Let $ \mathbb{N} = \{ 0, 1, 2, \cdots\} $ and write $ \mathbb{N}_+ $ for $ \mathbb{N}\setminus\{0\}. $ For a subset $ A $ of an additive group, we define the difference set $ A-A = \{ a-a':a, a'\in A\}. $ If $ A $ also is finite, we denote by $ |A| $ its cardinality.
In the late 1970s, Furstenberg [1] and S$ \acute{\mathrm{a}} $rk$ \ddot{\mathrm{o}} $zy [2] independently proved the following conclusion. If $ A $ is a subset of positive upper density of $ \mathbb{Z}, $ then there exist two distinct elements of $ A $ whose difference is a perfect square. The latter also provided an explicit estimate, but the former result is not quantitative. S$ \acute{\mathrm{a}} $rk$ \ddot{\mathrm{o}} $zy's theorem was later improved by Pintz, Steiger and Szemer$ \acute{\mathrm{e}} $di in [3], where they obtained the following theorem.
Theorem A There exists a constant $ D>0 $ such that the following holds. Let $ N\in\mathbb{N}_+ $ and $ A\subseteq\mathbb{N}\cap [1, N]. $ If $ (A-A)\cap\{ n^2:n\in\mathbb{N}_+\} = \emptyset, $ then we have
Remark 1 Balog, Pelik$ \acute{\mathrm{a}} $n, Pintz and Szemer$ \acute{\mathrm{e}} $di [4] showed that one may replace $ \frac{1}{12} $ by $ \frac{1}{4} $ in the above bound. This estimate is the current best known bound.
In 1996, by extending the ideas of Furstenberg, Bergelson and Leibman [5] established a far reaching qualitative result, the so-called Polynomial Szemer$ \acute{\mathrm{e}} $di theorem. It is natural to ask for a quantitative version of the Polynomial Szemer$ \acute{\mathrm{e}} $di theorem. Recently, Lyall and Magyar [6] made some progress towards this problem. They first proved a higher dimensional analogue of S$ \acute{\mathrm{a}} $rk$ \ddot{\mathrm{o}} $zy's theorem.
Theorem B For $ k\in\mathbb{N} $ with $ k\geq 2, $ there exists a constant $ D'>0 $ such that the following holds. Let $ N\in\mathbb{N}_+ $ and $ A\subseteq\mathbb{N}^k\cap [1, N]^k. $ If $ (A-A)\cap\big\{ (n, n^2, \cdots, n^k):n\in\mathbb{Z}\setminus\{0\}\big\} = \emptyset, $ then we have
Then by applying Theorem B, they established a quantitative result on the existence of polynomial configurations of the type in the Polynomial Szemer$ \acute{\mathrm{e}} $di theorem in the difference set of sparse subsets of $ \mathbb{Z}. $
Theorem C Let $ l\in\mathbb{N}_+ $ and $ P_1, \cdots, P_l\in\mathbb{Z}[x] $ with $ P_i(0) = 0 $ for $ i = 1, \cdots, l. $ Suppose that $ k = \max\limits_{1\leq i\leq l}\mathrm{deg}P_i\geq 2. $ Then there exists a constant $ D''>0 $ such that the following inequality holds: let $ N\in\mathbb{N}_+ $ and $ A\subseteq\mathbb{N}\cap [1, N]. $ If $ \big\{P_1(n), \cdots, P_l(n)\big\}\nsubseteq A-A $ for any $ n\in\mathbb{Z}\setminus\{0\}, $ then we have
Remark 2 Theorems B and C were quoted from the revised version of [6], where the authors improved the main results in the original edition.
By taking $ l = 1, $ $ P_1 = x^2 $ and $ k = 2, $ S$ \acute{\mathrm{a}} $rk$ \ddot{\mathrm{o}} $zy's theorem follows from Theorem C. Thus, we may consider Theorem C to be S$ \acute{\mathrm{a}} $rk$ \ddot{\mathrm{o}} $zy's theorem for a family of polynomials.
Let $ \mathbb{F}_q $ be the finite field of $ q $ elements. Let $ p $ denote the characteristic of $ \mathbb{F}_q. $ We denote by $ \mathbb{A} = \mathbb{F}_q[t] $ the polynomial ring over $ \mathbb{F}_q $ and write $ \mathbb{A}^\times = \mathbb{F}_q[t]\setminus\{0\}. $ For $ N\in\mathbb{N}, $ let $ \mathbb{G}_N $ be the set of all polynomials in $ \mathbb{A} $ of degree less than $ N. $
By adapting part of the Pintz-Steiger-Szemer$ \acute{\mathrm{e}} $di argument, L$ \hat{\mathrm{e}} $ and Liu [7] obtained an analogue of Theorem A in function fields.
Theorem D If $ p\geq 3, $ then there exists a constant $ D'''>0, $ depending only on $ q, $ such that the following holds: let $ N\in\mathbb{N} $ with $ N\geq 2 $ and $ A\subseteq\mathbb{G}_N. $ If $ (A-A)\cap\{ d^2:d\in\mathbb{A}^\times\} = \emptyset, $ then we have
In this paper, for the case $ k = 2, $ we consider the analogues of Theorems B and C in function fields. First, by closely following the approach of Lyall and Magyar, which is explained in detail by Rice [8], we prove a 2-dimensional version of S$ \acute{\mathrm{a}} $rk$ \ddot{\mathrm{o}} $zy's theorem in function fields.
Theorem 1 If $ p\geq 3, $ then there exists a constant $ C>0, $ depending only on $ q, $ such that the following holds: let $ N\in\mathbb{N} $ with $ N\geq 2 $ and $ A\subseteq\mathbb{G}_N^2. $ If $ (A-A)\cap\{ (d, d^2):d\in\mathbb{A}^\times\} = \emptyset, $ then we have
By adapting the lifting argument in [6], we deduce the following analogue of Theorem C from Theorem 1.
