数学杂志  2019, Vol. 39 Issue (4): 589-600   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
马茹梦
徐景实
调和Bergman-Orlicz空间的Lipschitz型刻画
马茹梦, 徐景实    
海南师范大学数学与统计学院, 海南 海口 571158
摘要:本文研究了上半空间和单位球上的调和Bergman-Orlicz空间的刻画及调和函数差商的有界性.给出了调和Bergman-Orlicz空间分别在欧氏度量,双曲型度量,伪双曲型度量下的Lipschitz型刻画.利用这些刻画获得了调和函数差商的有界性,这些结果推广了相应于上半空间和单位球上的调和Bergman空间上的结果.
关键词调和Bergman-Orlicz空间    Lipschitz型刻画    双曲型度量    伪双曲型度量    
LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN-ORLICZ SPACES
MA Ru-meng, XU Jing-shi    
School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
Abstract: We study characterizations of harmonic Bergman-Orlicz spaces and the boundedness of difference quotients of harmonic functions on the upper half-space or the unit ball. First, we give Lipschitz type characterizations of harmonic Bergman-Orlicz spaces via the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. By these characterizations, we obtain the boundedness of difference quotients of harmonic functions on the upper half-space or the unit ball, which generalize those for harmonic Bergman spaces on the upper half-space or the unit ball.
Keywords: harmonic Bergman-Orlicz space     Lipschitz characterization     hyperbolic metric     pseudo hyperbolic metric    
1 引言

对于区域$ \Omega\subseteq \mathbb{R}^{n}, $$ h(\Omega) $表示$ \Omega $上的复值调和函数构成的空间.对于一个固定的正整数$ n\geq 2, $$ H = \mathbb{R}^{n-1}\times \mathbb{R}_{+} $表示上半空间, 其中$ \mathbb{R}_{+} $表示所有正实数构成的集合.设$ \alpha $为实数, 用$ dV_{\alpha}(z) = z^{\alpha}_{n}dz $表示$ H $上的加权测度.给定一个凸函数$ \Phi:[0, \infty)\rightarrow[0, +\infty), $$ \Phi $是一个增长函数如果它是连续的且非减的函数.对于增长函数$ \Phi, $ $ {\rm{Orlicz}} $空间

$ L^{\Phi}_{\alpha}(H): = \bigg\{f\text{为}H\text{上的可测函数}:\ \int_{H}\Phi(|f(z)|/\lambda)dV_{\alpha}(z)< \infty, \ \ \text{对某些}\lambda>0\bigg\}. $

加权的调和$ {\rm{Bergman-Orlicz}}$空间$ b^{\Phi}_{\alpha}(H) $是包含所有复值调和函数$ L^{\Phi}_{\alpha}(H) $的子空间, 即$ b^{\Phi}_{\alpha}(H) = L^{\Phi}_{\alpha}(H)\cap h(H) $且范数定义为

$ \|f\|_{L^{\Phi}_{\alpha}(H)}: = \inf\bigg\{\lambda>0: \int_{H}\Phi\bigg(\frac{|f(z)|}{\lambda}\bigg)dV_{\alpha}(z)\leq 1\bigg\}. $

$ \Phi(t) = t^p, t\in [0, \infty) $时, $ {\rm{Orlicz}} $空间是$ {\rm{Lebesgue}} $空间且对应的调和$ {\rm{Bergman}}-Orlicz $空间表示为$ b^{p}_{\alpha}(H). $

乌兰哈斯和朱克和在文献[1]中利用欧氏度量、双曲型度量、伪双曲型度量给出加权Bergman空间在复欧氏空间$ \mathbb{C}^{n} $的单位球上的Lipschitz型刻画; Kyesook在文献[2]中研究了在上半空间$ H $上的调和Bergman空间的刻画.即设$ \alpha>-1, $ $ p \in (0, \infty) $$ f \in b^{p}_{\alpha}(H), $则存在一个正的连续函数$ g\in L^{p}_{\alpha}(H) $使得对所有的$ z, w\in H $

$ |f(z)-f(w)|\leq \rho(z, w)[g(z)+g(w)] $

$ |f(z)-f(w)|\leq \beta(z, w)[g(z)+g(w)] $

且存在一个正的连续函数$ g\in L^{p}_{p+\alpha}(H) $使得

$ |f(z)-f(w)|\leq |z-w|[g(z)+g(w)], $

其中$ \rho $$ \beta $的定义见第二节.文献[2]还给出了上半空间上调和函数差商的刻画和欧氏空间中单位球上调和Bergman空间的刻画.

