In this paper, we consider the following equation
where $ N\geqslant3 $, $ 1<p<N $, $ 0\leqslant a<\frac{N-p}{p} $, $ 1\leqslant q<p<r<p^*[a] = \frac{Np}{N-p(a+1)} $, and $ p^*[a] $ is the critical Sobolev-Hardy exponent. The parameter $ \lambda $ satisfies $ 0\leqslant\lambda<\overline{\lambda} = (\frac{N-p}{p}-a)^p $, $ \mu\geqslant0 $, and $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ will be explained later. The weight functions $ f{_\mu}(x) = \mu f_+(x)+f_-(x) $ and $ g(x) = g_1(x)+g_2(x) $ satisfy the following conditions
(A$ _1 $) $ f\in L^{q^*}(\mathbb{R}^N)(q^* = \frac{r}{r-q})\ \text{with} \ f{_\pm}(x) = \pm \max\{\pm f(x),0\}\not\equiv0 $ and there exists a positive constant $ r_f $ such that
(A$ _2 $) $ g\in C(\mathbb{R}^N) $ with $ g_0 = \max\limits_{x\in\mathbb{R}^N}g(x) $ and there exists constants $ r_{g_1},r_{g_2} $ with $ 0<r_{g_2}<\min\{r_f-N,r_{g_1}-N\} $ such that
and
Such kind of problem arised from various fields of geometry and physics and was widely used in the applied sciences. We refer to [1, 2, 3] for details on the description about the background.
Elliptic problems on bounded domains involving concave-convex nonlinearity were studied extensively since Ambrosetti, Brezis and Cerami [4] considered the following equation
where $ 1<q<2<p\leqslant2^*,\;\mu>0 $. They found that there exists $ \mu_0>0 $ such that (1.2) admits at least two positive solutions for $ \mu\in(0,\mu_0) $, a positive solution for $ \mu = \mu_0 $ and no positive solution exists for $ \mu>\mu_0 $ (see also Ambrosetti, Azorero and Peral [5, 6] for more references therein). In recent years, several authors studied semilinear or quasilinear problems with the help of Nehari manifold (see [7-9]). In particular, Lin [9] studied the following critical problem
where $ \Omega\subset\mathbb{R}^N(N\geqslant 3) $ is a bounded domain with smooth boundary, $ 0\leqslant a<\frac{N-2}{2} $, $ a\leqslant b<a+1 $, $ 2^*(a,b) = \frac{2N}{N-2(a+1-b)} $, $ 0\leqslant \lambda<\overline{\lambda} = \frac{(N-2(a+1))^2}{4} $, $ \mu>0 $, and $ 1<q<2 $. He found that (1.3) admits at least two positive and one sign-changing solutions.
Actually, Fan and Liu [10] established multiple positive solutions of standard $ p $-Laplacian elliptic equations without Hardy term on a bounded domain $ \Omega $ in $ \mathbb{R}^N $. Some other theorems for $ p $-Laplacian elliptic equations without Hardy term can be found in [11, 12]. Hsu and Lin [13] studied the following critical problem via generalized Mountain Pass Theorem [14]
where $ a\leqslant b,d<a+1 $, $ p^*(a,b) = \frac{Np}{N-p(a+1-b)} $ is the critical Sobolev-Hardy exponent. They found that (1.4) admits at least two positive solutions.
However, little is done on $ \mathbb{R}^N $ for the operator $ - \rm{div}(|x|^{-ap}|\nabla\cdot|^{p-2}\nabla\cdot)-\lambda\frac{|\cdot|^{p-2}\cdot}{|x|^{p(a+1)}} $ involving the concave-convex nonlinearity. Since the embedding is not compact on $ \mathbb{R}^N $ and the weight functions $ f $ and $ g $ are sign-changing, we will discuss the concentration behavior of solutions on the corresponding Nehari manifold to overcome these difficulties. Moreover, we get some improvement on multiplicity of positive solutions via the theory of Lusternik-Schnirelmann category (see [15]).
Throughout our paper, we denote by $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ the completion of $ C_0^\infty(\mathbb{R}^N) $ with respect to the standard norm $ ( \int_{\mathbb{R}^N}|x|^{-ap}|\nabla u|^p dx)^\frac{1}{p} $. The function $ u\in\mathbf{W}_a^{1,p}(\mathbb{R}^N) $ is said to be a solution of problem (1.1) if $ u $ satisfies
for all $ v\in\mathbf{W}_a^{1,p}(\mathbb{R}^N) $. It is well known that the nontrivial solution of problem (1.1) is equivalent to the corresponding nonzero critical point of the energy functional
Then $ I_\mu(u) $ is well-defined on $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ and belongs to $ C^1(\mathbf{W}_a^{1,p}(\mathbb{R}^N), \mathbb{R}) $.
