f)<1 $, $ c $为非零复常数, $ n $为正整数, $ \alpha(z)(\not\equiv 0) $$ f(z) $的小函数, $ H(z, f) $是形如(1.1)式的差分多项式, 则

$ \begin{eqnarray*} &&\overline{N}\left(r, \frac{1}{f(z)^{n}H(z, f)-\alpha(z)}\right)\\ &\geq& (n-md_{H})T(r, f(z))-\overline{N}(r, f(z))-\overline{N}\left(r, \frac{1}{f(z)}\right)+S(r, f), \end{eqnarray*} $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

其次, 对比定理E, 下述推论1.1显著改进了其结果.

推论1.1  设$ f(z) $为超越亚纯函数, $ \sigma_{2}(f)<1 $, $ c $为非零复常数, $ n $为正整数, $ \alpha(z)(\not\equiv 0) $$ f(z) $的小函数, 则

$ \begin{eqnarray*} &&\overline{N}\left(r, \frac{1}{f(z)^{n}f(z+c)-\alpha(z)}\right)\\ &\geq& (n-1)T(r, f(z))-\overline{N}(r, f(z))-\overline{N}\left(r, \frac{1}{f(z)}\right)+S(r, f), \end{eqnarray*} $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

推论1.2  设$ f(z) $为超越亚纯函数, $ \sigma_{2}(f)<1 $, $ c $为非零复常数, $ n $为正整数, $ \alpha(z)(\not\equiv 0) $$ f(z) $的小函数, 则$ n\geq4 $时, $ f(z)^{n}f(z+c)-\alpha(z) $有无穷多个零点.

上述推论1.2将定理D的条件$ n\geq6 $改进为$ n\geq4 $.例1.1说明该结论最佳, 不能再改进.

例1.1  $ f(z) = \frac{e^{z}-1}{e^{z}+1} $, $ c = \pi i $, 则当$ n = $ 2、3时, $ f(z)^{n}f(z+c) = (\frac{e^{z}-1}{e^{z}+1})^{n-1}\neq1 $.

下面讨论问题(ⅱ)中微分多项式$ f(z)+af'(z)^{n}-b $的差分模拟的零点情况.

定理1.2  设$ f(z) $为超越亚纯函数, $ \sigma_{2}(f)<1 $, 且满足$ N(r, f) = S(r, f) $, $ c $为非零复常数, $ n $为正整数, $ \alpha(z)(\not\equiv 0) $$ f(z) $的小函数, $ H(z, f) $是形如(1.1)式的差分多项式, 且$ H(z, f) $中仅有一个单项式具有最高次数, 则

$ \overline{N} \left(r, \frac{1}{f(z)+aH(z, f)^{n}-\alpha(z)}\right)\geq \left((n-1)d_{H}-1\right)T(r, f(z))+S(r, f), $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

例1.2  $ f(z) = \frac{e^{z}-1}{e^{z}+1} $, $ c = \pi i $, $ H(z, f) = f(z)f(z+\pi i) $, 则

$ f(z)+H(z, f)^{n}-2 = \frac{-2}{e^{z}+1}\neq0. $

上例说明定理1.2的条件$ N(r, f) = S(r, f) $不可缺.

推论1.3  设$ f(z) $为超越整函数, 则$ n\geq3 $时, $ f(z)+af(z+c)^{n}-\alpha(z) $有无穷多个零点.

例1.3  $ f(z) = e^{z}+1 $, $ c = \pi i $, $ n = 2 $, 则$ f(z)+\frac{1}{2}f(z+\pi i)^{2}-\frac{3}{2}\neq0. $

上例说明推论1.3结论最佳, 不能再改进.

定理1.3  设$ f(z) $为超越亚纯函数, $ \sigma_{2}(f)<1 $, $ c $为非零复常数, $ n $为正整数, $ \alpha(z)(\not\equiv 0) $$ f(z) $的小函数, 若$ f(z) $满足

$ \lim\limits_{r\rightarrow\infty}\frac{T(r, f(z+c)-f(z))}{T(r, f(z))} = 1, $

$ n\geq5 $时, $ f(z)+a(f(z+c)-f(z))^{n}-\alpha(z) $有无穷多个零点.

