数学杂志  2019, Vol. 39 Issue (4): 609-620   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
马丽
严良清
韩新方
带Lévy跳的中立随机微分方程的EM逼近
马丽, 严良清, 韩新方    
海南师范大学数学与统计学院, 海南 海口 571158
摘要:本文研究了一类带Lévy跳的中立随机微分方程的Euler近似解的问题.利用Gronwall不等式、Hölder不等式及BDG不等式,在局部Lipschitz和线性增长条件下,本文给出近似解在均方意义下收敛于真实解,推广了带Poisson跳的中立随机微分方程EM逼近结果.
关键词Euler近似解    中立随机微分方程    Lévy跳    BDG不等式    
CONVERGENCE OF THE EUMLER-MARUYAMA METHOD FOR NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH LÉVY JUMPS
MA Li, YAN Liang-qing, HAN Xin-fang    
School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
Abstract: In this paper, we study the Euler-Maruyama method for Neutral stochastic functional differential equations with Lévy jumps. By using Gronwall inequality, Hölder inequality and BDG inequality, we prove the numerical solution converges to the real solution, which generalize the EM approximation for neutral stochastic functional differential equations with Poisson jumps.
Keywords: EM approximation     neutral stochastic differential equation     Lévy jumps     BDG inequality    
1 引言

中立延迟随机微分方程历年来在生物、工程、金融等各个领域引起了学者的广泛关注.文[1]系统地介绍了不带跳的随机泛函微分方程的基本理论及其在金融、随机游戏、人口问题中的应用; 文[2]给出了带有Lévy跳随机泛函微分方程解的存在唯一性; 文[3]得到了一类带Lévy跳的中立随机泛函微分方程解的存在唯一性; 文[4]研究了带有特殊跳(泊松跳)的中立随机延迟微分方程的数值逼近; 文[5]得到了Lévy噪声扰动的混合随机微分方程的Euler近似解; 文[6]和文[7]研究了带Markov状态转换的跳扩散方程的数值解.

$ (\Omega, \mathcal F, P) $是完备概率空间, $ (\mathcal F_{t})_{t\geq0} $是其上一个满足通常条件的适应流.设$ \{\bar{p} = \bar{p}(t), t\geq0\} $是一个关于$ (\mathcal F_{t})_{t\geq0} $适应的稳定的$ R^{n} $值泊松点过程.设$ B(R^{n}- \{0\}) $$ R^{n}-\{0\} $上的波莱尔$ \sigma $-代数, 对$ A\in B(R^{n}- \{0\}) $, 定义与$ \bar{p} $联系的泊松计数测度$ N(t, A) = N((0, t]\times A) $如下

$ N((0, t], A) = \sum\limits_{0<s\leq t}I_{A}(\bar{p}(s)), $

则存在一个$ \sigma $有限测度$ \pi $使得

$ E(N(t, A)) = \pi(A)t, \qquad P(N(t, A) = n) = \frac{\exp(-t\pi(A))(\pi(A)t)^{n}}{n!}, $

这里的测度$ \pi $称为Lévy测度.由Doob-Meyer分解定理, 存在关于$ (\mathcal F_{t})_{t\geq0} $适应的唯一的鞅$ \tilde{N}(t, A) $和唯一的增过程$ \hat{N}(t, A) $, 使得

$ N(t, A) = \tilde{N}(t, A)+\hat{N}(t, A), t\geq0, $

这里的$ \tilde{N}(t, A) $称作补偿Lévy跳且$ \hat{N}(t, A) = \pi(A)t $称作补偿子.

$ |\cdot| $表示欧式空间$ R^{d} $中的范数, $ \tau $为一个正的固定的延迟, $ C([-\tau, 0], R^{d}) $$ [-\tau, 0] $$ R^{d} $上的连续函数类, 其上的范数为$ \|\varphi\| = \sup\limits_{-\tau\leq\theta\leq0}|\varphi(\theta)| $.设$ \xi(t) $为关于$ \mathcal F_{0} $可测的$ C([-\tau, 0], R^{d}) $随机变量且满足$ E\|\xi\|^{p}<\infty $, 其中$ p $为大于等于2的任意正整数.设$ W(t) $$ (\Omega, \mathcal F, P) $上关于流$ (\mathcal F_{t})_{t\geq0} $适应的标准的$ r $维布朗运动且与Lévy跳$ N $独立.设$ Z\in B(R^{n}-\{0\}) $$ \pi(Z)<\infty $, 设$ 0<T<\infty, D:[0, T]\times R^{n}\rightarrow R^{n}, $ $ f:[0, T]\times R^{n}\times R^{n}\rightarrow R^{n}, $ $ g:[0, T]\times R^{n}\times R^{n}\rightarrow R^{n\times r}, $ $ h:[0, T]\times R^{n}\times Z\rightarrow R^{n} $.

本文将研究如下带Lévy跳的中立随机微分方程的EM算法

$ \begin{eqnarray} d[x(t)-D(t, x(t-\tau))] & = &f(t, x(t-\tau), x(t))dt+g(t, x(t-\tau), x(t))dW(t) \\ &&+\int_{Z}h(t, x(t-\tau), x(t), \nu)N(dt, d\nu), \ t\in[0, T], \\ x(t)& = &\xi(t), \ t\in[-\tau, 0]. \end{eqnarray} $ (1.1)

在系数满足局部Lipschitz条件和线性增长条件, 中立项$ D(t, x(t-\tau)) $关于第二个分量为压缩映射的条件下, 类似于文[2], 我们可得方程(1.1)存在唯一解.由于解没有显示表达, 因此有必要研究其数值解.如果数值解逼近于真实解, 我们可以用数值解来估计真实解.

本文内容安排如下:第二节介绍了方程(1.1)的Euler的数值算法, 并给出主要结果即定理1;第三节给出定理1的证明.本文推广了文[4]的结果, 考虑的中立项是时间和状态的二元函数, 在逼近的时候对中立项需要加一定的条件才可以放缩.此外, 有中立项时需要把它看成一个整体, 进而用伊藤公式, 再由基本不等式及压缩映射最终得到数值解稳定于真实解.方程(1.1)中$ f, g, h $也依赖于时间, 因此需要三个函数关于时间$ t $是局部Lipschitz的.