Problem (1.1) is related to well-known Caffarelli-Kohn-Nirenberg inequality in [16]
If $ b = a+1 $, then $ p^*(a,b) = p $ and the following Hardy inequality holds [17]
where $ \overline{\lambda} = (\frac{N-p}{p}-a)^p $ is the best Hardy constant. Consequently, for $ \lambda<\overline{\lambda} $, we endow the space $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ with the following norm
which is equivalent to the usual norm $ ( \int_{\mathbb{R}^N}|x|^{-ap}|\nabla u|^p dx)^\frac{1}{p} $.
We get our main result as follows.
Theorem 1.1 Suppose that the functions $ f $ and $ g $ satisfy condition (A$ _1) $ and (A$ _2) $. Let
where $ S_\lambda $ is the best Sobolev constant for the embedding of $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ into $ L^{r}(\mathbb{R}^N) $ and defined by
Then
(ⅰ) for $ \mu\in(0, L_2) $, $ \rm(1.1) $ has at least two positive solutions in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ corresponding to negative least energy;
(ⅱ) there exists $ \mu_0\in(0, L_2) $ such that for $ \mu\in(0, \mu_0) $, $ \rm(1.1) $ has at least three positive solutions in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ including two with positive energy.
The paper is organized as follows: in Sections 2–4, based on some related preliminaries, we develop the description of Palais-Smale condition and the estimate of corresponding energy functional $ I_\mu $; in Section 5, we discuss the concentration behavior of solutions on Nehari manifold; in Section 6, we complete the proof of Theorem 1.1.
Since the energy functional $ I_\mu $ in (1.6) is unbounded below on $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $, we consider the functional on Nehari manifold
Note that $ N_\mu $ contains all nonzero solutions of (1.1) and $ u\in N_\mu $ if and only if
Lemma 2.1 The energy functional $ I_\mu $ is coercive and bounded below on $ N{_\mu} $.
Proof For $ u\in N{_\mu} $, by the Hölder inequality and Sobolev embedding theorem, we can deduce
where $ C $ is a positive constant depending on $ N, q, S_\lambda $ and $ \lVert f_+ \rVert_{L^{q^*}} $. This completes the proof.
Define
Then for $ u\in N_\mu $, we have
As in [18], we divide $ N_\mu $ into three parts
Then we have the following result.
Lemma 2.2 $ \rm{(ⅰ)} $ If $ u\in N_\mu^+ $, then $ \int_{\mathbb{R}^N}f_\mu(x)|u|^q dx>0 $.
$ \rm{(ⅱ)} $ If $ u\in N_\mu^0 $, then $ \int_{\mathbb{R}^N}f_\mu(x)|u|^q dx>0 $ and $ \int_{\mathbb{R}^N}g(x)|u|^r dx>0 $.
$ \rm{(ⅲ)} $ If $ u\in N_\mu^- $, then $ \int_{\mathbb{R}^N}g(x)|u|^r dx>0 $.
Proof By (2.1) we can easily derive these results.
Set $ L_1 = \bigg(\frac{r-p}{r-q}\bigg)\bigg(\frac{p-q}{g_0(r-q)}\bigg)^\frac{p-q}{r-p} \frac{S_\lambda^\frac{r-q}{r-p}}{\lVert f_+ \rVert_{L^{q^*}}} $ and it is easy to see $ L_2 = \frac{q}{p}L_1 $, where $ L_2 $ is defined in (1.10). We define
Then the following lemma is essential for the main result.
Lemma 2.3 $ \rm{(ⅰ)} $ For all $ \mu\in(0, L_1) $, we have $ N_\mu^0 = \emptyset $ and $ \alpha^+<0 $.
$ \rm{(ⅱ)} $ If $ \mu<L_2 $, then we have $ \alpha^->c_0 $ for some $ c_0>0 $. In particular, $ \inf\limits_{u\in N_\mu}I_\mu(u) = \alpha^+ $ for all $ \mu\in (0, L_2) $.
Proof $ \rm{(ⅰ)} $ Suppose the contrary. We may assume that there exists $ \mu_*\in(0, L_1) $ such that $ N_{\mu_*}^0\neq\emptyset $. Thus, for each $ u\in N_{\mu_*}^0 $, by the Hölder and Sobolev inequalities, we can obtain
that is,
and so
But (2.1) implies that
which means
Combined (2.4) and (2.5), we have
This contradicts to $ \mu_*\in(0, L_1) $. Therefore, $ N_\mu^0 = \emptyset $ and $ N_\mu = N_\mu^+ \cup N_\mu^- $ for $ \mu\in(0,L_1) $. Then for $ u\in N_\mu^+ $, by Lemma 2.2, we get
$ \rm{(ⅱ)} $ Let $ u\in N_\mu^- $. By (2.1) and the Sobolev inequality, we have
or
Then for $ \mu\in (0, L_2) $, we have
where
This implies, for $ \mu\in (0, L_2) $, $ \alpha^+<0<c_0<\alpha^- $. The proof is completed.
