A lazy 2-cocycle of a Hopf algebra $ H $ is a 2-cocycle $ {\sigma}: H{\otimes} H{\longrightarrow} K $, which commutes with multiplication in the Hopf algebra. The second lazy cohomology group generalizes Sweedler's second cohomology group of a cocommutative Hopf algebra and the Schur multiplier of a group. Let $ B\diamondsuit H $ be a Radford biproduct, where $ H $ is a Hopf algebra and $ B $ is a Hopf algebra in the category of Yetter-Drinfeld modules over $ H $. A group morphism $ H^2_L(B){\longrightarrow} H^2_L(B\diamondsuit H) $ is constructed by Cuadra and Panaite in [1]. In [2], Panaite et al. introduced the concepts of pure and neat lazy 2-cocycle and extended pure and neat lazy cocycles to the Radford biproducts.
The origins of the study of Hom-algebras can be found in [3] by Hartwig, Larsson and Silvestrov, and earlier precursors of Hom-Lie algebras can be found in Hu's paper (see [4]). Subsequently, Hom-type algebra has been studied by many researchers. Especially, in 2014, Li and Ma introduced the notions of Radford biproduct Hom-Hopf algebra $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $ and Hom-Yetter-Drinfeld category $ _H^H{\mathbb{YD}} $ (see [5]), which generalize the corresponding concepts in usual Hopf algebras. In 2017, the authors presented a more general version of $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $ (see [6]).
Radford biproduct Hom-Hopf algebra was given below.
Theorem 1.1 Let $ (H, {\alpha}) $ be a Hom-bialgebra, $ (B, {\beta}) $ a left $ (H, {\alpha}) $-module Hom-algebra with module structure $ \rhd: H{\otimes} B{\longrightarrow} B $ and a left $ (H, {\alpha}) $-comodule Hom-coalgebra with comodule structure $ \rho: B{\longrightarrow} H{\otimes} B $. Then the following conclusions are equivalent.
(i) $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $ is a Hom-bialgebra, where $ (B\# H, {\beta}{\otimes} {\alpha}) $ is a smash product Hom-algebra (see [7]) and $ (B{\times} H, {\beta}{\otimes} {\alpha}) $ is a smash coproduct Hom-coalgebra.
(ii) The following conditions hold ($ \forall\; a,b\in B $ and $ h\in H $)
(R1) $ (B,\rho,{\alpha}) $ is an $ (H,{\beta}) $-comodule Hom-algebra,
(R2) $ (B,\rhd,{\alpha}) $ is an $ (H,{\beta}) $-module Hom-coalgebra,
(R3) $ {\varepsilon}_B $ is a Hom-algebra map and $ {\Delta}_B(1_B) = 1_B{\otimes} 1_B $,
(R4) $ {\Delta}_B(ab) = a_1({\alpha}^2(a_{2-1})\rhd {\beta}^{-1}(b_1)){\otimes} {\beta}^{-1}(a_{20})b_2 $,
(R5) $ h_1{\alpha}(a_{-1}){\otimes} ({\alpha}^3(h_2)\rhd a_0) = ({\alpha}^2(h_1)\rhd a)_{-1}h_2{\otimes} ({\alpha}^2(h_1)\rhd a)_{0} $.
Definition 1.2 Let $ (H, {\alpha}) $ be a Hom-bialgebra, $ (M,\rhd_M, {\alpha}_M) $ a left $ (H,{\alpha}) $-module with action $ \rhd_M: H{\otimes} M{\longrightarrow} M, h{\otimes} m\mapsto h\rhd_M m $ and $ (M,\rho^M, {\alpha}_M) $ a left $ (H,{\alpha}) $-comodule with coaction $ \rho^M: M{\longrightarrow} H{\otimes} M, m\mapsto m_{-1}{\otimes} m_{0} $. Then we call $ (M,\rhd_M, \rho^M,{\alpha}_M) $ a (left-left) Hom-Yetter-Drinfeld module over $ (H,{\alpha}) $ if the following condition holds:
where $ h\in H $ and $ m\in M $.