2 EM近似解及主要结果

在It$ {\rm{\hat o}}$ 意义下方程(1.1)的随机积分形式为

$ \begin{eqnarray} x(t) & = & D(t, x(t-\tau))+\xi(0, x(-\tau))+\int_{0}^{t}f(s, x(s-\tau), x(s))ds \\ &&+ \int_{0}^{t}g(s, x(s-\tau), x(s))dW(s)+\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)N(ds, d\nu). \end{eqnarray} $ (2.1)

下面给出(1.1)式的EM逼近解.

给定步长$ \Delta\in(0, 1) $且满足$ \Delta = \frac{\tau}{m}, m $为一个大于$ \tau $的正整数.定义$ t_{k} = k\Delta $, 当$ -m\leq k<0 $时, 定义$ y_{k} = \xi(t_{k}) $.当$ k\geq0 $时, 定义$ y_{-1-m} = \xi(t_{m}) $,

$ \begin{eqnarray} y_{k+1} & = & D((k+1)\Delta, y_{k+1-m})+y_{k}-D(k\Delta, y_{k-m})+f(k\Delta, y_{k-m}, y_{k})\Delta \\ &&+g(k\Delta, y_{k-m}, y_{k})\Delta W_{k}+\int_{k\Delta}^{(k+1)\Delta}\int_{Z}h(k\Delta, y_{k-m}, y_{k}, \nu)N(ds, d\nu), \end{eqnarray} $ (2.2)

其中$ \Delta W_{k} = W_{t_{k+1}}-W_{t_{k}} $.假设$ \tilde{y}(t) = y_{k}, \tilde {y}{(t-\tau)} = y_{k-m}, t\in[t_{k}, t_{k+1}) $, 则EM逼近解$ y(t) $的连续形式如下

$ \begin{eqnarray} y(t) = \left\{ \begin{aligned} &D([\frac{t}{\Delta}]\Delta, \tilde{y}(t)) +\xi(0)-D(0, \xi(-\tau))+\int_{0}^{t}f([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds \nonumber\\ &+\int_{0}^{t}g([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds +\int_{0}^{t}\int_{Z}h([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)N(ds, d\nu), \quad t>0, \nonumber\\ &x(-\tau), \ \quad t\in[-\tau, 0]. \end{aligned} \right. \end{eqnarray} $

本文对系数做如下假设.

(H$ _{1} $)  对任意的正整数$ m $, 存在正整数$ \bar{k}_{m} $, 使得对任意的$ t_{1}, t_{2}\in[0, +\infty) $, 任意的$ x, y, \bar{x}, \bar{y}\in R^{n} $$ |x|\leq m, |y|\leq m, |\bar{x}|\leq m, \bar{y}\leq m $, 有

$ \begin{eqnarray*} &&|f(t_{1}, x, y)-f(t_{2}, \bar{x}, \bar{y})|^{2}\vee|g(t_{1}, x, y)-f(t_{2}, \bar{x}, \bar{y})|^{2}\vee \int_{Z}|h(t_{1}, x, y, \nu)-h(t_{2}, \bar{x}, \bar{y}, \nu)|^{2}\pi(d\nu)\\ \leq&&\bar{k}_{m}\big(|t_{1}-t_{2}|^{2}+|x-y|^{2}+|\bar{x}-\bar{y}|^{2}\big). \end{eqnarray*} $

(H$ _{2} $)  对任意的$ p\geq2 $, 存在正数$ k_{1} $使得对任意$ t\in[0, +\infty) $, $ x, y\in R^{n} $, 有

$ \begin{equation*} |f(t, x, y)|^{2}\vee|g(t, x, y)|^{2}\vee\big(\int_{Z}|h(t, x, y, \nu)|^{p}\pi(d\nu)\big)^{\frac{2}{p}} \leq k_{1}\big(1+|x|^{2}+|y|^{2}\big). \end{equation*} $

(H$ _{3} $)  存在正数$ k_{2}\in(0, 1) $, 使得对任意$ t_{1}, t_{2}\in[0, +\infty), x, y\in R^{n} $, 有

$ \begin{equation*} |D(t_{1}, x)-D(t_{2}, y)|^{2}\leq k_{2}(|x-y|^{2}). \end{equation*} $

$ T\in[0, +\infty) $为任一常数, 本文主要结果如下.

定理 1  在(H$ _{1} $)–(H$ _{3} $)条件下, 方程(1.1)的Euler数值解收敛到真实解.即

$ \begin{equation} \lim\limits_{\Delta\rightarrow 0}E(\sup\limits_{0\leq t\leq T}|x(t)-y(t)|^{2}) = 0. \end{equation} $ (2.3)
3 定理1的证明

在证明定理1之前, 需要一些重要的引理.

引理 1  在(H$ _{1} $)–(H$ _{3} $)条件下, 对任意$ p\geq2 $, 存在一个独立于$ \Delta $的常数$ M>0 $, 使得

$ \begin{eqnarray} E(\sup\limits_{-\tau\leq t\leq T}|x(t)|^{p}) \vee E(\sup\limits_{-\tau\leq t\leq T}|y(t)|^{p})<M. \end{eqnarray} $ (3.1)

  不失一般性, 假定$ x(t) $是有界的, 否则的话, 对每个整数$ n $, 定义停时$ \tau_{n} = \inf \{t\in[0, T]:|x(t)|\geq n\} $, 考虑停止过程$ x(t\vee\tau_{n}) $即可.由基本不等式、假设(H$ _{3} $)及Hölder不等式可得