Now we introduce the following function $ m_u:\mathbb{R}^+\rightarrow \mathbb{R} $ in the form
Clearly, $ tu\in N_\mu $ if and only if $ m_u(t) = \int_{\mathbb{R}^N}f_\mu(x)|u|^q dx $, and
It is obvious that if $ tu\in N_\mu $, then $ t^{q+1}m'_u(t) = \langle\Psi'(tu), tu \rangle $. Hence, $ tu\in N_\mu^+ (\text{or}\ N_\mu^-) $ if and only if $ m'_u(t)>0\; (\text{or}\;<0) $.
Suppose $ u\in \mathbf{W}_a^{1,p}(\mathbb{R}^N)\setminus\{0\} $. Then by (2.8), $ m_u $ admits a unique critical point at $ t = t_{\max} $, where
and $ m_u $ strictly increases on $ (0,t_{\max}) $ and decreases on $ (t_{\max},\infty) $ with $ \lim\limits_{t\to\infty}m_u(t) = -\infty. $ Furthermore, since $ \mu\in(0,L_1) $, we have
Thus, we have the following lemma.
Lemma 2.4 For each $ u\in \mathbf{W}_a^{1,p}(\mathbb{R}^N)\setminus\{0\} $, we have
$ \rm{(ⅰ)} $ if $ \int_{\mathbb{R}^N}f_\mu|u|^q dx\leqslant 0 $, then there exists a unique $ t^- = t^-(u)>t_{\max} $ such that $ t^-u\in N_\mu^- $, and
$ \rm{(ⅱ)} $ if $ \int_{\mathbb{R}^N}f_\mu|u|^q dx>0 $, then there exist unique $ 0<t^+ = t^+(u)<t_{\max}<t^- $ such that $ t^+u\in N_\mu^+ $, $ t^-u\in N_\mu^- $ and
$ \rm{(ⅲ)} $ $ t^-(u): \mathbf{W}_a^{1,p}(\mathbb{R}^N)\setminus\{0\}\to\mathbb{R}^+ $ is continuous;
$ \rm{(ⅳ)} $ $ N_\mu^- = \{u\in {\mathbf{W}_a^{1,p}}(\mathbb{R}^N)\setminus \{0\}\mid\frac{1}{\lVert u \rVert}t^-(\frac{u}{\lVert u \rVert}) = 1\} $.
Proof $ \rm{(ⅰ)} $ The equation $ m_u(t) = \int_{\mathbb{R}^N}f_\mu|u|^q dx $ admits a unique solution $ t^->t_{\max} $ and $ m'_u(t^-)<0 $. Thus $ t^-u\in N_\mu^- $, and (2.9) holds by Lemma 2.3.
$ \rm{(ⅱ)} $ The equation $ m_u(t) = \int_{\mathbb{R}^N}f_\mu|u|^q dx $ admits distinctive solutions $ t^+<t_{\max}<t^- $ such that $ m'_u(t^+)>0 $ and $ m'_u(t^-)<0 $, and then we have $ t^+u\in N_\mu^+ $ and $ t^-u\in N_\mu^- $. Thus (2.10) holds by Lemma 2.3 and Lemma 2.4 (ⅰ).
$ \rm{(ⅲ)} $ By the uniqueness and extremal property of $ t^-(u) $, we have $ t^-(u) $ is a continuous function for $ u\in \mathbf{W}_a^{1,p}(\mathbb{R}^N)\setminus\{0\} $.
$ \rm{(ⅳ)} $ For $ u\in N_\mu^- $, let $ v = \frac{u}{\lVert u \rVert} $. By $ \rm{(ⅰ)} $ and $ \rm{(ⅱ)} $, there is a unique $ t^-(v)>0 $ such that $ t^-(v)v\in N_\mu^- $ or
Since $ \rm{(ⅰ)} $ $ u\in N_\mu^- $, we have $ t^-(\frac{u}{\lVert u \rVert})\frac{1}{\lVert u \rVert} = 1 $, and this implies
On the other hand, let $ u\in \mathbf{W}_a^{1,p}(\mathbb{R}^N)\setminus\{0\} $ such that
If $ u\in N_\mu^+ $, then $ t^-(u)>t_{\max}>1 $ and this contradicts $ t_{\max}<1 $ on $ N_\mu^- $. Then
Thus, the proof is completed.
Remark 2.5 If $ \mu = 0 $, by Lemma 2.4 $ \rm{(ⅰ)} $, $ N_0^+ = \emptyset $ and so $ N_0 = N_0^- $.
Now we consider the limiting problem
and the corresponding energy functional $ I^\infty $ in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ is defined by
Proposition 3.1 For $ 0\leqslant a<\frac{N-p}{p} $, $ 0\leqslant \lambda<\overline{\lambda} $, problem $ \rm(3.1) $ has radially symmetric ground states
satisfying
where $ v_\epsilon(x) = v_\epsilon(|x|) $ is the unique radial solution of $ \rm(3.1) $ up to a dilation. In particular, we have
and $ v_\epsilon $ also has the following properties:
where $ c_i\; (i = 1,2) $ are positive constants and $ a(\lambda), b(\lambda) $ are the zeros of the function
with $ 0\leqslant a(\lambda)<\frac{N}{r}<b(\lambda)<\frac{Np}{(p-1)r} $.