When $ (H,{\alpha}) $ is a Hom-Hopf algebra, then the condition (HYD) is equivalent to
So it is natural to consider the relations between the 2-cocycles $ {\sigma} $ on $ (B, {\beta}) $ and $ \overline {\sigma} $ on $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $.
In this paper, we mainly investigate the relations between the left 2-cocycles $ {\sigma} $ on $ (B, {\beta}) $ and $ \overline {\sigma} $ on $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $, and also provide two non-trivial examples.
Next we recall some definitions and results in [8] which will be used later.
Definition 1.3 A left 2-cocycle on a Hom-bialgebra $ (H,{\alpha}) $ is a linear map $ {\sigma}:H{\otimes} H{\rightarrow} K $ satisfying
for all $ a,b,c\in H $.
Furthermore, $ {\sigma} $ is normal if $ {\sigma}(1,h) = {\sigma}(h,1) = {\varepsilon}(h) $ for all $ h\in H $.
Remarks (1) Similarly if eq. (1.2) is replaced by
then $ {\sigma} $ is a right 2-cocycle.
(2) If $ {\sigma}:H{\otimes} H{\longrightarrow} K $ is a normal and convolution invertible, then $ {\sigma} $ is a left 2-cocycle if and only if $ {\sigma}^{-1} $ is a right 2-cocycle.
Proposition 1.4 Let $ (H,{\alpha}) $ be a Hom-Hopf algebra.
(1) If $ {\sigma} $ is a normal left 2-cocyle on $ (H,{\alpha}) $, for all $ h, g\in H $, define a new multiplication on $ H $ as follows
Then $ (H,{\cdot}_{\sigma},{\alpha}) $ is a Hom-algebra, we denote the algebra by $ (_{\sigma} H,{\alpha}) $.
(2) If $ {\sigma} $ is a normal right 2-cocyle on $ (H,{\alpha}) $ for all $ h,g\in H $, define multiplication on $ H $ as follows $ h _{\sigma}{\cdot} g = {\alpha}^{-1}(h_1g_1){\sigma}(h_2,g_2). $ Then $ (H,_{\sigma}{\cdot},{\alpha}) $ is also a Hom-algebra, we denote the algebra by $ (H_{\sigma},{\alpha}) $.
Definition 1.5 A left 2-cocyle $ {\sigma} $ on $ (H,{\alpha}) $ is called lazy if for all $ h,g\in H $,
Remark A lazy left 2-cocyle on $ (H,{\alpha}) $ is also a right 2-cocyle on $ (H,{\alpha}) $.
Lemma 1.6 Let $ {\gamma}:H{\longrightarrow} K $ be a normal (i.e. $ {\gamma}(1) = 1 $) and convolution invertible linear map such that $ {\gamma}\circ {\alpha} = {\gamma} $, define $ D^1({\gamma}): H{\otimes} H{\longrightarrow} K $ by
for all $ h,g\in H $. Then $ D^1({\gamma}) $ is a normal and convolution invertible left 2-cocycle on $ (H,{\alpha}) $.
Remarks (1) The set $ Reg^1(H,{\alpha}) $ (respectively $ {\rm Re}g^2(H,{\alpha}) $) consisting of normal and convolution invertible linear maps $ {\gamma}:H{\longrightarrow} K $ such that $ {\gamma}\circ {\alpha} = {\gamma} $ (respectively $ {\sigma}:H{\otimes} H{\longrightarrow} K $ such that $ {\sigma}\circ({\alpha}{\otimes} {\alpha}) = {\sigma} $), is a group with respect to the convolution product.
(2) $ {\gamma} $ is lazy if for all $ h\in H $, $ {\gamma}(h_1)h_2 = h_1{\gamma}(h_2) $. The set of all normal and convolution invertible linear maps $ {\gamma}:H{\longrightarrow} K $ satisfying $ {\gamma}\circ {\alpha} = {\gamma} $ is denoted by $ {\rm Re}g^1_L(H) $, which is a group under convolution.