Theorem 2 Let $ l\in\mathbb{N}_+ $ and $ P_1, \cdots, P_l\in\mathbb{A}[x] $ with $ P_i(0) = 0 $ for $ i = 1, \cdots, l. $ Suppose that $ \max\limits_{1\leq i\leq l}\mathrm{deg}P_i\leq 2 $ and $ p\geq 3. $ Then there exists a constant $ C'>0, $ depending only on $ q, P_1, \cdots, P_l, $ such that the following inequality holds: let $ N\in\mathbb{N} $ with $ N\geq 2 $ and $ A\subseteq\mathbb{G}_N. $ If $ \big\{P_1(d), \cdots, P_l(d)\big\}\nsubseteq A-A $ for any $ d\in\mathbb{A}^\times, $ then we have $ |A|\leq C'q^N\big(\frac{\log N}{N}\big)^{\frac{1}{l}}. $
In particular, by taking $ l = 1 $ and $ P_1 = x^2 $ in Theorem 2, we obtain a slight improvement of Theorem D.
In the general cases $ k\geq 3, $ it is more difficult to establish a $ k $-dimensional analogue of Theorem B in function fields. The main obstruction is that we are not able to obtain satisfactory exponential sum estimates on the minor arcs (for details of the circle method, see [9]), i.e., suitable generalizations of Proposition 10. We intend to return to this topic in the future.
Let $ \mathbb{K} = \mathbb{F}_q(t) $ be the field of fractions of $ \mathbb{A}. $ For $ a, b\in\mathbb{A} $ with $ b\neq 0, $ we define $ |\frac{a}{b}| = q^{\mathrm{deg}a-\mathrm{deg}b}. $ Then $ |\cdot | $ is a valuation on $ \mathbb{K}. $ The completion of $ \mathbb{K} $ with respect to this valuation is $ \mathbb{K}_\infty = \big\{\sum\limits_{i\leq r}c_it^i:r\in\mathbb{Z}\ \mathrm{and}\ c_i\in\mathbb{F}_q\ (i\leq r)\big\}, $ the field of formal Laurent series in $ \frac{1}{t}. $
For $ \omega = \sum\limits_{i\leq r}c_it^i\in\mathbb{K}_\infty, $ if $ c_r\neq 0, $ we define $ \mathrm{ord}\omega = r. $ Also, we adopt the convention that $ \mathrm{ord} 0 = -\infty. $ Thus, we have $ |\omega | = q^{\mathrm{ord}\omega}. $ We define $ \{ \omega\} = \sum\limits_{i\leq -1}c_it^i $ to be the fractional part of $ \omega $ and we write $ [\omega] $ for $ \sum\limits_{i\geq 0}c_it^i. $ Then it follows that $ \omega = [\omega]+\{ \omega\}. $ We also write $ \mathrm{res}\omega $ for $ c_{-1} $ which is said to be the residue of $ \omega. $
$ \mathbb{K}_\infty $ is a locally compact field and $ \mathbb{T} = \big\{\omega\in\mathbb{K}_\infty :\mathrm{ord}\omega\leq -1\big\} $ is a compact subring of $ \mathbb{K}_\infty. $ Let $ d\omega $ be the Haar measure on $ \mathbb{K}_\infty $ such that $ \int_\mathbb{T}1d\omega = 1. $
Let $ \mathrm{tr}:\mathbb{F}_q\rightarrow\mathbb{F}_p $ be the familiar trace map. For $ c\in\mathbb{F}_q, $ write $ e_q(c) = \exp(\frac{2\pi\sqrt{-1}}{p}\mathrm{tr}(c)). $ The exponential function $ e:\mathbb{K}_\infty\rightarrow\mathbb{C}^\times $ is defined by $ e(\omega ) = e_q(\mathrm{res}\; \omega). $ Using this function, one can establish Fourier analysis in $ \mathbb{A}. $ In particular, $ \mathbb{A}, \mathbb{K}, \mathbb{K}_\infty, \mathbb{T} $ play the roles of $ \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R}/\mathbb{Z}, $ respectively.
For $ \omega\in\mathbb{K}_\infty $ and $ \gamma = (\gamma_1, \gamma_2), \gamma' = (\gamma'_1, \gamma'_2) \in\mathbb{K}^2_\infty, $ write $ \omega\gamma = (\omega\gamma_1, \omega\gamma_2) $ and $ \gamma\gamma' = \gamma_1\gamma'_1+\gamma_2\gamma'_2. $
Let $ f, g:\mathbb{A}^2\rightarrow\mathbb{C} $ be functions with finite support sets. The Fourier transform $ \hat{f}:\mathbb{T}^2\rightarrow\mathbb{C} $ of $ f $ is defined by $ \hat{f}(\alpha) = \sum\limits_{m\in\mathbb{A}^2}f(m)e(m\alpha). $ The convolution $ f*g:\mathbb{A}^2\rightarrow\mathbb{C} $ of $ f $ and $ g $ is defined by
Then it follows that
Let $ d\alpha $ denote the product of Haar measures. For $ m\in\mathbb{A}^2, $ we have the orthogonal relation
Lemma 1 For $ M\in\mathbb{N}_+ $ and $ \omega\in\mathbb{K}_\infty, $ we have
Proof This is [10, Lemma 7].