Furthermore, there exist the positive constants $ c_3,c_4 $ such that
Proof As in [19], we can prove that the limiting problem (3.1) has radially symmetric ground states, by which $ S_\lambda $ can be achieved. Let $ u(\xi) $ be a radial solution to (3.1). Then we get that
Set
Then we can obtain the following system
The rest of the proof follows exactly the same lines as that of the limiting problem (3.1) in [19], here we omit it.
By Proposition 3.1, we can easily derive the minimizing problem
For our purpose, the functional $ I_\mu $ is said to satisfy the (P.S.)$ _c $ condition if any sequence $ \{u_n\}_{n\in\mathbb{N}}\subset \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ such that as $ n\rightarrow \infty $,
contains a convergent subsequence in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $. Then the following proposition develops a precise description for the (P.S.)$ _c $-sequence of $ I_\mu $.
Proposition 3.2 $ \rm{(ⅰ)} $ If $ \mu\in(0,L_1) $, then $ I_\mu $ has a (P.S.)$ _\alpha $-sequence $ \{u_n\}_{n\in\mathbb{N}}\subset N_\mu $.
$ \rm{(ⅱ)} $ If $ \mu\in(0,L_2) $, then $ I_\mu $ has a (P.S.)$ _{\alpha^-} $-sequence $ \{u_n\}_{n\in\mathbb{N}}\subset N_\mu^- $.
Proof The proof is similar to the argument of Proposition 3.3 in [20].
Now, we establish the existence of a local minimizer for $ I_\mu $ on $ N_\mu $.
Proposition 3.3 For $ \mu\in (0,L_1) $, the functional $ I_\mu $ has a minimizer $ u_\mu^+\in N_\mu^+ $ satisfying
$ \rm{(ⅰ)} $ $ I_\mu(u_\mu^+) = \alpha^+ = \alpha $;
$ \rm{(ⅱ)} $ $ u_\mu^+ $ is a positive solution of $ \rm(1.1) $;
$ \rm{(ⅲ)} $ $ \lVert u_\mu^+ \rVert\rightarrow 0\ \text{as}\ \mu\rightarrow 0^+ $.
Proof By Proposition 3.2 $ \rm{(ⅰ)} $, there exists a minimizing sequence $ \{u_n\}_{n\in\mathbb{N}}\subset N_\mu $ such that
where $ o(1)\to 0 $ as $ n \to \infty $. Since $ I_\mu $ is coercive on $ N_\mu $, we get that $ \{u_n\} $ is bounded in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $. If necessary to a subsequence, there exists $ u_\mu^+\in\mathbf{W}_a^{1,p}(\mathbb{R}^N) $ such that as $ n\to \infty $,
Moreover, by the Egorov Theorem and Hölder inequality, we have
Consequently, passing to the limit in $ \langle I'_\mu(u_n),v\rangle $, by (3.7) and (3.8), we have
for all $ v\in \mathbf{W}_a^{1,p}(\mathbb{R}^N) $. That is, $ \langle I'_\mu(u_\mu^+),v\rangle = 0 $. Thus, $ u_\mu^+ $ is a weak solution of (1.1).
Furthermore, since $ u_n\in N_\mu $, we can deduce that
which implies that
Thus, $ u_\mu^+\in N_\mu $ is a nontrival solution of (1.1).
Next, we will show, up to a subsequence, that $ u_n\to u_\mu^+ $ strongly in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ and $ I_\mu(u_\mu^+) = \alpha $. In fact, by the Fatou's lemma, it follows that
which implies that $ I_\mu(u_\mu^+) = \alpha $ and $ \lim\limits_{n\to \infty}\lVert u_n \rVert^p = \lVert u_\mu^+ \rVert^p $. Standard argument shows that $ u_n\to u_\mu^+ $ strongly in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $.
Moreover, we have $ u_\mu^+\in N_\mu^+ $. Otherwise, if $ u_\mu^+\in N_\mu^- $, then by Lemma 2.2 and Lemma 2.4, there is a unique $ t^- = \frac{1}{\lVert u_\mu^+\rVert}t^-(\frac{u_\mu^+}{\lVert u_\mu^+\rVert}) $ such that $ t^-u_\mu^+\in N_\mu^- $ and so
which is a contradiction. Since $ I_\mu(u_\mu^+) = I_\mu(|u_\mu^+|) $ and $ |u_\mu^+|\in N_\mu^+ $, we may assume that $ u_\mu^+ $ is a nontrivial nonnegative solution of (1.1). By Harnack inequality, it follows that $ u_\mu^+>0 $ in $ \mathbb{R}^N $.
Finally, by (2.1) and the Hölder inequality, we can obtain
which implies that $ \lVert u_\mu^+ \rVert \to 0 $ as $ \mu\to 0^+ $. This completes the proof.