$ \begin{eqnarray*} &&|x(t)|^{p}\\ & = &|D(t, x(t-\tau))+\xi(0)-D(0, x(-\tau))+\int_{0}^{t}f(s, x(s-\tau), x(s))ds \\ && +\int_{0}^{t}g(s, x(s-\tau), x(s))dW(s)+ \int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)N(ds, d\nu)|^{p} \\ &\leq& 5^{p-1}|D(t, x(t-\tau))-D(0, x(-\tau))|^{p}+5^{p-1}|\xi(0)|^{p}+5^{p-1} |\int_{0}^{t}f(s, x(s-\tau), x(s))ds|^{p}\\ && +5^{p-1}|\int_{0}^{t}g(s, x(s-\tau), x(s))dW(s)|^{p}+5^{p-1} |\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)N(ds, d\nu)|^{p}\\ &\leq& 5^{p-1}k_{2}^{\frac{p}{2}}|x(t-\tau)-x(-\tau)|^{p}+5^{p-1}|\xi(0)|^{p} +5^{p-1}t^{p-1}\int_{0}^{t}|f(s, x(s-\tau), x(s))|^{p}ds\\ && +5^{p-1}|\int_{0}^{t}g(s, x(s-\tau), x(s))dW(s)|^{p} +5^{p-1}|\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)N(ds, d\nu)|^{p}\\ &\leq&10^{p-1}k_{2}^{\frac{p}{2}}\left[|x(t-\tau)|^{p}+|x(-\tau)|^{p}\right]+5^{p-1}|\xi(0)|^{p}\\ && +5^{p-1}t^{p-1}\int_{0}^{t}k_{1}^{\frac{p}{2}} \left(1+|x(s-\tau)|^{2}+|x(s)|^{2}\right)^{\frac{p}{2}}ds +5^{p-1}|\int_{0}^{t}g(s, x(s-\tau), x(s))dW(s)|^{p}\\ && +5^{p-1}| \int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)N(ds, d\nu)|^{p}. \end{eqnarray*} $

因此对任意的$ t_{1}\in[0, T] $, 有

$ \begin{eqnarray} E(\sup\limits_{0\leq t\leq t_{1}}|x(t)|^{p}) &\leq&10^{p-1}k_{2}^{\frac{p}{2}} E(\sup\limits_{-\tau\leq t\leq t_{1}}|x(t)|^{p}) +(10^{p-1}k_{2}^{\frac{p}{2}}+5^{p-1})\|\xi\|^{p}\\ &&+5^{p-1}t_{1}^{p-1}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1}E(\sup\limits_{0\leq t\leq t_{1}}\int_{0}^{t}(1+|x(s-\tau)|^{p}+|x(s)|^{p})ds) \\ && +5^{p-1}E(\sup\limits_{0\leq t\leq t_{1}}|\int_{0}^{t}g(s, x(s-\tau), x(s))dW(s)|^{p}) \\ &&+5^{p-1}E(\sup\limits_{0\leq t\leq t_{1}} |\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)N(ds, d\nu)|^{p}). \end{eqnarray} $ (3.2)

显然有

$ E[\sup\limits_{0\leq t\leq t_{1}}\int_{0}^{t}\big(1+|x(s-\tau)|^{p}+|x(s)|^{p}\big)ds]\leq t_{1}+2\int_{0}^{t_{1}}E(\sup\limits_{-\tau\leq u\leq s}|x(u)|^{p})ds. $

由BDG不等式及假设(H$ _{2} $)可得

$ \begin{eqnarray} &&E(\sup\limits_{0\leq t\leq t_{1}} |\int_{0}^{t}g(s, x(s-\tau), x(s))dW(s)|^{p} ) \leq C_{p}E(\int_{0}^{t_{1}}|g(s, x(s-\tau), x(s))|^{p}ds) \\ &\leq& C_{p}k_{1}^{\frac{p}{2}}E({\int_{0}^{t_{1}}[1+|x(u-\tau)|^{2} +|x(u)|^{2}]^{\frac{p}{2}}ds})\\ &\leq& C_{p}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1} [t_{1}+2\int_{0}^{t_{1}}E(\sup\limits_{-\tau\leq u\leq s}|x(u)|^{p})ds], \end{eqnarray} $ (3.3)

其中$ C_{p} $为与p有关的正的常数.对于跳部分, 由假设(H$ _{2} $)及文[3]引理3.2, 得

$ \begin{eqnarray} &&E(\sup\limits_{0\leq t\leq t_{1}} |\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)N(ds, d\nu)|^{p} )\\ & = &E(\sup\limits_{0\leq t\leq t_{1}} |\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)\tilde{N}(ds, d\nu)+\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)\pi(d\nu)ds|^{p})\\ &\leq& 2^{p-1}E(\sup\limits_{0\leq t\leq t_{1}} |\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)\tilde{N}(ds, d\nu)|^{p} )\\ &&+2^{p-1}E(\sup\limits_{0\leq t\leq t_{1}}|\int_{0}^{t}\int_{Z}h(s, x(s-\tau), x(s), \nu)\pi(d\nu)ds|^{p} )\\ &\leq&2^{p-1}D_{p} [E(\int_{0}^{t_{1}}\int_{Z}|h(s, x(s-\tau), x(s), \nu)|^{2}\pi(d\nu)ds)^{\frac{p}{2}}\\ &&+E(\int_{0}^{t_{1}}\int_{Z}|h(s, x(s-\tau), x(s), \nu)|^{p}\pi(d\nu)ds)]\\ &&+2^{p-1}\pi(Z)^{p-1}E[\int_{0}^{t_{1}} (\int_{Z}|h(s, x(s-\tau), x(s), \nu)|^{p}\pi(d\nu))^{\frac{1}{p}}ds ]^{p}\\ &\leq&2^{p-1}D_{p} E[ \int_{0}^{t_{1}}(1+\sup\limits_{0\leq u\leq s}|x(u-\tau)|^{2}+\sup\limits_{0\leq u\leq s}|x(u)|^{2})ds ]^{\frac{p}{2}}\\ &&+2^{p-1}D_{p} E( \int_{0}^{t_{1}} (1+\sup\limits_{0\leq u\leq s}|x(u-\tau)|^{2}+\sup\limits_{0\leq u\leq s}|x(u)|^{2})^{\frac{p}{2}}ds )\\ &&+2^{p-1}\pi(Z)^{p-1} E[ \int_{0}^{t_{1}} (1+\sup\limits_{0\leq u\leq s}|x(u-\tau)|^{2}+\sup\limits_{0\leq u\leq s}|x(u)|^{2})^{\frac{1}{2}}ds ]^{p}\\ &\leq& [2^{p-1}D_{p}(t_{1}^{\frac{p-2}{p}}+1)+2^{p-1}\pi(Z)^{p-1}t_{1}^{p-1}] E[\int_{0}^{t_{1}}(1+\sup\limits_{0\leq u\leq s}|x(u-\tau)|^{2} +\sup\limits_{0\leq u\leq s}|x(u)|^{2})^{\frac{p}{2}}ds)]\\ &\leq& 3^{\frac{p}{2}-1} \Big[2^{p-1}D_{p}(t_{1}^{\frac{p-2}{p}}+1)+2^{p-1}\pi(Z)^{p-1}t_{1}^{p-1}\Big] (t_{1}+2\int_{0}^{t_{1}}E(\sup\limits_{-\tau\leq u\leq s}|x(u)|^{p})ds). \end{eqnarray} $ (3.4)