Lemma 1.7 The set of convolution invertible lazy 2-cocycle on $ (H,{\alpha}) $ denoted by $ Z^2_L(H,{\alpha}) $ is a group.
Proposition 1.8 $ D^1:{\rm Re}g^1_L(H,{\alpha}){\longrightarrow} Z^2_L(H,{\alpha}) $ is a group homomorphism, whose image denoted by $ B^2_L(H,{\alpha}) $ (its elements are called lazy 2-coboundary), is contained in the center of $ Z^2_L(H,{\alpha}) $. Thus we call quotient group $ H^2_L(H,{\alpha}): = Z^2_L(H,{\alpha})/B^2_L(H,{\alpha}) $ the second lazy cohomology group of $ H $.
In this section, we investigate the relations between the left 2-cocycles $ {\sigma} $ on $ (B, {\beta}) $ and $ \overline {\sigma} $ on $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $, and also provide two non-trivial examples. In what follows, let $ (H,{\alpha}) $ be a Hom-Hopf algebra with bijective antipode S and $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $ Radford biproduct Hom-Hopf algebra such that $ {\alpha}^2 = id $.
First we give some useful formulas. The Hom-coalgebra structure on $ (B{\otimes} B,{\beta}{\otimes} {\beta}) $ in $ _H^H{\mathbb{YD}} $ is given by
So by (2.1), if $ {\sigma},\tau:B{\otimes} B{\longrightarrow} K $ are morphisms in $ _H^H{\mathbb{YD}} $, their convolution in $ _H^H{\mathbb{YD}} $ is given by
Let $ {\sigma}:B{\otimes} B{\longrightarrow} K $ be a morphism in $ _H^H{\mathbb{YD}} $, that is, it satisfies the conditions
for all $ h\in H $ and $ b,b'\in B $.
Lemma 2.1 For a morphism $ {\sigma}:B{\otimes} B{\longrightarrow} K $ in $ _H^H{\mathbb{YD}} $, we can get the following useful formula
for all $ a,b\in B $ and $ h\in H $.
Proof We can check that as follows
Definition 2.2 Let $ {\sigma}:B{\otimes} B{\longrightarrow} K $ be a morphism in $ _H^H{\mathbb{YD}} $. Then $ {\sigma} $ is lazy in $ _H^H{\mathbb{YD}} $ if it satisfies the categorical laziness condition (for all $ b,b'\in B $)
Definition 2.3 Let $ {\sigma}:B{\otimes} B{\longrightarrow} K $ be a morphism in $ _H^H{\mathbb{YD}} $. Then $ {\sigma} $ is a normal left 2-cocycle on $ (B,{\beta}) $ in $ _H^H{\mathbb{YD}} $ if it is a normal morphism in $ _H^H{\mathbb{YD}} $ and satisfies the categorical left 2-cocycle condition
for all $ a,b,c\in B $.
Proposition 2.4 If we define a Hom-multiplication $ {\cdot}_{\sigma} $ on $ (B,{\beta}) $ by
for any $ b,b'\in B $, then
(1) $ (_{{\sigma}}B,{\beta}) $ is a Hom-algebra if and only if $ {\sigma} $ is a normal left 2-cocycle in $ _H^H{\mathbb{YD}} $.
(2) $ (_{{\sigma}}B,{\beta}) $ is a left $ (H,{\alpha}) $ Hom-module algebra with the same action as $ (B,{\beta}) $.
Proof (1) For any $ b\in B $, it is easy to check that $ b \cdot_{\sigma} 1_B = {\beta}(b) $ if and only if $ {\sigma}(b,1_B) = {\varepsilon}(b) $ and $ 1_B \cdot_{\sigma} b = {\beta}(b) $ if and only if $ {\sigma}(1_B,b) = {\varepsilon}(b) $. For any $ a,b,c\in B $, we have
and
Hence, if $ \cdot_{\sigma} $ is Hom-associative, we get
Applying $ {\varepsilon} $ to both sides of the above equation, we get (2.8).