Let $ u_ l = u_0(x+le) $, for $ l\in \mathbb{R} $ and $ e\in \mathbb{S}^{N-1} $, where $ u_0(x) $ is a radially symmetric positive solution of (3.1) such that $ I^\infty(u_0) = (\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p} $ and $ \mathbb{S}^{N-1} = \{x\in \mathbb{R}^N||x| = 1\}. $ Then we have the following result.
Lemma 3.4 $ \rm{(ⅰ)} $ $ \lim\limits_{l \rightarrow 0} \lVert u_l \rVert^p = S_\lambda^\frac{r}{r-p} $ uniformly in $ e \in \mathbb{S}^{N-1} $;
$ \rm{(ⅱ)} $ $ \lim\limits_{l \rightarrow 0} \int_{\mathbb{R}^N}|u_l|^r dx = S_\lambda^\frac{r}{r-p} $ uniformly in $ e \in \mathbb{S}^{N-1} $;
$ \rm{(ⅲ)} $ $ \lim\limits_{l \rightarrow 0} I^\infty(u_l) = (\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p} $ uniformly in $ e \in \mathbb{S}^{N-1} $.
We refer to the argument of Lemma 4.2 in He and Yang (see [21]).
The following statement is paramount to prove our main result.
Proposition 4.1 For $ \mu\in(0,L_2) $, we have $ \alpha^-<\alpha^++(\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p} $.
Proof Let $ u_\mu^+\in N_\mu^+ $ be a positive solution of (1.1) in Proposition 3.3. Then we obtain
Since
There exist $ 0<t_1<t_2 $ such that
Thus we only need to show that there exists $ l_0>0 $ such that for $ l>l_0 $, we have
Since $ u_\mu^++tu_l\rightarrow u_\mu^+ $ as $ l\rightarrow \infty $, by Brézis-Lieb lemma, we can find $ l_0>0 $ such that for $ l>l_0 $,
For $ u,v>0 $, we can remark that $ (u+v)^r-u^r-v^r\geqslant 0, $ and so
From condition (A$ _1) $, (A$ _2) $ and (3.5), we can obtain
Since $ 0<r_{g_2}<\min\{r_f-N,r_{g_1}-N\} $ and $ t_1\leqslant t\leqslant t_2 $, by (4.1)–(4.8), we can find $ l_0>0 $ such that
In order to complete the proof of Proposition 4.1, it remains to show that there exists a positive number $ t_* $ such that $ u_\mu^++t_*u_l\in N_\mu^- $. Let
Then the manifold $ N_\mu^- $ divides $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ into two connected components $ U_1 $ and $ U_2 $, and $ \mathbf{W}_a^{1,p}(\mathbb{R}^N)\setminus N_\mu^- = U_1 \cup U_2 $. For each $ u\in N_\mu^+ $, we have $ 1<t_{\max}(u)<t^-(u) $. Since $ t^-(u) = \frac{1}{\lVert u \rVert}t^-(\frac{u}{\lVert u \rVert}) $, we can obtain $ N_\mu^+\subset U_1 $ and so $ u_\mu^+\in U_1 $.
Next we claim that there exists $ t_0>0 $ such that $ u_\mu^++t_0 u_l\in U_2 $. In fact, we find a constant $ c>0 $ such that $ 0<t^-(\frac{u_\mu^++tu_l}{\lVert u_\mu^++tu_l \rVert})<c $ for each $ t>0 $. If not, then we may assume that there exists a sequence $ \{t_n\}_{n\in\mathbb{N}} $ such that $ t_n\rightarrow \infty $ and $ t^-(\frac{u_\mu^++t_nu_l}{\lVert u_\mu^++t_nu_l \rVert})\rightarrow \infty $ as $ n\rightarrow \infty $. Let $ v_n = \frac{u_\mu^++t_n u_l}{\lVert u_\mu^++t_n u_l \rVert} $. Since $ t^-(v_n)v_n\in N_\mu^- $ and by the Lebesgue dominated convergence theorem, we can deduce
Then we have
which contradicts the fact that $ I_\mu $ is bounded below on $ N_\mu $. Let
By (4.4) and Lemma 3.4, we have, as $ l\rightarrow \infty $,
Thus there exists $ l_0>0 $ such that for $ l>l_0 $, we get
or $ u_\mu^++t_0u_l\in U_2 $. Define a path $ \gamma(s) = u_\mu^++st_0u_l $ for $ s\in [0,1] $, and so
By Lemma 2.4, we have $ \frac{1}{\lVert u \rVert}t^-(\frac{u}{\lVert u \rVert}) $ is a continuous function for $ u\in \mathbf{W}_a^{1,p}(\mathbb{R}^N)\setminus\{0\} $ and $ \gamma([0,1]) $ is connected. Then there exists $ s_0\in(0,1) $ such that $ u_\mu^++s_0t_0u_l\in N_\mu^- $. Take $ t_* = s_0t_0 $ and this proof is completed.