受文献[1, 2]的影响, 我们将把文献[2]中的结果推广到上半空间或单位球上的调和Bergman-Orlicz空间中.本文后面如下安排:第二节为一些概念和需要的引理; 第三节考虑上半空间上的调和Bergman-Orlicz空间; 第四节给出上半空间上的调和函数差商的有界性; 第五节得到单位球上的调和Bergman-Orlicz空间的Lipschitz型刻画.在本文中符号$ A\lesssim B $表示存在一个正常数$ C $使得$ A\leq CB. $如果$ A\lesssim B $$ B\lesssim A, $则记为$ A\thickapprox B. $

2 预备知识

在这一节, 介绍一些概念和后面将会用到的引理.

定义$ H $上的双曲型度量$ \beta $

$ \beta(z, w): = \frac{1}{2}\log\frac{1+\rho(z, w)}{1-\rho(z, w)}, \ \ z, w \in H, $

其中

$ \rho(z, w): = \frac{|z-w|}{|z-{\bar w}|}, \ \ z, w \in H. $

$ H $上的伪双曲型度量$ \rho $是平移不变和伸缩不变的, 且$ \rho $$ H $上的距离函数, 见文献[3]中的引理3.1.

符号$ B_{a}(x) $表示以$ a>0 $为半径$ x\in\mathbb{R}^{n} $为中心的欧氏球.对于$ z\in H $$ r\in(0, 1), $$ E_{r}(z) $表示以$ r $为半径$ z $为中心的伪双曲型球.易得$ E_{r}(z) $为欧氏球$ B_{a}(x) $, 其中

$ \begin{equation} x = \bigg(z', \frac{1+r^{2}}{1-r^{2}}z_{n}\bigg) \ \text{和}\ \ a = \frac{2r}{1-r^{2}}z_{n}. \end{equation} $ (2.1)

$ d(x, \Omega) $是点$ x $到集合$ \Omega\subseteq \mathbb{R}^{n} $上的欧氏距离.则有

$ \begin{equation} d(z, \partial E_{r}(z)) = \frac{2r}{1+r}z_{n}. \end{equation} $ (2.2)

引理 2.1   [3]  若$ z, w\in H, $

$ \frac{1-\rho(z, w)}{1+\rho(z, w)}\leq \frac{z_n}{w_n}\leq \frac{1+\rho(z, w)}{1-\rho(z, w)}. $

引理 2.2   [3]  若$ z, w\in H, $

$ \frac{1-\rho(v, z)}{1+\rho(v, z)}\leq \frac{|v-{\bar w}|}{|z-{\bar w}|}\leq \frac{1+\rho(v, z)}{1-\rho(v, z)}. $

给定$ r\in (0, 1) $, 由以上的引理可得

$ \begin{equation} z_{n}\thickapprox w_{n}, \ \ w\in E_{r}(z). \end{equation} $ (2.3)

$ dw $$ \mathbb{R}^{n} $上的$ {\rm{Lebesgue}} $测度.以下引理可参考文献[4]中的引理3.5或者文献[5]中的定理HLFS.

引理 2.3   [4, 5]  设$ p\in (0, \infty), $如果$ f\in h(\Omega), $$ |f(z)|^{p}\leq \frac{C}{r^{n}} \int_{B_{r}(z)}|f(w)|^{p}dw, $其中$ B_{r}(z)\subset \Omega, $$ C $是一个仅依赖于$ p $的正的常数.

给出多重指标$ m = (m_{1}, \cdot\cdot\cdot, m_{n}) $, 其中$ m_{i} $ $ (i = 1, \cdot\cdot\cdot, n) $为非负整数, 则有$ |m| = m_{1}+\cdot\cdot\cdot+m_{n} $$ \partial^{m} = \partial^{m_{1}}_{1}\cdot\cdot\cdot\partial^{m_{n}}_{n} $, 其中$ \partial_{i} $表示对第$ i $个指标进行求微分.由引理2.3和Cauchy估计得下列引理.其证明可参见文献[6]的推论8.2.