Conversely, if $ {\sigma} $ is a left 2-cocycle in $ _H^H{\mathbb{YD}} $, we have
then we can get $ {\beta}(a)\cdot_{\sigma} (b\cdot_{\sigma} c) = (a\cdot_{\sigma} b)\cdot_{\sigma} {\beta}(c) $, i.e., $ {\cdot}_{{\sigma}} $ is Hom-associative.
(2) We check that $ (_{{\sigma}}B,{\beta}) $ is a left $ (H,{\alpha}) $-Hom-module algebra. Clearly, $ h{\cdot} 1_B = {\varepsilon}(h)1_B $ for any $ h\in H $. Next we only need to check the identity $ h{\cdot} (b\cdot_{\sigma} b') = (h_1{\cdot} b)\cdot_{\sigma}(h_2{\cdot} b') $ for any $ h\in H $ and $ b,b'\in B $. Indeed, we have
the proof is completed.
Let $ {\gamma}:B {\longrightarrow} K $ be a morphism in $ _H^H{\mathbb{YD}} $, that is
for all $ h\in H $ and $ b\in B $.
If $ {\gamma} $ is a normal and convolution invertible linear map in $ _H^H{\mathbb{YD}} $, with convolution inverse $ {\gamma}^{-1} $ in $ _H^H{\mathbb{YD}} $, the analogue of the operator $ D^1 $ is given in $ _H^H{\mathbb{YD}} $ by
For a morphism $ {\gamma}:B {\longrightarrow} K $ in $ _H^H{\mathbb{YD}} $, the laziness condition is identical to the usual one: $ {\gamma}(b_1)b_2 = b_1{\gamma}(b_2) $ for all $ b\in B $. Reg$ ^1_L(B,{\beta}) $ is a group in $ _H^H{\mathbb{YD}} $.
Theorem 2.5 (i) For a normal left 2-cocycle $ {\sigma}:B{\otimes} B {\longrightarrow} K $ in $ _H^H{\mathbb{YD}} $, define $ \overline {\sigma}:B^{\#}_{{\times}} H{\otimes} B^{\#}_{{\times}} H{\longrightarrow} K $ by
then $ \overline {\sigma} $ is a normal left 2-cocycle on $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $ and we have $ _{{\sigma}}B\# H = _{\overline {\sigma}}(B^{\#}_{{\times}} H) $ as Hom-algebras. Moreover, $ \overline {\sigma} $ is unique with this property.
(ii) If $ \overline {\sigma} $ is a left 2-cocycle on $ (B^{\#}_{{\times}}H,{\beta}{\otimes}{\alpha}) $, then $ {\sigma} $ is a left 2-cocycle on $ (B,{\beta}) $ in $ _H^H{\mathbb{YD}} $.
(iii) If $ {\sigma} $ is convolution invertible in $ _H^H{\mathbb{YD}} $, then $ \overline {\sigma} $ is convolution invertible, with inverse
where $ {\sigma}^{-1} $ is the convolution inverse of $ {\sigma} $ in $ _H^H{\mathbb{YD}} $.
(iv) $ {\sigma} $ is lazy in $ _H^H{\mathbb{YD}} $ if and only if $ \overline {\sigma} $ is lazy.
(v) If $ {\sigma},\tau: B{\otimes} B {\longrightarrow} K $ are lazy 2-cocycles in $ _H^H{\mathbb{YD}} $, then $ \overline{{\sigma}\ast\tau} = \overline{\sigma} \ast \overline\tau $, hence the map $ {\sigma}{\longrightarrow}\overline{\sigma} $ is a group homomorphism from $ Z^2_L(B,{\beta}) $ to $ Z^2_L(B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $.
(vi) If $ {\gamma}:B{\longrightarrow} K $ is a normal and convolution invertible morphism in $ _H^H{\mathbb{YD}} $, define $ \overline {\gamma}:B^{\#}_{{\times}} H{\longrightarrow} K $ by
then $ \overline {\gamma} $ is normal and convolution invertible and $ \overline{D^1({\gamma})} = D^1(\overline{\gamma}) $. If $ {\gamma} $ is lazy in $ _H^H{\mathbb{YD}} $, then $ \overline{\gamma} $ is also lazy.