Theorem 4.2 For $ \mu\in(0,L_2) $, $ \rm(1.1) $ has a positive solution $ u_\mu^-\in N_\mu^- $ such that $ I_\mu(u_\mu^-) = \alpha^- $.
Proof By Ekeland's variational principle [22], there exists a minimizing sequence $ \{u_n\}_{n\in\mathbb{N}}\subset N_\mu^- $ such that
Since $ \alpha^-<\alpha^++(\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p} $, by Lemma 2.3 and Proposition 3.2, there exists a subsequence $ \{u_n\}_{n\in\mathbb{N}} $ and a non-zero solution $ u_\mu^-\in N_\mu^- $ of (1.1) such that as $ n\to\infty $, it holds
Since $ I_\mu(u_\mu^-) = I_\mu(|u_\mu^-|) $ and $ |u_\mu^-|\in N_\mu^- $, $ u_\mu^- $ is a positive solution of (1.1). We finish the proof.
In this section, we discuss the concentration behavior of solutions to (1.1) so that we can get the proof of Theorem 1.1 $ \rm(ⅱ) $.
Lemma 5.1 We have
Furthermore, $ \rm(1.1) $ does not admit any solution $ w_0\in\mathbf{W}_a^{1,p}(\mathbb{R}^N) $ such that $ I_0(w_0) = \inf\limits_{u\in N_0}I_0(u). $
Proof By Lemma 2.4, there exists the unique $ t^-(u_l)>0 $ such that $ t^-(u_l)u_l\in N_0 $ for all $ l>0 $, that is,
By (5.2)–(5.4), we have $ t^-(u_l)\rightarrow 1 $ as $ l\rightarrow \infty $. Thus
Then we can obtain
For $ u\in N_0 $, by Lemma 2.4 $ \rm{(ⅰ)} $,
Moreover, there exists a unique $ t^\infty>0 $ such that $ t^\infty u\in N^\infty $. Thus,
and so $ \inf\limits_{u\in N_0}I_0(u)\geqslant (\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p} $. Then we have
In order to show that (1.1) does not admit any solution $ w_0 $ such that $ I_0(w_0) = \inf\limits_{u \in N_0}I_0(u) $, we argue by the contrary. By Lemma 2.4 $ \rm{(ⅰ)} $, we have $ I_0(w_0) = \sup\limits_{t\geqslant 0}I_0(tw_0) $. Moreover, there exists a unique $ t_{w_0}>0 $ such that $ t_{w_0}w_0\in N^\infty $. Thus we obtain
and this implies $ \int_{\mathbb{R}^N}f_-|w_0|^q dx = 0 $, that is, $ w_0\equiv 0 $ in $ \{x\in \mathbb{R^N}|f_-(x)\not = 0\} $ from (A$ _1) $. Then we can obtain
By the Lagrange multiplier and the maximum principle, we may assume that $ t_{w_0}w_0 $ is a positive solution of (1.1). This contradiction completes the proof.
Lemma 5.2 Assume that $ \{u_n\} $ is a minimizing sequence in $ N_0 $ for $ I_0 $. Then
$ \rm{(ⅰ)} $ $ \int_{\mathbb{R}^N}f_-|u_n|^q dx = o(1); $
$ \rm{(ⅱ)} $ $ \int_{\mathbb{R}^N}(1-g)|u_n|^r dx = o(1). $
Furthermore, $ \{u_n\} $ is a (P.S.)$ _{(\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}} $-sequence in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ for $ I^\infty $.
Proof For each $ n $, there exists a unique $ t_n>0 $ such that $ t_nu_n\in N^\infty $, that is,
By Lemma 2.4 $ \rm{(ⅰ)} $, we have
Since $ I_0(u_n) = (\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}+o(1) $ from Lemma 5.1, we have, as $ n\to \infty $,
Next, we will show that there exists $ M>0,\;c_0>0 $ such that $ t_n>c_0 $ for $ n>M $. Suppose the contrary. Then we may assume $ t_n\rightarrow 0 $ as $ n\rightarrow \infty $. As in the proof of Lemma 2.3, we know that $ \lVert u_n \rVert $ is uniformly bounded and so $ \lVert t_nu_n \rVert\rightarrow 0 $ or $ I^\infty(t_nu_n)\rightarrow 0 $. This contradicts the fact $ I^\infty(t_nu_n)\geqslant (\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}>0 $ from Lemma 5.1. Then we have
This implies
that is, $ \{u_n\} $ is a (P.S.)$ _{(\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}} $-sequence in $ \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ for $ I^\infty $. This completes the proof.
Let
be the filtration of the Nehari manifold $ N_\mu $. Then we have the following lemmas.