Let $ a, b\in\mathbb{A} $ with $ b\neq 0 $ and $ \mathrm{gcd}(b, a) = 1. $ For $ m = (m_1, m_2)\in\mathbb{A}^2, $ if $ \mathrm{gcd}(b, m_1, m_2) = 1, $ we define
where $ \overrightarrow{d} = (d, d^2). $
For $ N\in\mathbb{N}_+, $ the exponential sum $ S_N:\mathbb{T}^2\rightarrow\mathbb{C} $ is defined by $ S_N(\alpha) = \sum\limits_{d\in\mathbb{G}_N}e(\alpha\overrightarrow{d}). $
Lemma 2 Let $ N\in\mathbb{N}_+ $ and $ \alpha = (\alpha_1, \alpha_2)\in\mathbb{T}^2. $ Let $ b\in\mathbb{A}^\times $ and $ m = (m_1, m_2)\in\mathbb{A}^2 $ with $ \mathrm{gcd}(b, m_1, m_2) = 1. $ Suppose that $ \mathrm{ord}b\leq N, \big|\alpha_1-\frac{m_1}{b}\big|<|b|^{-1} $ and $ \big|\alpha_2-\frac{m_2}{b}\big|<q^{1-N}|b|^{-1}. $ Then we have
Proof Write $ \beta = (\beta_1, \beta_2) = \alpha-\frac{1}{b}m. $ Then
Let $ s\in\mathbb{G}_{N-\mathrm{ord}b} $ and $ t\in\mathbb{G}_{\mathrm{ord}b}. $ Note that
we have $ e(\beta_1(sb+t)) = e(\beta_1sb). $ Similarly, since
it follows that $ e(\beta_2(sb+t)^2) = e(\beta_2s^2b^2). $ Thus, we obtain
This completes the proof of the lemma.
Lemma 3 Let $ r_1, r_2\in\mathbb{N}. $ Then for any $ \alpha = (\alpha_1, \alpha_2)\in\mathbb{T}^2, $ there exists $ (b, m_1, m_2)\in\mathbb{A}^3 $ with the following properties
$ \rm(i) $ $ b $ is monic and $ \mathrm{ord}b\leq r_1+r_2; $
$ \rm(ii) $ $ \mathrm{gcd}(b, m_1, m_2) = 1; $
$ \rm(iii) $ $ \mathrm{ord}m_j<\mathrm{ord}b $ and $ \big|\alpha_j -\frac{m_j}{b}\big|<q^{-r_j}|b|^{-1}\ (1\leq j\leq 2). $
Proof For $ 1\leq j\leq 2, $ let $ \mathbb{T}_j = \big\{\omega\in\mathbb{T}:\mathrm{ord}\omega\leq -r_j-1\big\}. $ Then $ \mathbb{T}_j $ is a subgroup of $ \mathbb{T}. $ Also, $ \big|\mathbb{T}/\mathbb{T}_j\big| = q^{r_j}. $
Note that $ \big|\prod\limits_{j = 1}^2\mathbb{T}/\mathbb{T}_j\big| = q^{r_1+r_2}<|\mathbb{G}_{r_1+r_2+1}|, $ we can find two distinct elements $ d_1, d_2 $ of $ \mathbb{G}_{r_1+r_2+1} $ such that
Write $ b' = d_2-d_1. $ Then we have $ b'\neq 0 $ and $ \mathrm{ord}b'\leq r_1+r_2. $
Let $ m'_j = [b'\alpha_j]. $ Then $ \mathrm{ord}m'_j\leq\mathrm{ord}(b'\alpha_j) = \mathrm{ord}b'+\mathrm{ord}\alpha_j<\mathrm{ord}b'. $
Since $ \mathrm{ord}(b'\alpha_j-m'_j) = \mathrm{ord}\{ b'\alpha_j\} = \mathrm{ord}(\{ d_2\alpha_j\}-\{ d_1\alpha_j\})\leq -r_j-1, $ we have
Let $ c $ be the leading coefficient of $ b' $ and let $ a = \mathrm{gcd}(b', m'_1, m'_2). $ By taking $ b = \frac{b'}{ac} $ and $ m_j = \frac{m'_j}{ac}, $ the lemma follows.
In this section, we obtain an estimate for $ G(\frac{a}{b}, m). $ Our arguments run in parallel with the approach of Chen [11].
Lemma 4 Let $ a_1, a_2, b_1, b_2 \in\mathbb{A} $ with $ b_1, b_2\neq 0 $ and $ \mathrm{gcd}(b_1, a_1) = \mathrm{gcd}(b_2, a_2) = 1. $ Let $ m = (m_1, m_2)\in\mathbb{A}^2. $ Suppose that $ \mathrm{gcd}(b_1, m_1, m_2) = \mathrm{gcd}(b_2, m_1, m_2) = 1. $ If $ \mathrm{gcd}(b_1, b_2) = 1, $ then
Proof Since $ \mathrm{gcd}(b_1, b_2) = 1, $ $ b_2+b_1\mathbb{A} $ is invertible in the ring $ \mathbb{H}_1 = \mathbb{A}/b_1\mathbb{A}. $ Thus,
Similarly, we have
Combining the above two equalities, it follows that
Equality (3.1) follows since $ \mathrm{gcd}(b_1, b_2) = 1. $
Lemma 5 Let $ a, b\in\mathbb{A} $ with $ b\neq 0 $ and $ \mathrm{gcd}(b, a) = 1. $ Let $ m = (m_1, m_2)\in\mathbb{A}^2. $ Suppose that $ \mathrm{gcd}(b, m_1, m_2) = 1. $ If $ p\geq 3 $ and $ b $ is irreducible, then we have
Proof Since $ b $ is irreducible and $ \mathrm{gcd}(b, a) = 1, $ it follows that $ a\neq 0. $ We divide into two cases.
Case 1 Suppose that $ b\mid m_2. $ Since $ \mathrm{gcd}(b, m_1, m_2) = 1, \ b\nmid m_1. $ By Lemma 1, we have
Case 2 Suppose that $ b\nmid m_2. $ Since $ b $ is irreducible, $ \mathbb{H} = \mathbb{A}/b\mathbb{A} $ is a field. Note that $ |\mathbb{H}| = |b|, $ we can find an isomorphism $ T:\mathbb{F}_{|b|}\rightarrow\mathbb{H} $ of fields.