其中$ D_{p} $为正的常数.注意到对任意的$ t_{1}\in[0, T] $, 有

$ \begin{eqnarray} E(\sup\limits_{-\tau\leq t\leq t_{1}}|x(t)|^{p}) \leq E\|\xi\|^{p}+E(\sup\limits_{0\leq t\leq t_{1}}|x(t)|^{p}), \end{eqnarray} $ (3.5)

将(3.2)–(3.4)式代入(3.5)式得

$ \begin{eqnarray*} &&E(\sup\limits_{-\tau \leq t\leq t_{1}}|x(t)|^{p}) \leq E\|\xi\|^{p}+E(\sup\limits_{0\leq t\leq t_{1}}|x(t)|^{p}) \\ &\leq&\big(10^{p-1}k_{2}^{\frac{p}{2}}+5^{p-1}+1\big)E\|\xi\|^{p}+10^{p-1}k_{2}^{\frac{p}{2}} E(\sup\limits_{-\tau\leq t\leq t_{1}}|x(t)|^{p})\\ &&+5^{p-1}t_{1}^{p-1}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1} (t_{1}+2\int_{0}^{t_{1}}E(\sup\limits_{-\tau\leq u\leq s}|x(u)|^{p})ds)\\ &&+5^{p-1}C_{p}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1} [t_{1}+2\int_{0}^{t_{1}}E(\sup\limits_{-\tau\leq u\leq s}|x(u)|^{p})ds]\\&&+5^{p-1}\times 3^{\frac{p}{2}-1} [2^{p-1}D_{p}(t_{1}^{\frac{p-2}{p}}+1)+2^{p-1}\pi(Z)^{p-1}t_{1}^{p-1}] (t_{1}+2\int_{0}^{t_{1}}E(\sup\limits_{-\tau\leq u\leq s}|x(u)|^{p})ds) \end{eqnarray*} $
$ \begin{eqnarray*} &\leq& (10^{p-1}k_{2}^{\frac{p}{2}}+5^{p-1}+1)E\|\xi\|^{p}+10^{p-1}k_{2}^{\frac{p}{2}} E(\sup\limits_{-\tau\leq t\leq t_{1}}|x(t)|^{p}) +5^{p-1}t_{1}^{p}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1} \\ &&+ 5^{p-1}C_{p}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1}t_{1} +20k_{1}5^{p-1}t_{1}+10^{p-1}\times3^{\frac{p}{2}-1} \Big[D_{p}(t_{1}^{\frac{2p-2}{p}}+1)+\pi(Z)^{p-1}t_{1}^{p}\Big]\\ &&+[ 5^{p-1}t_{1}^{p-1}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1}(t_{1}^{p-1}+2C_{p}) +2\times10^{p-1}\times3^{\frac{p}{2}-1} (D_{p}(t_{1}^{\frac{p-2}{p}}+1)+\pi(Z)^{p-1}t_{1}^{p-1}) ]. \end{eqnarray*} $

因此

$ \begin{eqnarray*} &&E(\sup\limits_{-\tau \leq t \leq T}|x(t)|^{p})\\&\leq&\frac{1}{1-10^{p-1}k_{2}^{\frac{p}{2}}} \left\{(10^{p-1}k_{2}^{\frac{p}{2}}+5^{p-1}+1) E\|\xi\|^{p}+5^{p-1}T^{p}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1}\right.\\ &&+ 5^{p-1}C_{p}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1}T+20k_{1}5^{p-1}T+10^{p-1}\times 3^{\frac{p}{2}-1}\Big[D_{p}(T^{\frac{2p-2}{p}}+1)+\pi(Z)^{p-1}T^{p}\Big]\\ &&+ [5^{p-1}T^{p-1}k_{1}^{\frac{p}{2}}3^{\frac{p}{2}-1}(T^{p-1}+2C_{p})+2\times 10^{p-1}3^{\frac{p}{2}-1}(D_{p}(T^{\frac{2p-2}{p}}+1)+\pi(Z)^{p-1}T^{p-1})]\\ &&\times\left. \int_{0}^{T}E\big(\sup\limits_{-\tau\leq u\leq s}|x(u)|^{p}\big)ds \right\}. \end{eqnarray*} $

所以由Gronwall不等式得$ E(\sup\limits_{-\tau\leq t\leq T}|x(t)|^{p})\leq M_{1} $, 用同样的方法可以证明

$ E(\sup\limits_{-\tau\leq t\leq T}|y(t)|^{p})\leq M_{2}. $

从而定理得证.

下面先建立两个停时,

$ \begin{eqnarray} \sigma_{d} = \inf\{t\geq 0, |y(t)|\geq d\}, \ \upsilon_{d} = \inf\{t\geq 0, |x(t)|\geq d\}, \ \mbox{令}\rho_{d} = \sigma_{d}\wedge\upsilon_{d}. \end{eqnarray} $ (3.6)

引理 2  在假设(H$ _{1} $)–(H$ _{3} $)下, 有

$ \begin{eqnarray} E(\sup\limits_{-\tau\leq t\leq T}|y(t\wedge \rho_{d})|^{2})<C_{1}, \end{eqnarray} $ (3.7)

这里$ C_{1} $是独立于$ \Delta $的正的常数.

  对任意的$ t_{1}\in[0, T] $,

$ \begin{eqnarray} &&E(\sup\limits_{-\tau\leq t\leq T}|y(t\wedge\rho_{d})|^{2}) \leq E\|\xi\|^{2}+E(\sup\limits_{0\leq t\leq T}|y(t\wedge\rho_{d})|^{2}), \\ &&E( \sup\limits_{0\leq t\leq T}\big|y(t\wedge\rho_{d})|^{2} ) = E(\sup\limits_{0\leq t\leq T\wedge\rho_{d}}|D([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau)) +\xi(0)-D(0, \xi(-\tau))\\ &&+\int_{0}^{t}f([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds+ \int_{0}^{t}g([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))dW(s)\\ &&+\int_{0}^{t}\int_{Z}h([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)N(ds, d\nu)|^{2} ). \end{eqnarray} $ (3.8)

证明方法与引理1的方法相同, 这里其证明省略.