Proof (i) It is easy to see that $ \overline {\sigma} $ is normal. Since $ _{{\sigma}}B\# H $ is a Hom-algebra, we have
Applying $ {\varepsilon}_B{\otimes} {\varepsilon}_H $ to both sides of (2.16), then $ \overline {\sigma} $ is a normal left 2-cocycle on $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $.
We prove that the multiplication in $ _{{\sigma}}B\# H $ and $ _{\overline {\sigma}}(B^{\#}_{{\times}} H) $ coincide.
The uniqueness of $ \overline {\sigma} $ follows easily by applying $ {\varepsilon}_B{\otimes} {\varepsilon}_H $ to the multiplications in $ _{{\sigma}}B\# H $ and $ _{\overline {\sigma}}(B^{\#}_{\times} H) $. We check that as follows
(ii) Let $ a,b,c\in B $ and $ h,g,l\in H $, we have
Then
Let $ h = g = l = 1_H $, we can get (2.8).
(iii)
(iv) Now let $ b,b'\in B $ and $ h,h'\in H $ and assume that $ {\sigma} $ is lazy in $ _H^H{\mathbb{YD}} $, then we prove (1.4) for $ \overline {\sigma} $ on $ (B^{\#}_{{\times}} H,{\beta}{\otimes} {\alpha}) $ as follows:
which proves that $ \overline {\sigma} $ is lazy.
Conversely, if $ \overline {\sigma} $ is lazy, we have
then we can get
Applying $ id{\otimes} {\varepsilon} $ to both sides of the above equation and let $ h = 1_H $, we get $ {\sigma} $ is lazy in $ _H^H{\mathbb{YD}} $.
(v) Using (2.2) for the convolution in $ _H^H{\mathbb{YD}} $, we compute
(vi) Obviously $ \overline{\gamma} $ is normalized, and it is easy to see that its convolution inverse is given by $ \overline{\gamma}^{\; -1}(b{\times} h) = {\gamma}^{-1}(b){\varepsilon}(h) $, where $ {\gamma}^{\; -1} $ is the convolution inverse of $ {\gamma} $ in $ _H^H{\mathbb{YD}} $. Now we compute
Hence we have indeed $ \overline{D^1({\gamma})} = D^1(\overline{\gamma}) $. If $ {\gamma} $ is lazy in $ _H^H{\mathbb{YD}} $, then we have
so $ \overline{\gamma} $ is lazy.
Remarks (1) $ Z^2_L(B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $ is a group by Lemma 1.7.
(2) If $ {\sigma},\tau $ are left lazy 2-cocycles on $ (B,{\beta}) $ in $ _H^H{\mathbb{YD}} $, we can get $ \overline{\sigma},\overline\tau $ are left lazy 2-cocycles on $ (B^{\#}_{{\times} }H,{\beta}{\otimes}{\alpha}) $ by (i) and (iv). Then $ \overline{\sigma} \ast \overline\tau $ is a left lazy 2-cocycle on $ (B^{\#}_{{\times} }H,{\beta}{\otimes}{\alpha}) $. Combining (ii) with (v), we have $ {\sigma}\ast\tau $ is a left lazy 2-cocycle on $ (B,{\beta}) $ in $ _H^H{\mathbb{YD}} $.
By (2.13) and (2.14), we have $ \overline {\sigma}^{-1} = \overline {{\sigma}^{-1}} $. If $ \overline {\sigma}\in Z^2_L(B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $, then $ \overline {\sigma}^{-1} = \overline {{\sigma}^{-1}}\in Z^2_L(B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $. Combining (ii) with (iv), then $ {\sigma}^{-1} $ is a lazy 2-cocycle on $ (B,{\beta}) $ in $ _H^H{\mathbb{YD}} $.