Consider $ \psi:\mathbb{F}_{|b|}\rightarrow\mathbb{C}^\times $ defined by $ \psi(c) = e(\frac{a}{b}T(c)). $ It follows from Lemma 1 that
Thus, $ \psi $ is a non-trivial additive character of $ \mathbb{F}_{|b|}. $ Let $ P(t) = \sum_{j = 1}^2T^{-1}(m_j+b\mathbb{A})t^j. $ Then $ P $ is a polynomial of degree 2 in $ \mathbb{F}_{|b|}[t]. $
Note that
by Weil's theorem in [12], we have $ \big| G(\frac{a}{b}, m)\big|\leq |b|^{\frac{1}{2}}. $
Combining the above two cases, the lemma follows.
Lemma 6 Let $ a, b\in\mathbb{A} $ with $ b\neq 0 $ and $ \mathrm{gcd}(b, a) = 1. $ Let $ m = (m_1, m_2)\in\mathbb{A}^2. $ Suppose that $ \mathrm{gcd}(b, m_1, m_2) = 1. $ If $ p\geq 3 $ and $ b $ is irreducible, then for any $ r\in\mathbb{N}_+, $ we have
Proof We will prove this lemma by induction on $ r. $
For $ r = 1, $ the lemma follows from Lemma 5.
Let $ r\in\mathbb{N} $ with $ r\geq 2. $ Suppose that the lemma holds for all $ r'\in\mathbb{N}_+ $ with $ r'<r. $ We now prove that the statement is true for $ r. $
Note that for $ d\in\mathbb{G}_{\mathrm{ord}b^{r}}, $ there exist $ d_1\in\mathbb{G}_{\mathrm{ord}b^{r-1}} $ and $ d_2\in\mathbb{G}_{\mathrm{ord}b} $ such that $ d = d_2b^{r-1}+d_1. $ This observation allows us to obtain
There are two cases.
Case 1 Suppose that $ b\mid m_2. $ Since $ b\nmid m_1, $ by Lemma 1, we have
By (3.2), we have
Case 2 Suppose that $ b\nmid m_2. $ Then there exists unique $ d_0\in\mathbb{G}_{\mathrm{ord}b} $ such that
For any $ d_1\in\mathbb{G}_{\mathrm{ord}b^{r-1}}, $ it follows from Lemma 1 that
Write
If $ r = 2, $ then
If $ r\geq 3, $ then
Let $ m'_1 = \frac{m_1+2m_2d_0}{b}, $ then $ m'_1\in\mathbb{A}. $ Write $ m' = (m'_1, m_2). $ Note that
we deduce from (3.3) that
By the induction hypothesis, it follows that
By combining the above two cases, we complete the proof of the lemma.
Proposition 7 Let $ a, b\in\mathbb{A} $ with $ b\neq 0 $ and $ \mathrm{gcd}(b, a) = 1. $ Let $ m = (m_1, m_2)\in\mathbb{A}^2. $ Suppose that $ \mathrm{gcd}(b, m_1, m_2) = 1. $ If $ p\geq 3, $ then we have
Proof Without loss of generality, we assume that $ a\neq 0 $ and $ \mathrm{ord}b\geq 1. $ Also, $ b $ is monic. There exist $ \iota, j_1, \cdots, j_\iota\in\mathbb{N}_+ $ and distinct monic irreducible polynomials $ \sigma_1, \cdots, \sigma_\iota $ in $ \mathbb{A} $ such that $ b = \prod\limits_{i = 1}^\iota\sigma_i^{j_i}. $ We prove the lemma by induction on $ \iota. $
For $ \iota = 1, $ the lemma follows from Lemma 6.
Let $ \iota\in\mathbb{N} $ with $ \iota\geq 2. $ Suppose that the lemma is true for $ \iota-1. $ We now prove that the claim holds for $ \iota. $ Since $ \mathrm{gcd}(b, a) = 1, $ we can find $ a_l, a'\in\mathbb{A}^\times $ such that
By Lemmas 4 and 6, we have
By the induction hypothesis, the proposition follows.
For the present, we fix $ N\in\mathbb{N}_+ $ and $ A\subseteq\mathbb{G}_N\times\mathbb{G}_{2N} $ with $ |A| = \delta q^{3N}. $ Throughout this section, we assume that the following hypothesis holds.
Hypothesis A $ p\geq 3, \ (A-A)\cap\{\overrightarrow{d}:d\in\mathbb{A}^\times\} = \emptyset\ \mathrm{and}\ \delta\geq q^{1-\frac{N}{12}}. $
Take $ \theta\in\mathbb{N}_+ $ with $ q^{-\theta}<\delta\leq q^{1-\theta}. $ Then $ N\geq 12\theta. $ Write $ M = N-6\theta. $
The characteristic function $ 1_A:\mathbb{A}^2\rightarrow\mathbb{R} $ of $ A $ is defined by
Write $ \Gamma_N = \mathbb{G}_N\times\mathbb{G}_{2N}. $ We define the balanced function $ f_A:\mathbb{A}^2\rightarrow\mathbb{R} $ of $ A $ to be $ f_A = 1_A-\delta 1_{\Gamma_N}. $
Let $ b\in\mathbb{A}^\times $ with $ b $ monic. Write
For $ (a_1, a_2)\in\mathcal{A}_b, $ we define the Farey arc $ F(b, a_1, a_2) $ to be
Also, we define
We say $ F(b, a_1, a_2) $ is major if $ \mathrm{ord}b\leq 2\theta+3 $ and minor if $ \mathrm{ord}b>2\theta+3. $ Let
We define the major arcs $ \mathfrak{M} $ and the minor arcs $ \mathfrak{m} $ as follows:
Lemma 8 Let $ b, b'\in\mathcal{B}. $ Suppose that $ (a_1, a_2)\in\mathcal{A}_b $ and $ (a'_1, a'_2)\in\mathcal{A}_{b'}. $ If $ (b, a_1, a_2)\neq(b', a'_1, a'_2), $ then we have
Proof To prove the lemma, we suppose the contrary. Then there exists
Let $ 1\leq j\leq 2. $ Since
it follows that
Thus $ a_jb' = a'_jb. $ Let $ A_j, B_j\in\mathbb{A} $ with $ B_j $ monic such that
It is easy to see that $ b = \mathrm{lcm}(B_1, B_2) = b'. $ It follows that $ a_j = a'_j. $ This leads to a contradiction, and the lemma follows.