Lemma 5.3 There exists $ d_0<0 $ such that for $ u\in N_0(d_0) $, we have
Proof Suppose the contrary. We may assume that there exists a sequence $ \{u_n\}_{n\in\mathbb{N}}\subset N_0 $ such that $ I_0(u_n) = (\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}+o(1) $ and $ \int_{\mathbb{R}^N}\frac{x}{|x|^{1-ap}}(|x|^{1-ap}|\nabla u_n|^p-\frac{\lambda}{|x|^{p(a+1)}}u_n^p) dx = o(1) $. By Proposition 3.2 and the concentration-compactness principle (see [23, Theorem 4.1]), there exists a sequence $ \{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^N $ such that
Now we will show that $ |x_n|\rightarrow \infty $ as $ n\rightarrow \infty $ by contradiction. We may assume that $ \{x_n\} $ is bounded and $ x_n\rightarrow x_* $ for some $ x_*\in \mathbb{R}^N $. Then by (5.11),
this contradicts the result of Lemma 5.2 $ \rm{(ⅰ)} $. Hence we may assume $ \frac{x_n}{|x_n|}\rightarrow e $ as $ n\rightarrow \infty $, where $ e\in\mathbb{S}^{N-1} $. By the Lebesgue dominated convergence theorem, we have
This contradiction completes the proof.
By (2.1) and Lemma 2.4 $ \rm{(ⅰ)} $, for each $ u\in N_\mu^- $, there exists the unique $ t_0^-(u)>0 $ such that $ t_0^-(u)u\in N_0 $ and $ t_0^-(u)>t_{\max}(u)>0 $. Then we have the following result.
Lemma 5.4 Let
For each $ \mu\in(0,L_2) $ and $ u\in N_\mu^-(\alpha^+) $, we have $ t_0^-(u)<T^\frac{1}{r-p} $.
Proof For $ u\in N_\mu^-(\alpha^+) $, we distinguish from the following distinctive cases.
Case ($ \rm{ⅰ} $) $ t_0^-(u)<1 $. Since $ T>1 $, we have $ t_0^-(u)<1<T^\frac{1}{r-p} $.
Case ($ \rm{ⅱ} $) $ t_0^-(u)\geqslant 1 $. Since
and by Lemma 2.2 $ \rm{(ⅲ)} $, we have
Moreover, from the argument in the proof of Lemma 2.2, we have
Thus, by (5.12)–(5.14), we have
This completes the proof.
Lemma 5.5 There exists $ \mu_0\in (0,L_2) $ such that for each $ \mu\in(0,\mu_0) $ and $ u\in N_\mu^-(\alpha^+) $,
Proof For $ u\in N_\mu^-(\alpha^+) $, by Lemma 2.4 $ \rm{(ⅰ)} $, there exists $ t_0^-(u)>0 $ such that $ t_0^-(u)u\in N_0 $. Moreover, by Lemma 5.4 and the Hölder inequality and Sobolev embedding theorem, we have
or so
Since $ I_\mu(u)<\alpha^++(\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}< (\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p} $, by Lemma 2.1, for $ \mu\in(0,L_2) $ and $ u\in N_\mu^-(\alpha^+) $, there exists $ c_* $ independent of $ \mu $ such that $ \lVert u \rVert\leqslant c_* $. Thus,
Then by Lemma 5.3, we have
and this implies
The proof is completed.
In this section, we will follow an idea in [24] to prove our main result. For $ c\in \mathbb{R}^+ $, we denote
Then we try to show that for a sufficiently small $ \sigma>0 $, we have
Here 'cat' means the Lusternik-Schnirelmann category [15]. First, let us recall its definition.
Definition 6.1 A non-empty, closed subset $ Y $ is contractible in a topological space $ \mathbf{X} $ if there exists $ h\in\mathbf{C}([0,1]\times Y,\;\mathbf{X}) $ such that for some $ x_0\in \mathbf{X} $,
Definition 6.2 Let $ Y_1,Y_2,\cdots,Y_k $ be closed subsets of a topological space $ \mathbf{X} $. The category of $ \mathbf{X} $ is the least integer $ k $ such that $ Y_j $ is contractible in $ \mathbf{X} $ for all $ j $ and $ \cup_{j = 1}^k Y_j = \mathbf{X} $, denoted by cat$ (\mathbf{X}) $.
When there do not exist finitely many closed subsets $ Y_1,Y_2,\cdots,Y_ k\subset\mathbf{X} $ such that $ Y_j $ is contractible in $ \mathbf{X} $ for all $ j $ and $ \bigcup\limits_{j = 1}^k Y_j = \mathbf{X} $, we denote cat$ (\mathbf{X}) = \infty $. We need the following lemmas (see Theorem 2.3 in [25] and Lemma 2.5 in [24]).
Lemma 6.3 Let $ \mathbf{X} $ be a Hilbert manifold and $ F\in C^1(\mathbf{X},\mathbb{R}) $. Assume that there are $ c_0\in \mathbb{R} $ and $ k\in \mathbf{N} $ such that
$ \rm{(ⅰ)} $ $ F $ satisfies the Palais-Smale condition for energy level $ c\leqslant c_0 $;
$ \rm{(ⅱ)} $ cat$ (\{x\in \mathbf{X}|F(x)\leqslant c_0\})\geqslant k $.