推论 3  在假设(H$ _{1} $)–(H$ _{3} $)下有

$ \begin{eqnarray} E(|y(t)|^{2}I_{[-\tau, T\wedge\rho_{d}]})\leq M_{2}, \end{eqnarray} $ (3.9)

这里的$ M_{2} $是一个正的常数且独立于$ \Delta $.

引理 4  在假设(H$ _{1} $)–(H$ _{3} $)下, 对任意$ t\in [0, T] $, 存在一个正的常数$ M_{3} $, 其中$ M_{3} $独立于$ \Delta $, 使得$ \int_{0}^{t\wedge\rho_{d}}E(|y(s)-\tilde{y}(s)|^{2})ds\leq M_{3}\Delta $.

  对任意的$ t\in[0, T\wedge \rho_{d}] $, 存在$ k $使得$ t\in[t_{k}, t_{k+1}) $, 注意到

$ \begin{eqnarray*} y_{k} & = & D(k\Delta, y_{k-m})+y_{k-1}-D((k-1)\Delta, y_{k-1-m})\Delta+f((k-1)\Delta, y_{k-1-m}, y_{k-1})\Delta\\ &&+g((k-1)\Delta, y_{k-1-m}, y_{k-1})\Delta W_{k-1}+\int_{(k-1)\Delta}^{k\Delta}\int_{Z}h((k-1)\Delta, y_{k-1-m}, y_{k-1}, \nu)N(ds, d\nu). \end{eqnarray*} $

因此

$ \begin{eqnarray*} y_{k} & = & D(k\Delta, y_{k-m})+y_{0}-D(0, y_{-m})+\sum\limits_{i = 1}^k f((i-1)\Delta, y_{i-1-m}, y_{i-1})\Delta \\ &&+ \sum\limits_{i = 1}^k g((i-1)\Delta, y_{i-1-m}, y_{i-1})\Delta W_{i-1}\\ &&+\sum\limits_{i = 1}^k\int_{(i-1)\Delta}^{i\Delta}\int_{Z}h((i-1)\Delta, y_{i-1-m}, y_{i-1}, \nu)N(ds, d\nu). \end{eqnarray*} $

注意到$ \tilde{y}(t) = y_{k}, \tilde{y}(t-\tau) = y_{k-m}, t\in[t_{k}, t_{k+1}) $, 因此

$ \begin{eqnarray*} y_{k}& = & D(k\Delta, y_{k-m})+\xi(0)-D(0, \xi(-\tau))+\sum\limits_{i = 1}^k\int_{(i-1)\Delta}^{i\Delta}f([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds \\ &&+ \sum\limits_{n = 1}^k\int_{(i-1)\Delta}^{i\Delta}g([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))dW_{s}\\ &&+\sum\limits_{n = 1}^k\int_{(i-1)\Delta}^{i\Delta}\int_{Z}h([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)N(ds, d\nu). \\ & = &D([\frac{t}{\Delta}]\Delta, \tilde{y}(s-\tau))+\xi(0)-D(0, \xi(-\tau))+\int_{0}^{k\Delta}f([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds\\ &&+\int_{0}^{k\Delta}g([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))dW(s)+\int_{0}^{k\Delta}\int_{Z}h([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)N(ds, d\nu). \end{eqnarray*} $

$ \begin{eqnarray*} y(t) & = &D([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau))+\xi(0)-D(0, \xi(-\tau))+\int_{0}^{t}f([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds\\ &&+ \int_{0}^{t}g([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))dW(s)+\int_{0}^{t}\int_{Z}h([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)N(ds, d\nu), \end{eqnarray*} $

因此

$ \begin{eqnarray*} y(t)-\tilde{y}(t) & = & \int_{k\Delta}^{t}f([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds +\int_{k\Delta}^{t}g([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))dW(s)\\ &&+ \int_{k\Delta}^{t}\int_{Z}h([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)N(ds, d\nu)\\ & = &f([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau), \tilde{y}(t))(t-t_{k})+g([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau), \tilde{y}(t))(W(t)-W(t_{k})\\ &&+ \int_{Z}h([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau), \tilde{y}(t), \nu)(N([k\Delta, t], d\nu). \end{eqnarray*} $

由基本不等式及假设(H$ _{2} $)可得

$ \begin{eqnarray} |y(t)-\tilde{y}(t)|^{2} &\leq&3|f([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau), \tilde{y}(t))|^{2}\Delta^{2}+3|g([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau), \tilde{y}(t))|^{2}|W(t)-W(t_{k})|^{2}\\ &&+3|\int_{Z}h([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau), \tilde{y}(t), \nu)N([k\Delta, t], d\nu)|^{2}. \\ &\leq&3k_{1}[1+|\tilde{y}(t-\tau)|^{2}+|\tilde{y}(t)|^{2}](\Delta^{2}+|W(t)-W(t_{k})|^{2})^{2} \\ &&+3|\int_{Z}h([\frac{t}{\Delta}]\Delta, \tilde{y}(t-\tau), \tilde{y}(t), \nu)N([k\Delta, t], d\nu)|^{2}. \end{eqnarray} $ (3.10)