例1.4  $ f(z) = e^{z}+p(z) $, $ p(z) $为多项式, $ c = 2\pi i $, $ \alpha(z) = p(z)+(p(z+c)-p(z))^{n} $, 则

$ f(z)+(f(z+c)-f(z))^{n}-\alpha(z) = e^{z}\neq0. $

上例1.4说明定理1.3若要成立, 需对$ f(z+c)-f(z) $附加一些条件.

定理1.4  设$ f(z) $为超越亚纯函数, $ \sigma_{2}(f)<1 $, $ c $为非零复常数, $ n $为正整数, $ \alpha(z)(\not\equiv 0) $$ f(z) $的小函数, 则

$ \begin{eqnarray*} &&\overline{N}\left(r, \frac{1}{f(z)+af(z+c)^{n}-\alpha(z)}\right)\\ &\geq& (n-1)T(r, f(z))-2\overline{N}(r, f(z))-\overline{N}\left(r, \frac{1}{f(z)}\right)+S(r, f), \end{eqnarray*} $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

推论1.4  设$ f(z) $为超越亚纯函数, $ \sigma_{2}(f)<1 $, $ c $为非零复常数, $ n $为正整数, $ \alpha(z)(\not\equiv 0) $$ f(z) $的小函数, 则$ n\geq5 $时, $ f(z)+af(z+c)^{n}-\alpha(z) $有无穷多个零点.

2 引理

引理2.1[7]  设$ f(z) $为非常数亚纯函数, $ \sigma_{2}(f)<1 $, $ c $为非零复常数, 对任意的$ \varepsilon>0 $, 有

$ m\left(r, \frac{f(z+c)}{f(z)}\right) = o\left(\frac{T(r, f(z))}{r^{1-\sigma_{2}(f)-\varepsilon}}\right), $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

由文献[7, 引理8.3], [14, p. 66]及[15, 引理1], 得到下面的引理2.2.

引理2.2  设$ f(z) $为非常数亚纯函数, $ \sigma_{2}(f)<1 $, $ c $为非零复常数, 则

$ \begin{eqnarray*} && T(r, f(z+c)) = T(r, f(z))+S(r, f), \\ &&N(r, f(z+c)) = N(r, f(z))+S(r, f), \\ &&\overline{N}(r, f(z+c)) = \overline{N}(r, f(z))+S(r, f). \end{eqnarray*} $

引理2.3[16]  设$ f(z) $为有限级亚纯函数, 满足$ N(r, f) = S(r, f) $, $ H(z, f) $是形如(1.1)式的差分多项式, 且$ H(z, f) $中仅有一个单项式具有最高次数$ d_{H} $, 则

$ T(r, H(z, f)) = d_{H}T(r, f(z))+S(r, f). $

由文献[16, 定理1]和[17, 引理2], 得到下面的引理.

引理2.4  设$ f(z) $为超越亚纯函数, $ \sigma_{2}(f)<1 $, $ H(z, f) $是形如(1.1)式的差分多项式, 则

$ T(r, H(z, f))\leq md_{H}T(r, f(z))+S(r, f). $
3 定理1.1–1.4的证明

定理1.1的证明  记

$ \begin{equation} F(z) = f(z)^{n}H(z+c)-\alpha(z), \end{equation} $ (3.1)

$ \begin{align} nm(r, f) = &m(r, f^{n}) = m\left(r, \frac{F+\alpha(z)}{H(z, f)}\right)\\ \leq& m\left(r, F+\alpha(z)\right)+m\left(r, \frac{1}{H(z, f)}\right), \end{align} $ (3.2)
$ \begin{align} nN(r, f) = &N(r, f^{n}) = N\left(r, \frac{F+\alpha(z)}{H(z, f)}\right) \\ \leq& N(r, F+\alpha(z))+N\left(r, \frac{1}{H(z, f)}\right)-\overline{N}_{0}(r)-\overline{N}_{1}(r), \end{align} $ (3.3)

其中$ \overline{N}_{0}(r) $, $ \overline{N}_{1}(r) $分别为$ H(z, f) $$ F+\alpha(z) $的公共零点及公共极点的精简密指量.由(3.2)–(3.3)式可得