In a word, the set of convolution invertible lazy 2-cocycle on $ (B,{\beta}) $ in $ _H^H{\mathbb{YD}} $ denoted by $ Z^2_L(B,{\beta}) $ is a group.
Proposition 2.6 $ D^1:{\rm Re}g^1_L(B,{\beta}){\longrightarrow} Z^2_L(B,{\beta}) $ is a group homomorphism in $ _H^H{\mathbb{YD}} $, whose image denoted by $ B^2_L(B,{\beta}) $ (its elements are called lazy 2-coboundary in $ _H^H{\mathbb{YD}} $), is contained in the center of $ Z^2_L(B,{\beta}) $. Thus we call quotient group $ H^2_L(B,{\beta}): = Z^2_L(B,{\beta})/B^2_L(B,{\beta}) $ the second lazy cohomology group of $ (B,{\beta}) $ in $ _H^H{\mathbb{YD}} $.
Proof It is easy to check that $ D^1:{\rm Re}g^1_L(B,{\beta}){\longrightarrow} Z^2_L(B,{\beta}) $ is a group homomorphism in $ _H^H{\mathbb{YD}} $. Now we prove $ B^2_L(B,{\beta}) $ is contained in the center of $ Z^2_L(B,{\beta}) $.
For all $ {\gamma}\in {\rm Re}g^1_L(B,{\beta}) $ and $ {\sigma}\in Z^2_L(B,{\beta}) $,
Then $ {\sigma}\ast D^1({\gamma}) = D^1({\gamma})\ast {\sigma} $. The proof is completed.
Proposition 2.7 If $ {\sigma} $ is a lazy 2-coboundary for $ (B,{\beta}) $ in $ _H^H{\mathbb{YD}} $, then $ \overline {\sigma} $ is a lazy 2-coboundary for $ (B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}) $, so the group homomorphism $ Z^2_L(B,{\beta}){\longrightarrow} Z^2_L(B^{\#}_{{\times}} H, {\beta}{\otimes} {\alpha}), {\sigma}\mapsto \overline {\sigma} $, factorizes to a group homomorphism $ H^2_L(B,{\beta}){\longrightarrow} H^2_L(B^{\#}_{{\times}} H,{\beta}{\otimes} {\alpha}) $.
Proof It follows immediately from (vi) in Theorem 2.5.
Example 2.8 Let $ A = sp\{1_A,z\} $ and the automorphism $ {\beta}:A{\longrightarrow} A,\; \; {\beta}(1_A) = 1_A,{\beta}(z) = -z $. Then $ (A,{\beta}) $ is a Hom-algebra with multiplication: $ 1_A1_A = 1_A, 1_Az = z1_A = -z,z^2 = 0 $, and $ (A,{\beta}) $ is a Hom-coalgebra with comultiplication and counit
Let $ H = sp\{1_H,g\} $ be the group Hopf algebra with $ g^2 = 1_H $ and $ {\Delta}(g) = g{\otimes} g,S_H(g) = g = g^{-1} $. Then $ (H,id_H) $ is a Hom-Hopf algebra.
Define $ {\cdot}:H{\otimes} A{\longrightarrow} A $ such that $ 1_H{\cdot} 1_A = 1_A, 1_H{\cdot} z = -z, g{\cdot} 1_A = 1_A $, and $ g{\cdot} z = z $. It is easy to check $ (A,{\beta}) $ is a left $ (H,id_H) $-module Hom-algebra and module Hom-coalgebra.
Define $ {\rho}: A{\longrightarrow} H{\otimes} A $ such that $ {\rho}(1_A) = 1_H{\otimes} 1_A $ and $ {\rho}(x) = g{\otimes} (-z) $. We get $ (A,{\beta}) $ is a left $ (H,id_H) $-comodule Hom-algebra and comodule Hom-coalgebra. Then we can get a Radford biproduct Hom-bialgebra $ (A^{\#}_{{\times}}H,{\beta}{\otimes} id) $ (see [5]).