由推论3, 文[2]引理3.2及文[9]中Lyapunov不等式得

$ \begin{eqnarray*} &&E(\int_{0}^{t\wedge\rho_{d}}|y(s)-\tilde{y}(s)|^{2}ds) = E(\int_{0}^{t\wedge\rho_{d}}\sum\limits_{k = -m}^{[\frac{T}{\Delta}]} I_{[t_{k}, t_{k+1})}(s)|y(s)-\tilde{y}(s)|^{2}ds)\\ &\leq& E(\int_{0}^{t\wedge\rho_{d}}3k_{1}\sum\limits_{k = -m}^{[\frac{T}{\Delta}]} I_{[t_{k}, t_{k+1})}(s)[1+|\tilde{y}(s-\tau)|^{2}+|\tilde{y}(s)|^{2}](\Delta^{2}+|W(t)-W(t_{k})|^{2})ds)\\ &&+3E(\int_{0}^{t\wedge\rho_{d}}\sum\limits_{k = -m}^{[\frac{T}{\Delta}]}I_{[t_{k}, t_{k+1})}(s) |\int_{Z}h([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)N([k\Delta, s], d\nu)|^{2} ds)\\ &\leq& E(\int_{0}^{t\wedge\rho_{d}}3k_{1}\sum\limits_{k = -m}^{[\frac{T}{\Delta}]} I_{[t_{k}, t_{k+1})}(s)[1+|\tilde{y}(s-\tau)|^{2}+|\tilde{y}(s)|^{2}](\Delta^{2}+r\Delta)ds )\\ &&+6E(\int_{0}^{t\wedge\rho_{d}}\sum\limits_{k = -m}^{[\frac{T}{\Delta}]} I_{[t_{k}, t_{k+1})}(s)\int_{Z}|h([\frac{s}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)|^{2} \Delta\pi(d\nu)ds)\\ &\leq& E(\int_{0}^{t\wedge\rho_{d}}3k_{1}[1+|\tilde{y}(s-\tau)|^{2} +|\tilde{y}(s)|^{2}](\Delta^{2}+r\Delta+2\Delta\pi(Z))ds)\\ &\leq& 3k_{1}T[1+2M_{2}](\Delta+r+2\pi(Z))\Delta, \end{eqnarray*} $

$ M_{3} = 3k_{1}T[1+r+2\pi(Z)](1+2M_{2}) $即可, 其中$ r $为布朗运动的维数.

定理 1 的证明  假设$ e(t) = x(t)-y(t) $, 易知

$ \begin{eqnarray} E(\sup\limits_{0\leq t\leq T}|e(t)|^{2}) = E(\sup\limits_{0\leq t\leq T}|e(t)|^{2}I_{\sigma_{d}\leq T}) +E(\sup\limits_{0\leq t\leq T}|e(t)|^{2}I_{\{\rho_{d}>T\}}). \end{eqnarray} $ (3.11)

根据Young不等式, 对于$ \frac{1}{p}+\frac{1}{q} = 1 (p, q>0) $, 有

$ ab = a\delta^{\frac{1}{p}}\frac{b}{\delta^\frac{1}{q}}\leq\frac{(a\delta^{\frac{1}{p}})^{p}}{p}+\frac{b^{q}}{q\delta^{\frac{q}{p}}}, \forall a, b, \delta>0. $

因此对任意的$ \delta>0 $, 有

$ \begin{eqnarray} E(\sup\limits_{0\leq t\leq T}|e(t)|^{2}I_{\{\sigma_{d}\leq T {\hbox{或}}\; \upsilon_{d}\leq T\}}) \leq \frac{2\delta}{p}E(\sup\limits_{0\leq t\leq T}|e(t)|^{p}) +\frac{1-\frac{2}{p}}{\delta^{\frac{2}{p-2}}}P\{\sigma_{d}\leq T {\hbox{或}}\; \upsilon_{d}\leq T\}. \end{eqnarray} $ (3.12)

根据引理1, 有

$ \begin{eqnarray*} P\{\sigma_{d}\leq T\} = E(I_{\{\sigma_{d}\leq T\}}\frac{|y(\sigma_{d})|^{d}}{d^{p}}) \leq \frac{1}{d^{p}}E(\sup\limits_{0\leq t\leq T}|y(t)|^{p}) \leq\frac{M}{d^{p}}. \end{eqnarray*} $

类似可得$ P\{\nu_{d}\leq T\}\leq\frac{2M}{d^{p}}. $因此

$ \begin{eqnarray} P\{\sigma_{d}\leq T {\hbox{或}}\; \nu_{d}\leq T\}\leq P\{\sigma_{d}\leq T\}+P\{\nu_{d}\leq T\}\leq\frac{2M}{d^{p}}. \end{eqnarray} $ (3.13)

由基本不等式得

$ \begin{eqnarray} E(\sup\limits_{0\leq t\leq T}|e(t)|^{p}) \leq2^{p-1} [ E(\sup\limits_{0\leq t\leq T}|x(t)|^{p}) +E(\sup\limits_{0\leq t\leq T}|y(t)|^{p}) ] \leq 2^{p}M. \end{eqnarray} $ (3.14)

将(3.13), (3.14)式代入(3.12)式得

$ \begin{eqnarray} E(\sup\limits_{0\leq t\leq T}|e(t)|^{p}I_{\{\sigma_{d}\leq T {\hbox{或}}\; \upsilon_{d}\leq T\}}) \leq \frac{2^{p+1}\delta M}{p}+\frac{2(p-2)M}{p\delta^{\frac{2}{p-2}}d^{p}}. \end{eqnarray} $ (3.15)

根据$ x(t) $$ y(t) $的定义, 有

$ \begin{eqnarray*} &&x(t\wedge\rho_{d})- y(t\wedge\rho_{d})\\ & = &D(t\wedge\rho_{d}, x(t\wedge\rho_{d}-\tau))-D([\frac{t\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(t\wedge\rho_{d}-\tau))\\ &&+\int_{0}^{t\wedge\rho_{d}}[f(s, x(s-\tau), x(s)) -f([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))]ds\\ &&+\int_{0}^{t\wedge\rho_{d}}[g(s, x(s-\tau), x(s)) -g([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))]dW(s)\\ &&+\int_{0}^{t\wedge\rho_{d}}\int_{Z} [h(s, x(s-\tau), x(s), \nu) -h([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)]N(ds, d\nu).\\ \end{eqnarray*} $

类似于引理4中的证明可知

$ E(\sup\limits_{0\leq t\leq T}|x(t\wedge\rho_{d})- y(t\wedge\rho_{d})|^{2}) \leq 3k_{1}[1+2M_{2}](\Delta+m+2\pi(Z))\Delta. $

不妨令$ M_{4} = 3k_{1}[1+2M_{2}](\Delta+m+2\pi(Z)) $, 则

$ \begin{eqnarray} E(\sup\limits_{0\leq t\leq T}|x(t\wedge\rho_{d})- y(t\wedge\rho_{d})|^{2}) \leq M_{4}\Delta. \end{eqnarray} $ (3.16)