引理 2.4   [6]  设$ \Omega $$ \mathbb{R}^{n} $中的一个区域.给定$ 1\leq p<\infty $和一个多重指标$ m = (m_{1}, \cdot\cdot\cdot, m_{n}). $则存在一个常数$ C = C(p, m)>0 $, 使得对$ \Omega $上的任意解析函数$ f $都有

$ |\partial^{m}f(z)|^{p}\leq \frac{C}{d(z, \partial\Omega)^{n+p|m|}}\int_{\Omega}|f(w)|^{p}dw, \ \ z\in \Omega. $
3 上半空间上的调和Bergman-Orlicz空间

本节的主要定理如下.

定理 3.1   设$ \alpha>-1, $ $ \Phi $是一个增长函数, 若$ f \in b^{\Phi}_{\alpha}(H). $则存在一个正的连续函数$ g\in L^{\Phi}_{\alpha}(H) $使得对所有的$ z, w \in H $, 有$ |f(z)-f(w)|\leq \rho(z, w)[g(z)+g(w)]. $

定理 3.2   设$ \alpha>-1, $ $ \Phi $为增长函数, 若$ f \in b^{\Phi}_{\alpha}(H). $则存在一个正的连续函数$ g\in L^{\Phi}_{\alpha}(H) $使得对所有$ z, w \in H $, 有$ |f(z)-f(w)|\leq \beta(z, w)[g(z)+g(w)]. $

$ p>0, $ $ \mathcal{M}_{p} $表示存在某个常数$ C>0 $使得对所有的$ s>0 $$ t>0, $ $ \Phi(st)\leq Ct^{p}\Phi(s) $成立的凸增长函数$ \Phi $构成的集合.

定理 3.3   设$ \alpha>-1, $ $ \Phi\in\mathcal{M}_{p} $ $ (p>0), $$ f \in b^{\Phi}_{\alpha}(H). $则存在一个正的连续函数$ g\in L^{\Phi}_{p+\alpha}(H) $使得对所有的$ z, w \in H $, 有$ |f(z)-f(w)|\leq |z-w|[g(z)+g(w)]. $

任取点$ z\in H, $$ z = (z', z_{n}) $其中$ z'\in \mathbb{R}^{n-1} $$ z_{n}>0. $给定$ z\in H, $$ {\bar z} = (z', -z_{n}). $为了证明定理3.1, 还需要下列引理.

引理 3.1   [7]  给定$ \alpha>-1 $, 则有

$ \begin{equation*} \int_{H}\frac{dV_{\alpha}(w)}{|z-{\bar w}|^{n+\alpha+c}}\thickapprox \begin{cases} z^{-c}_{n}, & \text{若}\; c>0, \\ \infty, & \text{若}\; c\leq 0 \end{cases} \end{equation*} $

对所有$ z\in H $成立.

定理  3.1 的证明  设$ \alpha> -1, $ $ f \in b^{\Phi}_{\alpha}(H). $固定$ r\in(0, \frac{1}{2}), $考虑$ H $$ \rho(z, w)< r $的任意两点$ z, w. $由于$ E_{r}(z) $是一个凸集, 则

$ \begin{align*} &|f(z)-f(w)|\leq |z-w|\int^{1}_{0}|\nabla f(t(z-w)+w)|dt\\ = &\rho(z, w)|z-{\bar w}|\int^{1}_{0}|\nabla f(t(z-w)+w)|dt \leq \rho(z, w)|z-{\bar w}|\sup\limits_{a\in E_{r}(z)}|\nabla f(a)|. \end{align*} $

由引理2.2知

$ \frac{1-\rho(v, z)}{1+\rho(v, z)}\leq \frac{|v-{\bar w}|}{|z-{\bar w}|}\leq \frac{1+\rho(v, z)}{1-\rho(v, z)}. $

$ \frac{1-\rho(v, z)}{1+\rho(v, z)}|z-{\bar w}|\leq |v-{\bar w}|\leq \frac{1+\rho(v, z)}{1-\rho(v, z)}|z-{\bar w}|. $