$ \begin{align} nT(r, f) = &T(r, f^{n}) = T\left(r, \frac{F+\alpha(z)}{H(z, f)}\right) \\ \leq& T(r, F+\alpha(z))+T\left(r, \frac{1}{H(z, f)}\right)-\overline{N}_{0}(r)-\overline{N}_{1}(r). \end{align} $ (3.4)

由(3.1)式可知$ F+\alpha(z) = f^{n}H(z, f) $, 则有

$ \begin{eqnarray} &&\overline{N}\left(r, \frac{1}{F+\alpha(z)}\right)\leq\overline{N}\left(r, \frac{1}{f}\right)+\overline{N}_{0}(r), \end{eqnarray} $ (3.5)
$ \begin{eqnarray} &&\overline{N}(r, F+\alpha(z))\leq\overline{N}(r, f)+\overline{N}_{1}(r). \end{eqnarray} $ (3.6)

再由关于三个小函数的第二基本定理及(3.5)–(3.6)式, 可知

$ \begin{align} T(r, F+\alpha(z))\leq&\overline{N}\left(r, \frac{1}{F+\alpha(z)}\right)+\overline{N}(r, F+\alpha(z))+\overline{N}\left(r, \frac{1}{F}\right) +S(r, F) \\ \leq&\overline{N}\left(r, \frac{1}{f}\right)+\overline{N}(r, f)+\overline{N}\left(r, \frac{1}{F}\right)+\overline{N}_{0}(r)+\overline{N}_{1}(r) +S(r, f) . \end{align} $ (3.7)

又由引理2.4可知

$ \begin{equation} T\left(r, \frac{1}{H(z, f)}\right) = T(r, H(z, f))+O(1)\leq md_{H}T(r, f(z))+S(r, f), \end{equation} $ (3.8)

从而将(3.7)–(3.8)式代入(3.4)式可得

$ \begin{eqnarray*} &&\overline{N}\left(r, \frac{1}{f(z)^{n}H(z, f)-\alpha(z)}\right)\\ &\geq& (n-md_{H})T(r, f(z))-\overline{N}(r, f(z))-\overline{N}\left(r, \frac{1}{f(z)}\right)+S(r, f), \end{eqnarray*} $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

定理1.2的证明  记$ \varphi(z) = \frac{\alpha(z)-f(z)}{aH^{n}}, $

$ \begin{align} nm(r, H) = &m(r, H^{n}) = m\left(r, \frac{\alpha(z)-f}{\varphi(z)}\right)\\ \leq& m(r, \alpha(z)-f)+m\left(r, \frac{1}{\varphi(z)}\right), \end{align} $ (3.9)
$ \begin{align} nN(r, H) = &N(r, H^{n}) = N\left(r, \frac{\alpha(z)-f}{\varphi(z)}\right) \\ \leq& N(r, \alpha(z)-f)+N\left(r, \frac{1}{\varphi(z)}\right)-\overline{N}_{0}(r)-\overline{N}_{1}(r), \end{align} $ (3.10)

其中$ \overline{N}_{0}(r) $$ \overline{N}_{1}(r) $分别为$ \varphi(z) $$ \alpha(z)-f $的公共零点及公共极点的精简密指量.由(3.9)–(3.10)式可得

$ \begin{equation} nT(r, H)\leq T(r, \alpha(z)-f)+T(r, \frac{1}{\varphi(z)})-\overline{N}_{0}(r)-\overline{N}_{1}(r). \end{equation} $ (3.11)

$ N(r, f) = S(r, f) $, 可知$ N(r, H) = S(r, f) $.所以

$ \begin{align} \overline{N}(r, \varphi(z))\leq&\overline{N}(r, \frac{1}{H})+\overline{N}_{1}(r)+S(r, f), \end{align} $ (3.12)
$ \begin{align} \overline{N}\left(r, \frac{1}{\varphi(z)}\right)\leq&\overline{N}(r, H)+\overline{N}_{0}(r)+S(r, f)\leq\overline{N}_{0}(r) +S(r, f), \end{align} $ (3.13)
$ \begin{align} \overline{N}\left(r, \frac{1}{\varphi(z)-1}\right) = &\overline{N}\left(r, \frac{aH^{n}}{\alpha(z)-f-aH^{n}}\right) \leq\overline{N}\left(r, \frac{1}{f+ aH^{n} -\alpha(z)}\right)+S(r, f). \end{align} $ (3.14)