Proposition 9 If $ b\in\mathcal{B}, $ then for any $ \alpha\in F_b, $ we have
Proof Write $ (\alpha_1, \alpha_2) = \alpha. $ Take $ a = (a_1, a_2)\in\mathcal{A}_b $ such that $ \alpha\in F(b, a_1, a_2). $ Since
by Lemma 2, we have
It follows from Proposition 7 that
Proposition 10 For any $ \alpha\in \mathfrak{m}, $ we have
Proof Write $ \alpha = (\alpha_1, \alpha_2). $ By using Lemma 3 for $ r_1 = 0 $ and $ r_2 = N, $ we can find a monic polynomial $ b $ in $ \mathbb{A}^\times $ and $ a = (a_1, a_2)\in\mathbb{A}^2 $ such that
Write $ \beta = (\beta_1, \beta_2) = \alpha-\frac{1}{b}a. $ If $ \mathrm{ord}b\geq 2\theta+4, $ by Lemma 2 and Proposition 7, we have
In the following, we assume that $ \mathrm{ord}b\leq 2\theta+3. $ Consider the following estimate
For $ d\in\mathbb{G}_N, $ since
it follows that $ \{\beta_2d\} = \beta_2d. $ By Lemma 1, we have
Combining Lemma 2 and Proposition 7 with the above inequality, it follows that
Since $ \alpha\notin \mathfrak{M}, $ there are two cases.
Case 1 Suppose that $ |\beta_2|\geq q^{-2M}|b|^{-1}. $ By (4.1), we have
Case 2 Suppose that $ |\beta_1|\geq q^{-M}|b|^{-1} $ and $ |\beta_2|<q^{-2M}|b|^{-1}. $
If $ \mathrm{ord}\beta_2\geq 1-N+\mathrm{ord}\beta_1, $ then by (4.1), we have
Thus, it remains to estimate $ |S_N(\alpha)| $ under the additional assumption $ \mathrm{ord}\beta_2\leq\mathrm{ord}\beta_1-N. $
Write $ L_1 = -\mathrm{ord}\beta_1, $ then $ 1\leq L_1\leq M+\mathrm{ord}b; $ write $ L_2 = -\mathrm{ord}\beta_2, $ then $ L_2\geq 1+2M+\mathrm{ord}b; $ write $ K = \lfloor\frac{L_1+N}{2}\rfloor, $ since $ L_1\leq M+2\theta+3<N, $ we have $ L_1\leq K\leq N-1. $
For $ j\in\mathbb{N}, $ write $ \mathcal{C}_j = \{ d\in\mathbb{A}:\mathrm{ord}d = j\}, $ then
Let $ d\in\mathbb{G}_K. $ By the assumption $ \mathrm{ord}\beta_2\leq\mathrm{ord}\beta_1-N, $ we have
It follows that $ e(\beta_2d^2) = 1. $ Note that $ \mathrm{ord}\{\beta_1\} = -L_1\geq -K, $ by Lemma 1, we have
Thus
Take the sequences $ \big\{\mu_i\big\}_{i = -\infty}^{-L_1} $ and $ \big\{\nu_j\big\}_{j = -\infty}^{-L_2} $ in $ \mathbb{F}_q $ such that
Let $ K\leq I\leq N-1 $ and $ d\in\mathcal{C}_I. $ Take $ c_0, c_1, \cdots, c_I\in\mathbb{F}_q $ with $ c_I\neq 0 $ such that $ d = \sum\limits_{i = 0}^Ic_it^i. $ Then
For $ 0\leq i, j\leq I, $ if $ i+j\geq L_2-1, $ by the assumption $ \mathrm{ord}\beta_2\leq\mathrm{ord}\beta_1-N, $ we have
Thus, there exists the polynomial $ Q_I(t_1, \cdots, t_{I-L_1+1}) $ of $ (I-L_1+1) $ variables over $ \mathbb{F}_q $ such that
Substituting this into the definition of the function $ e(\cdot), $ and noting that $ \mu_{-L_1}\neq 0, $ we have
It follows from (4.2) that $ S_N(\beta) = 0. $ Finally, by Lemma 2, we have $ S_N(\alpha) = 0. $
Combining the above two cases, we complete the proof of the proposition.
In this section, we continue to fix $ N\in\mathbb{N}_+ $ and $ A\subseteq\Gamma_N $ with $ |A| = \delta q^{3N}. $ Also, we assume that Hypothesis A holds.