$ v = w, $

$ \frac{1-\rho(w, z)}{1+\rho(w, z)}|z-{\bar w}|\leq 2w_{n}\leq \frac{1+\rho(w, z)}{1-\rho(w, z)}|z-{\bar w}|. $

因此存在两个正的常数$ C_{1}, C_{2} $使得$ C_{1}|z-{\bar w}|\leq 2w_{n}\leq C_{2}|z-{\bar w}|. $同理可得$ C'_{1}w_{n}\leq|z-{\bar w}|\leq C'_{2}w_{n}. $由于对任意的$ w\in E_{r}(z) $, $ z_{n}\thickapprox w_{n}, $则当$ w\in E_{r}(z) $时, 有$ C'_{1}z_{n}\leq|z-{\bar w}|\leq C'_{2}z_{n}. $因此$ |f(z)-f(w)|\leq \rho(z, w)h(z), $这里$ h(z): = C(r)z_{n}\sup\limits_{a\in E_{r}(z)}|\nabla f(a)|. $

如果$ \rho(z, w)> r, $则由三角不等式得

$ |f(z)-f(w)|\leq |f(z)|+|f(w)|\leq \frac{\rho(z, w)}{r}(|f(z)|+|f(w)|) = \rho(z, w)\bigg(\frac{|f(z)|}{r}+\frac{|f(w)|}{r}\bigg). $

$ g(z) = \frac{|f(z)|}{r}+h(z), $对于所有的$ z, w \in H, $

$ \begin{align*} &|f(z)-f(w)|\leq \rho(z, w)\bigg(\frac{|f(z)|}{r}+\frac{|f(w)|}{r}\bigg)\\ = &\rho(z, w)(g(z)-h(z)+g(w)-h(w)) \leq\rho(z, w)(g(z)+g(w)). \end{align*} $

由于$ g $$ H $上正的连续函数且$ f\in L^{\Phi}_{\alpha}(H) $, 只需要证$ h\in L^{\Phi}_{\alpha}(H). $

伪双曲型距离$ \rho $满足三角不等式, 因此可以选取$ r'\in (0, 1) $使得对任意的$ a\in E_{r}(z) $都有$ E_{r}(a)\subset E_{r'}(z). $

由引理2.4, (2.2), (2.3)式和引理2.2得

$ \begin{align*} &|h(z)|\leq C z_{n}\sup\limits_{a\in E_{r}(z)}\frac{1}{d(a, \partial E_{r}(a))^{n+1}}\int_{E_{r}(a)}|f(w)|dw\\ \leq& C z_{n}\sup\limits_{a\in E_{r}(z)}\frac{1}{\bigg(\frac{2r}{1+r}\bigg)^{n+1}}z^{-(n+1)}_{n}\int_{E_{r}(a)}|f(w)|dw \leq Cz^{-n}_{n}\sup\limits_{a\in E_{r}(z)}\int_{E_{r}(a)}|f(w)|w^{-\alpha}_{n}dV_{\alpha}(w)\\ \leq& Cz^{-(n+\alpha)}_{n}\sup\limits_{a\in E_{r}(z)}\int_{E_{r}(a)}|f(w)|dV_{\alpha}(w) \leq Cz^{-(n+\alpha)}_{n}\int_{E_{r'}(z)}|f(w)|dV_{\alpha}(w)\\ = & C\int_{E_{r'}(z)}|f(w)|z^{-(n+\alpha)}_{n}dV_{\alpha}(w)\leq C\int_{E_{r'}(z)}|f(w)|\frac{1}{|z-{\bar w}|^{n+\alpha}}dV_{\alpha}(w)\\ = &C \int_{E_{r'}(z)}|f(w)|\frac{|z-{\bar w}|}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w)\leq C\int_{E_{r'}(z)}|f(w)|\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). \end{align*} $

由引理3.1知

$ \int_{H}\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w) = z_{n}\int_{H}\frac{1}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w)\thickapprox z_{n}z^{-1}_{n} = 1. $

因此存在$ C(z) $使得$ \frac{C(z)z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w) $为概率测度且$ C(z) $介于两个正的常数$ M_{1} $$ M_{2} $之间.因此