Define $ {\sigma}:A{\otimes} A{\longrightarrow} K $ by
where $ \forall\; s\in K $.
Then we can check that $ {\sigma} $ is normal left 2-cocycle on $ (A,{\beta}) $ in $ _H^H{\mathbb{YD}} $, and $ {\sigma} $ is lazy in $ _H^H{\mathbb{YD}} $. By Theorem 2.5, $ \overline{\sigma} $ is defined as follows
and $ \overline{\sigma} $ is a normal lazy left 2-cocycle.
Let $ {\gamma}(1_A) = 1,{\gamma}(z) = 0 $. Then $ {\gamma} $ is normal and lazy in $ _H^H{\mathbb{YD}} $. By Theorem 2.5, $ \overline{\gamma} $ is defined as follows
and $ \overline{\gamma} $ is normal and lazy.
Example 2.9 Let $ KZ_2 = K\{1,a\} $ be Hopf group algebra. Then $ (KZ_2, id) $ is a Hom-Hopf algebra. Let $ T_{2,-1} = K\{1,g,x,y|g^2 = 1,x^2 = 0,y = gx,gy = -yg = x\} $ be Taft's Hopf algebra, its coalgebra structure and antipode are given by
and $ S(g) = g, S(x) = y, S(y) = -x. $ Define a linear map $ {\alpha}:T_{2,-1}{\longrightarrow} T_{2,-1} $ by $ {\alpha}(1) = 1, {\alpha}(g) = g, {\alpha}(x) = -x, {\alpha}(y) = -y. $ Then $ {\alpha} $ is an automorphism of Hopf algebra.
So we can get a Hom-Hopf algebra $ H_{{\alpha}} = (T_{2,-1},{\alpha}\circ \mu_{T_{2,-1}},1_{T_{2,-1}},{\Delta}_{T_{2,-1}}\circ{\alpha},{\varepsilon}_{T_{2,-1}},{\alpha}) $. Define module action $ {\triangleright}:KZ_2{\otimes} H_{{\alpha}}{\longrightarrow} H_{{\alpha}} $ by
Then by a routine computation we can get $ (H_{{\alpha}},{\triangleright},{\alpha}) $ is a $ (KZ_2,id) $-module Hom-algebra. Therefore, $ (H_{{\alpha}}\# KZ_2,{\alpha}{\otimes} id) $ is a smash product Hom-algebra.
Define comodule action $ {\rho}:H_{{\alpha}}{\longrightarrow} KZ_2{\otimes} H_{{\alpha}} $ by
Then we can get $ (H_{{\alpha}},{\rho},{\alpha}) $ is a left $ (KZ_2,id) $-comodule Hom-coalgebra. Therefore $ (H_{{\alpha}}{\times} KZ_2,{\alpha}{\otimes} id) $ is a smash coproduct Hom-coalgebra.
Then we can get a Radford biproduct Hom-bialgebra $ (H^{ \quad \#}_{{\alpha}{\times}}KZ_2,{\alpha}{\otimes} id) $ (see [5]).
Define $ {\sigma}:H_{{\alpha}}{\otimes} H_{{\alpha}}{\longrightarrow} K $ by
Then we can check that $ {\sigma} $ is a normal left 2-cocycle on $ (H_{{\alpha}},{\alpha}) $ in $ _H^H{\mathbb{YD}} $, and $ {\sigma} $ is lazy in $ _H^H{\mathbb{YD}} $. By Theorem 2.5, $ \overline{\sigma} $ is defined as follows
and $ \overline{\sigma} $ is a normal lazy left 2-cocycle on $ (H^{ \quad \#}_{{\alpha}{\times}}KZ_2,{\alpha}{\otimes} id) $.
Let $ {\gamma}(1) = 1,{\gamma}(g) = 1 $, $ {\gamma}(x) = 0,{\gamma}(y) = 0 $. Then $ {\gamma} $ is normal and lazy in $ _H^H{\mathbb{YD}} $. By Theorem 2.5, $ \overline{\gamma} $ is defined as follows