Lemma 11
Proof Write $ \mathrm{I} = \sum\limits_{d\in\mathbb{G}_N, m\in\mathbb{A}^2}f_A(m)f_A(m+\overrightarrow{d}). $ By (2.1), we have
If $ d\in\mathbb{G}_N, $ then $ \overrightarrow{d}\in\Gamma_N. $ Thus $ \Gamma_N+\overrightarrow{d} = \Gamma_N-\overrightarrow{d} = \Gamma_N. $ It follows that $ (A-A)\cap\{\overrightarrow{d}:d\in\mathbb{A}^\times\} = \emptyset $ from Hypothesis A. Thus
By Hypothesis A, we have $ \delta q^N\geq q^{1+\frac{11N}{12}}\geq 2. $ It follows that
Finally, by (5.1) and (5.2), we obtain
Lemma 12 There exists a monic polynomial $ b_0 $ in $ \mathbb{G}_{2\theta+4} $ such that
where $ 0<c<1 $ is a constant depending only on $ q. $
Proof By Proposition 10, we have
Combining the above inequality with Lemma 11, it follows that
For $ j\in\mathbb{N}, $ write $ \mathcal{O}_j = \{ b\in\mathbb{A}^\times:b\ \mathrm{monic}, \ \mathrm{ord}b = j\}. $ By Lemma 8 and Proposition 9, we have
Take a monic polynomial $ b_0 $ in $ \mathbb{G}_{2\theta+4} $ such that
It follows from the above inequality that
Since $ \delta\leq q^{1-\theta}, $ we can find a constant $ c'>1, $ depending only on $ q, $ such that
By taking $ c = \frac{1}{4c'}, $ the lemma follows from (5.3).
Lemma 13 There exists $ n_0\in\Gamma_N $ such that
where $ b_0\Gamma_M = \big\{b_0m:m\in\Gamma_M\big\}. $
Proof Write $ P = b_0\Gamma_M. $ Let $ m = (m_1, m_2)\in\Gamma_M $ and $ 1\leq j\leq 2. $ Since
we have $ b_0m\in\Gamma_N. $ Thus, $ P\subseteq\Gamma_N. $ Also, we have
For $ n\in\Gamma_N, $ we have
If there exists $ n_0\in\Gamma_N $ such that $ f_A*1_{-P}(n_0)\geq\delta|P|, $ then
Thus, in the following, we assume that $ f_A*1_{-P}(n)\leq\delta|P| $ for all $ n\in\Gamma_N. $ It follows from (5.4) that
Let $ \alpha = (\alpha_1, \alpha_2)\in F_{b_0}. $ Take $ a = (a_1, a_2)\in\mathcal{A}_{b_0} $ such that $ \alpha\in F(b_0, a_1, a_2). $ Since
we have $ e(b_0m_j\alpha_j) = e(m_ja_j) = 1. $ Thus, $ \widehat{1_{-P}}(\alpha) = |P|. $ It follows from (5.5) that
By Lemma 12, we have
Note that $ \sum\limits_{n\in\mathbb{A}^2}f_A(n) = 0, $ we have
Take $ n_0\in\Gamma_N $ such that
By (5.4), we have
Proposition 14 There exist $ N'\in\mathbb{N}_+ $ and $ A'\subseteq\Gamma_{N'} $ with $ |A'| = \delta'q^{3N'} $ such that
$ \rm(i) $ $ (A'-A')\cap\big\{\overrightarrow{d}:d\in\mathbb{A}^\times\big\} = \emptyset; $
$ \rm(ii) $ $ \delta'\geq\delta(1+\frac{c}{2}\delta); $
$ \rm(iii) $ $ N'\geq N-11\log_q\big(\frac{q}{\delta}\big), $ where $ \log_qx = \log x/\log q. $
Proof Write $ L = \mathrm{ord}b_0 $ and $ T = |b_0|. $ Then $ 0\leq L\leq 2\theta+3. $ By taking $ N' = M-L, $ property (iii) follows. Take $ d_1, \cdots, d_T\in\mathbb{G}_M $ and $ d'_1, \cdots, d'_T\in\mathbb{G}_{2M-L} $ such that
For $ d\in\mathbb{G}_L $ and $ 1\leq i, j\leq T, $ write
where
Let $ m = (m_1, m_2)\in\Gamma_M. $ Take $ d\in\mathbb{G}_L $ and $ d'\in\mathbb{G}_{2M-L} $ such that $ m_2 = d+b_0d'. $ By (5.6), we can find $ 1\leq i, j\leq T $ such that $ (m_1, d')\in (d_i, d'_j)+\Gamma_{N'}. $ Then we have
Thus, we see that
Take $ d_0\in\mathbb{G}_L $ and $ 1\leq i_0, j_0\leq T $ such that
By Lemma 13, we have
Consider the bijection $ f:\Gamma_{N'}\rightarrow \Upsilon_{d_0, i_0, j_0} $ defined by
By taking $ A' = f^{-1}(A\cap \Upsilon_{d_0, i_0, j_0}), $ property (ii) follows. To prove property (i), we suppose the contrary. Then there exist $ t_1, t_2\in A' $ and $ d\in\mathbb{A}^\times $ such that $ t_2-t_1 = \overrightarrow{d}. $ It follows that
which contradicts Hypothesis A. This completes the proof of the proposition.
Proposition 15 If $ p\geq 3, $ then there exists a constant $ C_1>0, $ depending only on $ q, $ such that the following inequality holds. Let $ N\in\mathbb{N} $ with $ N\geq 2 $ and $ A\subseteq\mathbb{G}_N\times\mathbb{G}_{2N}. $ If $ (A-A)\bigcap\big\{\overrightarrow{d}:d\in\mathbb{A}^\times\big\} = \emptyset, $ then we have
Remark 3 Note that $ d\in\mathbb{G}_N\Leftrightarrow d^2\in\mathbb{G}_{2N}, $ the form of Proposition 15 is more natural than of Theorem 1.