$ M_{1}|h(z)|\leq C(z)|h(z)|\leq C\int_{E_{r'}(z)}|f(w)|\frac{C(z)z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). $

$ \frac{M_{1}}{C}|h(z)|\leq \int_{E_{r'}(z)}|f(w)|\frac{C(z)z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). $

运用$ \Phi $的凸性和$ {\rm{Jensen}} $不等式得

$ \begin{align*} \Phi\bigg(\frac{M_{1}}{C}|h(z)|\bigg)&\leq \int_{E_{r'}(z)}\Phi(|f(w)|)\frac{C(z)z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w)\\ & \leq \int_{E_{r'}(z)}\Phi(|f(w)|)\frac{M_{2}z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). \end{align*} $

$ \lambda = \frac{C}{M_{1}}, $

$ \Phi\bigg(\frac{|h(z)|}{\lambda}\bigg)\leq M_{2}\int_{E_{r'}(z)}\Phi(|f(w)|)\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). $

$ H $上对以上不等式关于$ dV_{\alpha}(z) $求积分且运用$ {\rm{Fubini }}$定理可得

$ \begin{align*} \int_{H}\Phi\bigg(\frac{|h(z)|}{\lambda}\bigg)dV_{\alpha}(z)&\leq M_{2}\int_{H}\int_{E_{r'}(z)}\Phi(|f(w)|)\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w)dV_{\alpha}(z)\\ & = M_{2}\int_{H}\Phi(|f(w)|)dV_{\alpha}(w)\int_{E_{r'}(w)}\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(z)\\ &\leq C\int_{H}\Phi(|f(w)|)dV_{\alpha}(w)\int_{E_{r'}(w)}z^{1-n-\alpha-1}_{n}z^{\alpha}_{n}dz\\ & = C\int_{H}\Phi(|f(w)|)dV_{\alpha}(w)\int_{E_{r'}(w)}z^{-n}_{n}dz\\ & = C\int_{H}\Phi(|f(w)|)\int_{E_{r'}(w)}z^{-n}_{n}dzdV_{\alpha}(w). \end{align*} $

由(2.1)和(2.3)式, 以上二重积分的内积分等价于$ w^{-n}_{n}V(E_{r'}(w))\thickapprox 1. $

$ \int_{H}\Phi\bigg(\frac{|h(z)|}{\lambda}\bigg)dV_{\alpha}(z)\leq C\int_{H}\Phi(|f(w)|)dV_{\alpha}(w). $

因此$ h\in L^{\Phi}_{\alpha}(H), $这说明了$ g $$ L^{\Phi}_{\alpha}(H) $中的正连续函数且满足

$ |f(z)-f(w)|\leq \rho(z, w)[g(z)+g(w)]. $

定理  3.2 的证明  由于$ \rho\leq\beta, $则定理3.1中的函数$ g $也使得该定理成立.

定理  3.3 的证明  设$ \alpha>-1, $ $ \Phi\in \mathcal{M}_{p}(p>0), $$ f \in b^{\Phi}_{\alpha}(H), $则由定理3.1的证明知存在一个正的连续函数$ h $使得对所有的$ z, w\in H $

$ \begin{align*} |f(z)-f(w)|\leq \rho(z, w)[h(z)+h(w)] = \frac{|z-w|}{|z-{\bar w}|}[h(z)+h(w)]\leq |z-w|\bigg[\frac{h(z)}{z_{n}}+\frac{h(w)}{w_{n}}\bigg]. \end{align*} $

$ g(z) = \frac{h(z)}{z_{n}}, $$ |f(z)-f(w)|\leq |z-w|[g(z)+g(w)]. $最后证明$ g\in L^{\Phi}_{p+\alpha}(H). $

$ \begin{align*} &\int_{H}\Phi(|g(z)|)dV_{p+\alpha}(z) = \int_{H}\Phi\bigg(\frac{|h(z)|}{z_{n}}\bigg)z^{p}_{n}dV_{\alpha}(z)\\ \leq& \int_{H}\Phi(|h(z)|)z^{-p}_{n}z^{p}_{n}dV_{\alpha}(z) = \int_{H}\Phi(|h(z)|)dV_{\alpha}(z). \end{align*} $