由假设(H$ _{3} $)及(3.16)式知

$ \begin{eqnarray} &&E(\sup\limits_{0\leq t\leq T} |D(t\wedge\rho_{d}, x(t\wedge\rho_{d}-\tau))- D([\frac{t\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(t\wedge\rho_{d}-\tau))|^{2})\\ &\leq& k_{2}E(\sup\limits_{0\leq t\leq T} \left| x(t\wedge\rho_{d}-\tau)-y(t\wedge\rho_{d}-\tau) +y(t\wedge\rho_{d}-\tau)-\tilde{y}(t\wedge\rho_{d}-\tau) \right|^{2})\\ &\leq&2k_{2}M_{4}\Delta+2k_{2} E(\sup\limits_{0\leq t\leq T}\left|x(t\wedge\rho_{d}-\tau)-y(t\wedge\rho_{d}-\tau)\right|^{2}). \end{eqnarray} $ (3.17)

由假设(H$ _{1} $)及Hölder不等式可得

$ \begin{eqnarray*} &&E(\sup\limits_{0\leq t\leq T}|\int_{0}^{t\wedge\sigma_{d}}f(s\wedge\rho_{d}, x(s-\tau), x(s)) -f([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds|^{2})\\ & = &E(\sup\limits_{0\leq t\leq T} |\int_{0}^{t\wedge\sigma_{d}}f(s\wedge\rho_{d}, x(s-\tau), x(s)) -f([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, y(s-\tau), y(s))\\ && +f([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, y(s-\tau), y(s)) -f([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))ds|^{2} )\\ &\leq& 2\bar{k}_{d}T E(\sup\limits_{0\leq t\leq T} [\int_{0}^{t\wedge\sigma_{d}}(|s\wedge\rho_{d}| -[\frac{s\wedge\rho_{d}}{\Delta}]\Delta)^{2} +2|x(s-\tau)-\tilde{y}(s-\tau)|^{2}+2|x(s)-\tilde{y}(s)|^{2}ds ])\\ &\leq& 2\bar{k}_{d}\Delta^{2}T^{2}+16\bar{k}_{d}TM_{4}\Delta+ 32T\bar{k}_{d}\int_{0}^{T}E(\sup\limits_{0\leq u\leq s}|x(u\wedge\rho_{d})-y(u\wedge\rho_{d})|^{2})ds. \end{eqnarray*} $

由假设(H$ _{1} $)及BDG不等式可得

$ \begin{eqnarray*} &&E(\sup\limits_{0\leq t\leq T} |\int_{0}^{t\wedge\sigma_{d}}[g(s\wedge\rho_{d}, x(s-\tau), x(s)) -g([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s))]dW(s) |^{2})\\ &\leq& 4\bar{k}_{d}\Delta^{2}T+32\bar{k}_{d}M_{4}\Delta+32\bar{k}_{d}\int_{0}^{T} E(\sup\limits_{0\leq u\leq s}|x(u\wedge\rho_{d})-y(u\wedge\rho_{d})|^{2})ds. \end{eqnarray*} $

由假设(H$ _{1} $)及文[2]引理3.2可得

$ \begin{eqnarray*} && E(\sup\limits_{0\leq t\leq T} |\int_{0}^{t\wedge\sigma_{d}}\int_{Z}[h(s\wedge\rho_{d}, x(s-\tau), x(s), \nu) -h([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)]N(ds, d\nu)|^{2} )\\ & = &E( \sup\limits_{0\leq t\leq T} |\int_{0}^{t\wedge\sigma_{d}} \int_{Z}[h(s\wedge\rho_{d}, x(s-\tau), x(s), \nu) -h([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)] \\ &&(\tilde{N}(ds, d\nu)-\pi(d\nu)ds)|^{2})\\ &\leq& 2E(\sup\limits_{0\leq t\leq T} |\int_{0}^{t\wedge\sigma_{d}}\int_{Z}[h(s\wedge\rho_{d}, x(s-\tau), x(s), \nu) -h([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)]\tilde{N}(ds, d\nu)|^{2} )\\ &&+2E(\sup\limits_{0\leq t\leq T} |\int_{0}^{t\wedge\sigma_{d}}\int_{Z}[h(s\wedge\rho_{d}, x(s-\tau), x(s), \nu) -h([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s-\tau), \tilde{y}(s), \nu)]\pi(d\nu)ds|^{2} )\\&\leq&4D_{2} E(\int_{0}^{T}\int_{Z}\Big|h(s\wedge\rho_{d}, x(s\wedge\rho_{d}-\tau), x(s\wedge\rho_{d}), \nu)\\ && -h([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s\wedge\rho_{d}-\tau), \tilde{y}(s\wedge\rho_{d}), \nu) |^{2}\pi(d\nu)ds)\\&&+2T\pi(Z) E(\int_{0}^{T}\int_{Z}\Big|h(s\wedge\rho_{d}, x(s\wedge\rho_{d}-\tau), x(s\wedge\rho_{d}), \nu)\\ && -h([\frac{s\wedge\rho_{d}}{\Delta}]\Delta, \tilde{y}(s\wedge\rho_{d}-\tau), \tilde{y}(s\wedge\rho_{d}), \nu) |^{2}\pi(d\nu)ds) \end{eqnarray*} $
$ \begin{eqnarray*} &\leq&[4D_{2}+2T\pi(Z)]\bar{k}_{d} E( \int_{0}^{T}[|s\wedge\rho_{d}-[\frac{s\wedge\rho_{d}}{\Delta}]\Delta|^{2} +|x(s\wedge\rho_{d}-\tau)-\tilde{y}(s\wedge\rho_{d}-\tau)|^{2} \\ &&+|x(s\wedge\rho_{d})-\tilde{y}(s\wedge\rho_{d})|^{2}]ds)\\ &\leq&[4D_{2}+2T\pi(Z)]\bar{k}_{d} [T\Delta+8E(\int_{0}^{T}|x(s\wedge\rho_{d})-\tilde{y}(s\wedge\rho_{d})|^{2}ds) ]\\ &\leq&[4D_{2}+2T\pi(Z)]\bar{k}_{d} [T\Delta+16E(\int_{0}^{T}|x(s\wedge\rho_{d})-y(s\wedge\rho_{d})|^{2}ds)\\ &&+16E(\int_{0}^{T}|y(s\wedge\rho_{d})-\tilde{y}(s\wedge\rho_{d})|^{2}ds) ]\\ &\leq&[4D_{2}+2T\pi(Z)]\bar{k}_{d} [T\Delta+16E(\int_{0}^{T}\sup\limits_{0\leq u\leq s}|x(s\wedge\rho_{d})-y(s\wedge\rho_{d})|^{2}ds) +16TM_{4}\Delta ], \end{eqnarray*} $