Then $ F $ has at least $ k $ critical points in $ \{x\in \mathbf{X}|F(x)\leqslant c_0\} $.
Lemma 6.4 Let $ \mathbf{X} $ be a topological space. Assume that there are $ \varphi \in C(\mathbb{S}^{N-1},\mathbf{X}) $ and $ \psi \in C(\mathbf{X},\mathbb{S}^{N-1}) $ such that $ \psi \circ \varphi $ is homotopic to the identity map of $ \mathbb{S}^{N-1} $, that is, there exists $ h\in C([0,1]\times \mathbb{S}^{N-1},\mathbb{S}^{N-1}) $ such that $ h(0,x) = (\psi \circ \varphi)(x),\; \; h(1,x) = x. $ Then cat$ (\mathbf{X})\geqslant 2. $
For $ l>l_0 $, we define a map $ \varphi_\mu: \mathbb{S}^{N-1}\rightarrow \mathbf{W}_a^{1,p}(\mathbb{R}^N) $ by
where $ u_\mu^++t_*u_l $ is as in the proof of Proposition 4.1. Then we have the following result.
Lemma 6.5 There exists a sequence $ \{\sigma_l\}\subset \mathbb{R}^+ $ with $ \sigma_l\rightarrow 0 $ as $ l\rightarrow \infty $ such that
Proof By Proposition 4.1, for $ l>l_0 $, we have $ u_\mu^++t_*u_l\in N_\mu^- $ and
Since $ \varphi_\mu(\mathbb{S}^{N-1}) $ is compact and $ I_\mu(u_\mu^++t_*u_l)\leqslant \alpha^++(\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}-\sigma_l $, the conclusion holds.
From Lemma 5.5, we define a barycenter map, $ \psi_\mu:[I_\mu<\alpha^++(\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}]\rightarrow \mathbb{S}^{N-1} $ by
Lemma 6.6 Let $ \mu_0 $ be as in Lemma 5.5. Then for $ \mu\in(0,\mu_0) $, there exists $ l_*>l_0 $ such that the map
is homotopic to the identity operator.
Proof Denote
and define $ \widetilde{\psi_\mu}:\text{supp }\psi_\mu\rightarrow \mathbb{S}^{N-1} $ by
as an extension of $ \psi_\mu $. Since $ u_l\in\text{supp }\psi_\mu $ for all $ e\in \mathbb{S}^{N-1} $ and large enough $ l $, we may assume $ \gamma:[s_1,s_2]\rightarrow \mathbb{S}^{N-1} $ is a regular geodesic between $ \psi_\mu(u_l) $ and $ \widetilde{\psi_\mu}(\varphi_\mu(e)) $ such that
By an argument similar to Lemma 5.3, there exists $ l_*\geqslant l_0 $ such that
for all $ e\in\mathbb{S}^{N-1},\ l>l_* $ and $ \theta\in[\frac{1}{2},1) $. We define
by
Then $ h_l(0,e) = \widetilde{\psi_\mu}(\varphi_\mu(e)) $ and $ h_l(1,e) = e $. By the standard regularity, we have $ h_l(\theta,e)\in C(\mathbb{R}^N) $.
Next, we will show that $ \lim\limits_{\theta\rightarrow 1^-}h_l(\theta,e) = e $ and $ \lim\limits_{\theta\rightarrow \frac{1}{2}^-}h_l(\theta,e) = \widetilde{\psi_\mu}(u_l). $
$ \rm{(ⅰ)} $ $ \lim\limits_{\theta\rightarrow 1^-}h_l(\theta,e) = e $, since
as $ \theta\rightarrow 1^- $.
$ \rm{(ⅱ)} $ $ \lim\limits_{\theta\rightarrow \frac{1}{2}^-}h_l(\theta,e) = \widetilde{\psi_\mu}(u_l) $. Since $ \widetilde{\psi_\mu}\in C(\text{supp }\psi_\mu,\mathbb{S}^{N-1}) $, then we have
for all $ e\in \mathbb{S}^{N-1} $ and $ l>l_* $. This completes the proof.
Lemma 6.7 For $ \mu\in (0,\mu_0) $ and $ l>l_* $, the energy functional $ I_\mu $ admits at least two critical points in $ [I_\mu<\alpha^++(\frac{1}{p}-\frac{1}{r})S_\lambda^\frac{r}{r-p}] $.
Proof It is easy to deduce from Lemmas 6.3, 6.4, 6.6 and Proposition 3.2.
Proof of Theorem 1.1 Now we can complete the proof of Theorem 1.1
$ \rm{(ⅰ)\; \; } $by Proposition 3.3 and Theorem 4.2;
$ \rm{(ⅱ)\; \; } $from Proposition 3.3 and Lemma 6.7, (1.1) has at least three positive solutions $ u_\mu^+,u_1^-,u_2^- $, where $ u_\mu^+\in N_\mu^+ $ and $ u_i^-\in N_\mu^- $ for $ i = 1,2 $.