Proof Write $ |A| = \delta q^{3N}. $ If $ \delta\leq q^{1-\frac{N}{12}}, $ then by taking
the proposition follows. Thus in the following, we assume that $ \delta\geq q^{1-\frac{N}{12}}. $
Now, we recursively define a sequence of triples $ (N_i, A_i, \delta_i) $ with $ N_i\in\mathbb{N}_+, \ A_i\subseteq\Gamma_{N_i} $ and $ |A_i| = \delta_iq^{3N_i} $ as follows. Take $ (N_0, A_0, \delta_0) = (N, A, \delta). $ Let $ i\in\mathbb{N}. $ Suppose that $ (N_i, A_i, \delta_i) $ is defined. If $ \delta_i<q^{1-\frac{N_i}{12}}, $ we stop the definition. If $ \delta_i\geq q^{1-\frac{N_i}{12}}, $ by Proposition 14, we can find $ N_{i+1}\in\mathbb{N}_+ $ and $ A_{i+1}\subseteq\Gamma_{N_{i+1}} $ with $ |A_{i+1}| = \delta_{i+1}q^{3N_{i+1}} $ such that
(i) $ (A_{i+1}-A_{i+1})\cap\big\{\overrightarrow{d}:d\in\mathbb{A}^\times\big\} = \emptyset; $
(ii) $ \delta_{i+1}\geq\delta_i(1+\frac{c}{2}\delta_i); $
(iii) $ N_{i+1}\geq N_i-11\log_q\big(\frac{q}{\delta_i}\big). $
Write $ c' = \frac{c}{2}. $ It follows from (ii) that $ \delta_{i+1}-\delta_i\geq c'\delta^2. $ Since $ \delta_{i+1}\leq 1, $ this process produces a finite sequence $ \big\{ (N_i, A_i, \delta_i)\big\}_{i = 1}^J. $ Then for any $ 0\leq i\leq J-1, $ the triple $ (N_{i+1}, A_{i+1}, \delta_{i+1}) $ satisfies the above conditions (i)–(iii). Also, we have
Claim 1 For $ j\in\mathbb{N}, $ write $ I_j = \lceil\frac{1}{2^jc'\delta}\rceil. $ If $ i\geq\sum\limits_{l = 0}^jI_l, $ then $ \delta_i\geq 2^{j+1}\delta. $
Proof We prove the claim by induction on $ j. $ For $ j = 0, $ we have $ I_j\geq\frac{1}{c'\delta}. $ It follows from (ii) that
Thus if $ i\geq I_0, $ then $ \delta_i\geq 2\delta. $
Suppose that the claim holds for $ j. $ We now prove that the statement is true for $ j+1. $
Write $ k = \sum\limits_{l = 0}^jI_l. $ Let $ i>k. $ By (ii), we have $ \delta_i\geq\delta_k+(i-k)c'\delta_k^2. $ Thus, if $ i\geq\sum\limits_{l = 0}^{j+1}I_l, $ it follows from the induction hypothesis that
This completes the proof of the claim.
Take $ j_0\in\mathbb{N} $ such that $ 2^{j_0}\delta\leq1<2^{j_0+1}\delta. $ Then we have
It follows from (iii) that
By (6.1), we have
Thus, there exists a constant $ C_1>1, $ depending only on $ q, $ such that
Note that the function $ x\log x $ on $ [1, +\infty) $ is increasing, and the proposition follows since
Proof of Theorem 1 Write $ |A| = \delta q^{2N}. $ If $ N\leq 7, $ by taking $ C = \frac{7}{\log 7}, $ the theorem follows. In the following, we assume that $ N\geq 8. $ Write
For $ 1\leq i\leq S $ and $ 1\leq j\leq T, $ take $ d_i, d'_j\in\mathbb{G}_N $ such that
Then, we have
Take $ 1\leq i_0\leq S $ and $ 1\leq j_0\leq T $ such that
Write $ A' = A_{i_0, j_0}. $ Then we have $ (A'-A')\bigcap\big\{\overrightarrow{d}:d\in\mathbb{A}^\times\big\} = \emptyset $ and
Define $ f:\Gamma_{N'}\rightarrow (d_{i_0}, d'_{j_0})+\Gamma_{N'} $ to be $ f(m) = (d_{i_0}, d'_{j_0})+m. $ Then $ f $ is a bijection. Take $ B = f^{-1}(A'). $ Since $ B-B = A'-A', $ we have $ (B-B)\bigcap\big\{\overrightarrow{d}:d\in\mathbb{A}^\times\big\} = \emptyset. $ It follows from Proposition 15 that
Note that $ N\geq 8 $ and $ \delta\leq|B|q^{-3N'}, $ by taking $ C = 8C_1, $ the theorem follows.
For $ 1\leq s\leq l, $ take $ c_{s1}, c_{s2}\in\mathbb{A} $ such that $ P_s(x) = c_{s1}x+c_{s2}x^2. $ Write $ \mathcal{P} = \big(c_{sj}\big)_{1\leq s\leq l, 1\leq j\leq 2}. $ Denote by $ r $ the rank of the matrix $ \mathcal{P}. $ Then $ 1\leq r\leq 2. $ Thus, we divide into two case.