再由关于三个小函数的第二基本定理及(3.12)–(3.14)式可知

$ \begin{align} T\left(r, \frac{1}{\varphi(z)}\right)\leq&\overline{N}\left(r, \frac{1}{\varphi(z)}\right)+\overline{N}(r, \varphi(z))+\overline{N}\left(r, \frac{1}{\varphi(z)-1}\right) +S(r, \varphi) \\ \leq&T\left(r, \frac{1}{H}\right)+\overline{N}\left(r, \frac{1}{f+ aH^{n}-\alpha(z)}\right)+\overline{N}_{0}(r)+\overline{N}_{1}(r) +S(r, f) . \end{align} $ (3.15)

又由引理2.3可知

$ \begin{equation} T(r, H(z, f)) = d_{H}T(r, f(z))+S(r, f), \end{equation} $ (3.16)

从而将(3.15)–(3.16)式代入(3.11)式可得

$ \overline{N}\left(r, \frac{1}{f(z)+aH(z, f)^{n}-\alpha(z)}\right)\geq ((n-1)d_{H}-1)T(r, f(z))+S(r, f), $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

定理1.3的证明  记$ \Delta_{c} f(z) = f(z+c)-f(z) $, $ G(z) = \frac{\alpha(z)-f(z)}{a(\Delta_{c} f)^{n}} $, 则

$ \begin{align} nm(r, \Delta_{c} f) = &m\left(r, (\Delta_{c} f)^{n}\right) = m\left(r, \frac{\alpha(z)-f}{G(z)}\right)\\ \leq& m(r, \alpha(z)-f)+m\left(r, \frac{1}{G(z)}\right), \end{align} $ (3.17)
$ \begin{align} nN(r, \Delta_{c} f) = &N(r, (\Delta_{c} f)^{n}) = N\left(r, \frac{\alpha(z)-f}{G(z)}\right) \\ \leq& N(r, \alpha(z)-f)+N\left(r, \frac{1}{G(z)}\right)-\overline{N}_{0}(r)-\overline{N}_{1}(r), \end{align} $ (3.18)

其中$ \overline{N}_{0}(r) $$ \overline{N}_{1}(r) $分别为$ G(z) $$ \alpha(z)-f $的公共零点及公共极点的精简密指量.由(3.17)–(3.18)式可得

$ \begin{equation} nT(r, \Delta_{c} f)\leq T(r, \alpha(z)-f)+T\left(r, \frac{1}{G(z)}\right)-\overline{N}_{0}(r)-\overline{N}_{1}(r). \end{equation} $ (3.19)

$ G(z) = \frac{\alpha(z)-f(z)}{a(\Delta_{c} f)^{n}} $, 可知

$ \begin{eqnarray} &&\overline{N}\left(r, \frac{1}{G(z)}\right)\leq\overline{N}(r, \Delta_{c} f)+\overline{N}_{0}(r)+S(r, f), \end{eqnarray} $ (3.20)
$ \begin{eqnarray} &&\overline{N}(r, G(z))\leq\overline{N}\left(r, \frac{1}{\Delta_{c} f}\right)+\overline{N}_{1}(r)+S(r, f). \end{eqnarray} $ (3.21)

又由$ \lim\limits_{r\rightarrow\infty}\frac{T(r, f(z+c)-f(z))}{T(r, f(z))} = 1 $, 可知

$ \begin{equation} T(r, \Delta_{c}f) = T(r, f)+S(r, f), \end{equation} $ (3.22)