因此$ g\in L^{\Phi}_{p+\alpha}(H). $

命题 3.1   给定$ \alpha>-1, $ $ \Phi $为增长函数, 则存在一个正常数$ C $使得对所有$ f\in h(H), $

$ \begin{equation} \|z_{n}|\nabla f|\|_{L^{\Phi}_{\alpha}(H)}\leq C\|f\|_{b^{\Phi}_{\alpha}(H)}. \end{equation} $ (3.1)

  固定$ \alpha>-1. $假设$ f\in h(H) $$ z\in H. $对于每一个固定的$ 0<r<1, $由引理2.4, (2.2)和(2.3)式知

$ \begin{align*} |\partial_{i}f|&\leq \frac{C}{d(z, \partial E_{r}(z))^{n+1}}\int_{E_{r}(z)}|f(w)|dw = \frac{C}{(\frac{2r}{1+r}z_{n})^{n+1}}\int_{E_{r}(z)}|f(w)|dw\\ &\leq C z^{-(n+1)}_{n}\int_{E_{r}(z)}|f(w)|w^{-\alpha}_{n}w^{\alpha}_{n}dw = C z^{-(n+1)}_{n}\int_{E_{r}(z)}|f(w)|w^{-\alpha}_{n}dV_{\alpha}(w)\\ &\leq C z^{-(n+\alpha+1)}_{n}\int_{E_{r}(z)}|f(w)|dV_{\alpha}(w). \end{align*} $

因此$ |\nabla f|\leq Cz^{-(n+\alpha+1)}_{n} \int_{E_{r}(z)}|f(w)|dV_{\alpha}(z). $

$ \begin{align*} z_{n}|\nabla f|&\leq C\int_{E_{r}(z)}|f(w)|z^{-(n+\alpha)}_{n}dV_{\alpha}(w)\leq C\int_{E_{r}(z)}|f(w)|\frac{1}{|z-{\bar w}|^{n+\alpha}}dV_{\alpha}(w)\\ & = C\int_{E_{r}(z)}|f(w)|\frac{|z-{\bar w}|}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w)\leq C\int_{E_{r}(z)}|f(w)|\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). \end{align*} $

由引理3.1知存在$ C(z) $使得$ \frac{C(z)z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w) $为概率测度且$ C(z) $介于两个正的常数$ M_{1} $$ M_{2} $之间.因此

$ M_{1}z_{n}|\nabla f|\leq C(z)z_{n}|\nabla f|\leq C\int_{E_{r}(z)}|f(w)|\frac{C(z)z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). $

$ \frac{M_{1}}{C}z_{n}|\nabla f|\leq \int_{E_{r}(z)}|f(w)|\frac{C(z)z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). $

运用$ \Phi $的凸性和Jensen不等式得

$ \begin{align*} \Phi\bigg(\frac{M_{1}}{C}z_{n}|\nabla f|\bigg)&\leq \int_{E_{r}(z)}\Phi(|f(w)|)\frac{C(z)z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w)\\ &\leq M_{2} \int_{E_{r}(z)}\Phi(|f(w)|)\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). \end{align*} $

$ \lambda = \frac{C}{M_{1}}, $

$ \Phi\bigg(\frac{z_{n}|\nabla f|}{\lambda}\bigg)\leq M_{2}\int_{E_{r}(z)}\Phi(|f(w)|)\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w). $

$ H $上对以上不等式关于$ dV_{\alpha}(z) $求积分且运用$ {\rm{Fubini }}$定理得

$ \begin{align*} \int_{H}\Phi\bigg(\frac{z_{n}|\nabla f|}{\lambda}\bigg)dV_{\alpha}(z)&\leq M_{2}\int_{H}\int_{E_{r}(z)}\Phi(|f(w)|)\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(w)dV_{\alpha}(z)\\ & = M_{2}\int_{H}\Phi(|f(w)|)dV_{\alpha}(w)\int_{E_{r}(w)}\frac{z_{n}}{|z-{\bar w}|^{n+\alpha+1}}dV_{\alpha}(z)\\ &\leq C\int_{H}\Phi(|f(w)|)dV_{\alpha}(w)\int_{E_{r}(w)}z^{1-n-\alpha-1}_{n}dV_{\alpha}(z)\\ & = C\int_{H}\Phi(|f(w)|)dV_{\alpha}(w)\int_{E_{r}(w)}z^{-n-\alpha}_{n}z^{\alpha}_{n}dz\\ & = C\int_{H}\Phi(|f(w)|)dV_{\alpha}(w)\int_{E_{r}(w)}z^{-n}_{n}dz\\ & = C\int_{H}\Phi(|f(w)|)\int_{E_{r}(w)}z^{-n}_{n}dzdV_{\alpha}(w). \end{align*} $