Case 1 Suppose that $ r = 2. $ Without loss of generality, we assume that $ \big(c_{11}, c_{12}\big) $ and $ \big(c_{21}, c_{22}\big) $ are linearly independent. Write $ \mathcal{R} = \big(c_{ij}\big)_{1\leq i, j\leq 2}, \ e_1 = (1, 0) $ and $ e_2 = (0, 1). $ For $ 1\leq i\leq 2, $ take $ \xi'_i\in\mathbb{K}^2 $ such that $ \mathcal{R}\xi'_i = e_i. $ When $ l\geq 3, $ take $ \mathcal{D} = \big(d'_{tj}\big)_{1\leq t\leq l-2, 1\leq j\leq 2} $ such that
Take $ S\in\mathbb{N} $ with $ S\geq 4 $ and $ D\in\mathbb{A}^\times $ such that
If $ l\geq 3, $ we also require
If $ N\leq S, $ by taking $ C' = \big(\frac{S}{\log S}\big)^\frac{1}{l}, $ the theorem follows. Thus, we assume that $ N\geq S+1. $
Claim 2 For $ m\in\mathbb{G}_S^2, $ write $ B'_m = \big\{ b\in\mathbb{G}^2_{N+S}:\mathcal{R}b+m\in A^2\big\}. $ Then there exists $ \underline{m}\in\mathbb{G}_S^2 $ such that
Proof Let $ a = (a_1, a_2)\in A^2. $ For $ 1\leq i\leq 2, $ take $ a'_i\in\mathbb{G}_{N-\mathrm{ord}D} $ and $ a''_i\in\mathbb{G}_{\mathrm{ord}D} $ such that $ a_i = Da'_i+a''_i. $ Write $ b = \sum\limits_{i = 1}^2a'_i\xi_i $ and $ m' = (a''_1, a''_2). $ Then we have
It follows that $ a\in\mathcal{R}\big(\mathbb{G}_{N+S}^2\big)+m'. $ Thus, we see that
Take $ \underline{m}\in\mathbb{G}_S^2 $ such that $ \big|B'_{\underline{m}}\big| = \max\limits_{m\in\mathbb{G}_S^2}\big|B'_m\big|. $ By (7.1), we have
Claim 3 Suppose that $ l\geq 3. $ For $ m\in\mathbb{G}_{N+3S}^{l-2}, $ write $ B''_m = \big\{ b\in B'_{\underline{m}}:\mathcal{D}\mathcal{R}b+m\in A^{l-2}\big\}. $ Then there exists $ \underline{m'}\in\mathbb{G}_{N+3S}^{l-2} $ such that
Proof Let $ n\in \mathbb{A}^{l-2} $ and $ b\in B'_{\underline{m}}. $ If $ n+\mathcal{D}\mathcal{R}b\in A^{l-2}, $ then $ n\in\mathbb{G}_{N+3S}^{l-2}. $ Thus
Take $ \underline{m'}\in\mathbb{G}_{N+3S}^{l-2} $ such that $ \big|B''_{\underline{m'}}\big| = \max\limits_{m\in\mathbb{G}_{N+3S}^{l-2}}\big|B''_m\big|. $ Then we have
The claim follows from (7.2) and Claim 2.
Define $ B = \big\{ b\in\mathbb{G}^2_{N+S}:\mathcal{P}b+\overline{m}\in A^l\big\}. $ Then by Claims 2 and 3, we have
Suppose that there exists $ d\in\mathbb{A} $ suth that $ b'-b = \overrightarrow{d} $ for some $ b, b'\in B. $ Since
we have
from which it follows that $ d = 0. $ Thus, we obtain
By Theorem 1, we have
By taking $ C' = C^{\frac{1}{l}}q^{\frac{(3l-2)S}{l}}, $ the theorem follows from (7.3).
Case 2 Suppose that $ r = 1. $ Without loss of generality, we assume that $ \mathcal{R} = \big(c_{11}, c_{12}\big)\neq 0. $ Take $ \xi'\in\mathbb{K}^2 $ such that $ \mathcal{R}\xi' = 1. $ When $ l\geq 2, $ take $ \mathcal{D} = \big(d'_1, \cdots, d'_{l-1}\big) $ such that $ \big(c_{t'j}\big)_{2\leq t'\leq l, 1\leq j\leq 2} = \mathcal{D}\mathcal{R}. $
If $ l\geq 2, $ we also require
If $ N\leq S, $ by taking $ C' = \big(\frac{S}{\log S}\big)^\frac{1}{l}, $ the theorem follows. Thus we assume that $ N\geq S+1. $
Claim 4 For $ m\in\mathbb{G}_S, $ write $ B'_m = \big\{ b\in\mathbb{G}^2_{N+S}:\mathcal{R}b+m\in A\big\}. $ Then there exists $ \underline{m}\in\mathbb{G}_S $ such that
Proof Let $ a\in A. $ Take $ a'\in\mathbb{G}_{N-\mathrm{ord}D} $ and $ a''\in\mathbb{G}_{\mathrm{ord}D} $ such that $ a = Da'+a''. $ Write $ b = a'\xi. $ Then we have
It follows that $ a\in\mathcal{R}\big(\mathbb{G}_{N+S}^2\big)+a''. $ Thus, we see that
For $ m\in\mathbb{G}_S, $ write $ A_m = A\bigcap\big(\mathcal{R}\big(\mathbb{G}_{N+S}^2\big)+m\big). $ For each $ a\in A_m, $ we fix a $ \hat{a}\in\mathbb{G}_{N+S}^2 $ such that $ \mathcal{R}\hat{a}+m = a. $ Since
it follows that $ |B'_m|\geq q^N|A_m|. $ Take $ \underline{m}\in\mathbb{G}_S $ such that $ \big|B'_{\underline{m}}\big| = \max\limits_{m\in\mathbb{G}_S}\big|B'_m\big|. $ By (7.4), we have
Claim 5 Suppose that $ l\geq 2. $ For $ m\in\mathbb{G}_{N+3S}^{l-1}, $ write $ B''_m = \big\{ b\in B'_{\underline{m}}:\mathcal{D}\mathcal{R}b+m\in A^{l-1}\big\}. $ Then there exists $ \underline{m'}\in\mathbb{G}_{N+3S}^{l-1} $ such that
Proof The claim follows from the similar argument as in Claim 3.
Define $ B = \big\{ b\in\mathbb{G}^2_{N+S}:\mathcal{P}b+\overline{m}\in A^l\big\}. $ Then by Claims 4 and 5, we have
By using similar arguments as in Case 1, we obtain $ |B|\leq Cq^{2(N+S)}\frac{\log N}{N}. $ By taking $ C' = C^{\frac{1}{l}}q^{3S}, $ the theorem follows from (7.5).
Combining the above two cases, the proof of the theorem is completed.