再由关于三个小函数的第二基本定理及(3.20)–(3.22)式可知

$ \begin{align} T\left(r, \frac{1}{G(z)}\right)\leq&\overline{N}\left(r, \frac{1}{G(z)}\right)+\overline{N}(r, G(z))+\overline{N}\left(r, \frac{1}{G(z)-1}\right) +S(r, G) \\ \leq&\overline{N}(r, \Delta_{c}f)+\overline{N}\left(r, \frac{1}{\Delta_{c} f}\right)+\overline{N}\left(r, \frac{a(\Delta_{c}f)^{n}}{\alpha(z)-f-a(\Delta_{c}f)^{n}}\right)\\ &+\overline{N}_{0}(r)+\overline{N}_{1}(r)+S(r, f)\\ \leq&3T(r, \Delta_{c}f)+\overline{N}\left(r, \frac{1}{f(z)+a(\Delta_{c}f)^{n}-\alpha(z)}\right)\\ &+\overline{N}_{0}(r)+\overline{N}_{1}(r) +S(r, f) . \end{align} $ (3.23)

从而将(3.22)–(3.23)式代入(3.19)式, 可得

$ \overline{N}\left(r, \frac{1}{f(z)+a(\Delta_{c}f)^{n}-\alpha(z)}\right)\geq (n-4)T(r, f(z))+S(r, f), $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

所以$ n\geq5 $时, $ f(z)+a(f(z+c)-f(z))^{n}-\alpha(z) $有无穷多个零点.

定理1.4的证明  记$ \psi(z) = \frac{\alpha(z)-f(z)}{af(z+c)^{n}} $, 则

$ \begin{align} nm(r, f(z+c)) = &m(r, f(z+c)^{n}) = m\left(r, \frac{\alpha(z)-f}{\psi(z)}\right) \\ \leq& m(r, \alpha(z)-f)+m\left(r, \frac{1}{\psi(z)}\right), \end{align} $ (3.24)
$ \begin{align} nN(r, f(z+c)) = &N(r, f(z+c)^{n}) = N\left(r, \frac{\alpha(z)-f}{\psi(z)}\right) \\ \leq& N(r, \alpha(z)-f)+N\left(r, \frac{1}{\psi(z)}\right)-\overline{N}_{0}(r)-\overline{N}_{1}(r), \end{align} $ (3.25)

其中$ \overline{N}_{0}(r) $$ \overline{N}_{1}(r) $分别为$ \psi(z) $$ \alpha(z)-f $的公共零点及公共极点的精简密指量.

由(3.24)–(3.25)式, 可得

$ \begin{equation} nT(r, f(z+c))\leq T(r, \alpha(z)-f)+T\left(r, \frac{1}{\psi(z)}\right)-\overline{N}_{0}(r)-\overline{N}_{1}(r). \end{equation} $ (3.26)

由引理2.2, 可知

$ \begin{eqnarray} &&\overline{N}(r, f(z+c)) = \overline{N}(r, f)+S(r, f), \end{eqnarray} $ (3.27)
$ \begin{eqnarray} &&\overline{N}\left(r, \frac{1}{f(z+c)}\right) = \overline{N}\left(r, \frac{1}{f}\right)+S(r, f). \end{eqnarray} $ (3.28)

所以

$ \begin{eqnarray} &&\overline{N}\left(r, \frac{1}{\psi(z)}\right) = \overline{N}(r, f)+\overline{N}_{0}(r)+S(r, f), \end{eqnarray} $ (3.29)
$ \begin{eqnarray} &&\overline{N}(r, \psi(z)) = \overline{N}\left(r, \frac{1}{f}\right)+\overline{N}_{1}(r)+S(r, f). \end{eqnarray} $ (3.30)

再由关于三个小函数的第二基本定理及(3.29)–(3.30)式, 可知

$ \begin{align} T\left(r, \frac{1}{\psi(z)}\right)\leq&\overline{N}\left(r, \frac{1}{\psi(z)}\right)+\overline{N}(r, \psi(z))+\overline{N}\left(r, \frac{1}{\psi(z)-1}\right) +S(r, \psi) \\ \leq&\overline{N}(r, f)+\overline{N}\left(r, \frac{1}{ f}\right)+\overline{N}\left(r, \frac{1}{\psi(z)-1}\right)+\overline{N}_{0}(r)+\overline{N}_{1}(r) +S(r, f). \end{align} $ (3.31)

又由引理2.2可知

$ \begin{equation} T(r, f(z+c)) = T(r, f)+S(r, f), \end{equation} $ (3.32)