由(2.1)和(2.3)式, 以上二重积分的内积分等价于$ w^{-n}_{n}V(E_{r}(w))\thickapprox 1. $因此得

$ \int_{H}\Phi\bigg(\frac{z_{n}|\nabla f|}{\lambda}\bigg)dV_{\alpha}(z)\leq C\int_{H}\Phi(|f(w)|)dV_{\alpha}(w). $

故有$ \|z_{n}|\partial f|\|_{L^{\Phi}_{\alpha}(H)}\leq C\|f\|_{b^{\Phi}_{\alpha}(H)}. $

虽然$ {\rm{Nam}} $在文献[2]中得到了$ \|z_{n}|\partial f|\|_{L^{p}_{\alpha}(H)}\approx \|f\|_{b^{p}_{\alpha}(H)}, $但这里不知道不等式(3.1)的反向是否成立.

4 上半空间上调和函数的差商

本节考虑$ H $上关于调和函数的差商.给定$ f\in h(H), $对所有的$ z, w \in H $定义

$ \begin{equation*} Lf(z, w): = \begin{cases} \frac{f(z)-f(w)}{|z-w|}, & \text{若}\; z\neq w, \\ 0, & \text{若}\; z = w. \end{cases} \end{equation*} $

应用定理3.1可得以下结果.

定理 4.1   假设$ \alpha>-1, $ $ \Phi\in \mathcal{M}_{p}, $ $ p\in(\alpha+n, \infty) $$ 2\gamma = p+\alpha-n, $$ L $有界地映$ b^{\Phi}_{\alpha}(H) $$ L^{\Phi}(V_{\gamma}\times V_{\gamma}). $

  设$ f\in b^{\Phi}_{\alpha}, $由定理3.1知存在一个正的连续函数$ g\in L^{\Phi}_{\alpha}(H) $, 使得对$ z\neq w\in H $, 有

$ |f(z)-f(w)|\leq \rho(z, w)[g(z)+g(w)] = \frac{|z-w|}{|z-{\bar w}|}[g(z)+g(w)]. $

$ \frac{|f(z)-f(w)|}{|z-w|}\leq \frac{g(z)+g(w)}{|z-{\bar w}|}. $

对于$ z\neq w, $ $ Lf(z, w) = \frac{f(z)-f(w)}{|z-w|} $, 从而

$ |Lf(z, w)|\leq \frac{g(z)+g(w)}{|z-{\bar w}|}. $

$ \frac{|Lf(z, w)|}{2}\leq \frac{1}{2}\frac{g(z)}{|z-{\bar w}|}+\frac{1}{2}\frac{g(w)}{|z-{\bar w}|}. $

运用$ \Phi $的凸性, 得

$ \Phi\bigg(\frac{|Lf(z, w)|}{2}\bigg)\leq \frac{1}{2}\Phi\bigg(\frac{g(z)}{|z-{\bar w}|}\bigg)+\frac{1}{2}\Phi\bigg(\frac{g(w)}{|z-{\bar w}|}\bigg). $