因此

$ \begin{eqnarray*} &&E(\sup\limits_{0\leq t\leq T}|x(t\wedge\rho_{d})-y(t\wedge\rho_{d})|^{2})\\ &\leq&2k_{2}M_{4}\Delta+2k_{2} E(\sup\limits_{0\leq t\leq T}|x(t\wedge\rho_{d}-\tau)-y(t\wedge\rho_{d}-\tau)|^{2})\\ &&+2\bar{k}_{d}\Delta^{2}T^{2}+16\bar{k}_{d}TM_{4}\Delta +16T\bar{k}_{d}\int_{0}^{T}E(\sup\limits_{0\leq u\leq s}|x(u\wedge\rho_{d})-y(u\wedge\rho_{d})|^{2})ds\\ &&+4\bar{k}_{d}\Delta^{2}T+32\bar{k}_{d}M_{4}\Delta +32\bar{k}_{d}\int_{0}^{T}E(\sup\limits_{0\leq u\leq s}|x(u\wedge\rho_{d})-y(u\wedge\rho_{d})|^{2})ds\\ &&+[4D_{2}+2T\pi(Z)]\bar{k}_{d} [T\Delta +16E(\int_{0}^{T}\sup\limits_{0\leq u\leq s}|x(s\wedge\rho_{d})-y(s\wedge\rho_{d})|^{2}ds)+16TM_{4}\Delta ]\\ & = &2\Delta[k_{2}M_{4}+\bar{k}_{d}\Delta T^{2}+16\bar{k}_{d}TM_{4} +2T\bar{k}_{d}\Delta+32\bar{k}_{d}M_{4}+[4D_{2} +2T\pi(Z)]\bar{k}_{d}(T+16TM_{4})]\\ &&+2k_{2}E(\sup\limits_{0\leq t\leq T}|x(t\wedge\rho_{d})-y(t\wedge\rho_{d})|^{2})+\bar{k}_{d} [48+64D_{2}+32T\pi(Z)]\\ &&\times\int_{0}^{T}E(\sup\limits_{0\leq u\leq s}|x(u\wedge\rho_{d})-y(u\wedge\rho_{d})|^{2})ds. \end{eqnarray*} $

$ L = \frac{2[k_{2}M_{4}+\bar{k}_{d}\Delta T^{2}+16\bar{k}_{d}TM_{4}+2T\bar{k}_{d}\Delta +32\bar{k}_{d}M_{4}+[4D_{2}+2T\pi(Z)]\bar{k}_{d}(T+16TM_{4})]}{1-2k_{2}}, $

则由Gronwall不等式得$ E(\sup\limits_{0\leq t\leq T}|x(t\wedge\rho_{d})-y(t\wedge\rho_{d})|^{2}) \leq L\Delta e^{\bar{k}_{d}[48+64D_{2}+32T\pi(Z)]T} $.即

$ \begin{eqnarray} E(\sup\limits_{0\leq t\leq T}|e(t\wedge\rho_{d}|^{2}) \leq Le^{\bar{k}_{d}[48+64D_{2}+32T\pi(Z)]T}\Delta. \end{eqnarray} $ (3.18)

将(3.15)、(3.18)式代入(3.11)式得

$ \begin{eqnarray*} E(\sup\limits_{0\leq t\leq T}|e(t)|^{2}) &\leq&E(\sup\limits_{0\leq t\leq T}|e(t\wedge\rho_{d})|^{2}) +E(\sup\limits_{0\leq t\leq T}|e(t)|^{2}I_{\{\sigma_{d}\leq T \mbox或 \upsilon_{d}\leq T\}}) \\ &\leq&Le^{\bar{k}_{d}[48+64D_{2}+32T\pi(Z)]T}\Delta +\frac{2^{p+1}\delta M}{p}+\frac{2(p-2)M}{p\delta^{\frac{2}{p-2}}d^{p}}. \end{eqnarray*} $

取充分小的$ \delta $以及充分大的$ d $, 则当$ \Delta\rightarrow 0 $时, $ E(\sup\limits_{0\leq t\leq T}|e(t)|^{2})\rightarrow 0 $.定理得证.

参考文献
[1] Mao X R. Stochastic differential equations and applications[M]. New York: Horwood, 2007.
[2] 毛伟. 带有Lévy跳和非局部Lipschitz系数的随机泛函微分方程解的存在唯一性[J]. 数学的实践与认识, 2013, 43(13): 193–199.
[3] Mao W, Hu L J, Mao X R. Neutral stochastic functional differential equations with Lévy jumps under the local lipschitz condition[J]. Adv. Diff. Equ., 2017, 57: 1–24.
[4] Tan J G, Wang H L, Guo Y F, Zhu Z W. Numerical solutions to neutral stochastic delay differential equations with poisson jumps under local lipschitz condition[J]. Math. Prob. Engin., 2014. DOI:10.1155/2014/976183
[5] 毛伟. Lévy噪声扰动的混合随机微分方程的Euler近似解[J]. 华东师范大学学报(自然科学版), 2014, 48(1): 1–6.
[6] 叶俊, 李凯. 带Markov状态转换的跳扩散方程的数值解[J]. 数学学报, 2011, 174: 1–27.
[7] Yuan C G, Mao X R. Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching[J]. Math. Comput. Simul., 2004, 64: 223–235. DOI:10.1016/j.matcom.2003.09.001
[8] Arino O, Burton T, Haddovk J. Periodic solutions to functional differential equations[J]. Proc. R. Soc. Edinb., 1985, 101: 253–271. DOI:10.1017/S0308210500020813
[9] Kloeden P E, Platen E. Numerical solution of stochastic differential equations[M]. Berlin: Springer, 1999.