从而将(3.31)–(3.32)式代入(3.26)式可得

$ \overline{N}\left(r, \frac{1}{\psi(z)-1}\right)\geq (n-1)T(r, f)-\overline{N}(r, f)-\overline{N}\left(r, \frac{1}{ f}\right)+S(r, f), $

$ \begin{eqnarray*} &&\overline{N}\left(r, \frac{1}{f(z)+af(z+c)^{n}-\alpha(z)}\right)\\ &\geq& (n-1)T(r, f(z))-2\overline{N}(r, f(z))-\overline{N}\left(r, \frac{1}{f(z)}\right)+S(r, f), \end{eqnarray*} $

其中$ r\rightarrow\infty $, $ r\notin E $, $ E $为一个有限测度集.

参考文献
[1] 杨乐. 值分布论及其新研究[M]. 北京: 科学出版社, 1982.
[2] 仪洪勋, 杨重骏. 亚纯函数唯一性理论[M]. 北京: 科学出版社, 2003.
[3] Chiang Yikman, Feng Shaoji. On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane[J]. Ramanujan J., 2008, 16(1): 105–129. DOI:10.1007/s11139-007-9101-1
[4] Halburd R G, Korhonen R J. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations[J]. J. Math. Anal. Appl., 2006, 314(2): 477–487. DOI:10.1016/j.jmaa.2005.04.010
[5] Langley J K. Value distribution of differences of meromorphic functions[J]. Rocky Mountain J. Math., 2011, 41: 275–291. DOI:10.1216/RMJ-2011-41-1-275
[6] Bergweiler W, Langley J K. Zeros of differences of meromorphic functions[J]. Math. Proc. Camb. Phil. Soc., 2007, 142: 133–147. DOI:10.1017/S0305004106009777
[7] Halburd R G, Korhonen R J, Tohge K. Holomorphic curves with shift-invariant hyper-plane preimages[J]. Trans. Amer. Math. Soc., 2014, 366: 4267–4298. DOI:10.1090/S0002-9947-2014-05949-7
[8] Chen Zongxuan, Shon Kwangho. Estimates for the zeros of differences of meromorphic functions[J]. Sci. China (Ser. A), 2009, 52(11): 2447–2458. DOI:10.1007/s11425-009-0159-7
[9] Hayman W K. Picard values of meromorphic functions and their derivatives[J]. Ann. Math., 1959, 70(2): 9–42.
[10] Ye Yasheng. A Picard type theorem and Bloch law[J]. Chin. Ann. Math., 1994, B15: 75–80.
[11] Fang Mingliang, Zalcman L. On value distribution of $f+a(f')^{n}$[J]. Sci. China (Ser. A), 2008, 51(7): 1196–1202. DOI:10.1007/s11425-008-0022-2
[12] Liu Kai, Liu Xinling, Cao Tingbin. Uniqueness and zeros of $q$ -shift difference polynomials[J]. Proc. Indian Acad. Sci. (Math. Sci.), 2011, 121(3): 301–310. DOI:10.1007/s12044-011-0038-3
[13] Li Xiaomin, Yi Hongxun, Li Wenli. Value distribution of certain difference polynomials of meromorphic functions[J]. Rocky Mountain J. Math., 2014, 44(2): 599–632. DOI:10.1216/RMJ-2014-44-2-599
[14] Gol'dberg A A, Ostrovskii I V. Distribution of Values of Meromorphic Functions[M]. Moscow: Nauka, 1970.
[15] Abowitz M J, Halburd R G, Herbst B. On the extension of the Painleve property to difference equations[J]. Nonlinearity, 1970, 13: 889–905.
[16] Zhang Ranran, Chen Zongxuan. Values distribution of difference polynomials of meromorphic functions (in chinese)[J]. Sci. Sin. Math., 2012, 42(11): 1115–1130. DOI:10.1360/012011-760
[17] Zheng Xiumin, Chen Zongxuan. Some properties of meromorphic solutions of q-difference equations[J]. J. Math. Anal. Appl., 2010, 361: 472–480. DOI:10.1016/j.jmaa.2009.07.009