因此

$ \begin{align*} &\int_{H}\int_{H}\Phi\bigg(\frac{|Lf(z, w)|}{2}\bigg)dV_{\gamma}(z)dV_{\gamma}(w)\\ \leq&\frac{1}{2}\int_{H}\int_{H}\Phi\bigg(\frac{g(z)}{|z-{\bar w}|}\bigg)dV_{\gamma}(z)dV_{\gamma}(w) +\frac{1}{2}\int_{H}\int_{H}\Phi\bigg(\frac{g(w)}{|z-{\bar w}|}\bigg)dV_{\gamma}(z)dV_{\gamma}(w)\\ = &\int_{H}\int_{H}\Phi\bigg(\frac{g(z)}{|z-{\bar w}|}\bigg)dV_{\gamma}(z)dV_{\gamma}(w)\leq \int_{H}\int_{H}\Phi(|g(z)|)\frac{1}{|z-{\bar w}|^{p}}dV_{\gamma}(z)dV_{\gamma}(w)\\ = &\int_{H}\Phi(|g(z)|)dV_{\gamma}(z)\int_{H}\frac{1}{|z-{\bar w}|^{p}}dV_{\gamma}(w) = \int_{H}\Phi(|g(z)|)dV_{\gamma}(z)\int_{H}\frac{w^{\gamma-\alpha}_{n}}{|z-{\bar w}|^{p}}dV_{\alpha}(w)\\ \leq& C\int_{H}\Phi(|g(z)|)z^{\gamma-\alpha}_{n}dV_{\gamma}(z)\int_{H}\frac{1}{|z-{\bar w}|^{p}}dV_{\alpha}(w). \end{align*} $

由于$ p>n+\alpha, $由引理3.1得$ \int_{H}\frac{1}{|z-{\bar w}|^{p}}dV_{\alpha}(w)\thickapprox z^{-(p-n-\alpha)}_{n}, $因此有

$ \begin{align*} & \int_{H} \int_{H}\Phi\bigg(\frac{|Lf(z, w)|}{2}\bigg)dV_{\gamma}(z)dV_{\gamma}(w)\leq C \int_{H}\Phi(|g(z)|)z^{\gamma-\alpha}_{n}z^{n+\alpha-p}_{n}dV_{\gamma}(z)\\ = &C \int_{H}\Phi(|g(z)|)z^{n+\gamma-p}_{n}dV_{\gamma}(z) = C \int_{H}\Phi(|g(z)|)z^{n+\gamma-p+\gamma-\alpha}_{n}dV_{\alpha}(z)\\ = &C \int_{H}\Phi(|g(z)|)z^{n+2\gamma-p-\alpha}_{n}dV_{\alpha}(z) = C \int_{H}\Phi(|g(z)|)dV_{\alpha}(z). \end{align*} $

为完成证明, 只需考虑$ \|g\|_{b^{\Phi}_{\alpha}(H)} = 1. $此时$ \int_{H}\Phi(|g(z)|)dV_{\alpha}(z) = 1. $$ \lambda = \max\{C, 1\}, $

$ \begin{align*} \int_{H} \int_{H}\Phi\bigg(\frac{|Lf(z, w)|}{2\lambda}\bigg)dV_{\gamma}(z)dV_{\gamma}(w)\leq&\frac{1}{\lambda} \int_{H} \int_{H}\Phi\bigg(\frac{|Lf(z, w)|}{2}\bigg)dV_{\gamma}(z)dV_{\gamma}(w)\\ \leq &\frac{C}{\lambda} \int_{H}\Phi(|g(z)|)dV_{\alpha}(z) \leq\frac{C}{\lambda}\leq 1. \end{align*} $

所以$ \|Lf\|_{L^{\Phi}(V_{\gamma}\times V_{\gamma})}\leq 2\lambda. $因此由伸缩性得对任意的$ g\in b^{\Phi}_{\alpha}(H), $则有$ \|Lf\|_{L^{\Phi}(V_{\gamma}\times V_{\gamma})}\leq 2\lambda\|g\|_{b^{\Phi}_{\alpha}}. $$ L $有界地映$ b^{\Phi}_{\alpha}(H) $$ L^{\Phi}(V_{\gamma}\times V_{\gamma}) $上.

5 单位球上调和Bergman-Orlicz空间的刻画

在这节考虑$ \mathbb{R}^{n} $上单位球$ \mathbb{B} $上的调和函数.设$ \alpha $为实数, 用$ v_{\alpha} $表示$ \mathbb{B} $上的加权测度, 即$ dv_{\alpha}(x) = (1-|x|^{2})^{\alpha}dx. $$ dv_{\alpha} $替代$ dV_{\alpha} $, 类似于空间$ L_\alpha^\Phi(H) $与空间$ h_\alpha^\Phi(H) $, 可以定义空间$ L_\alpha^\Phi(\mathbb{B}) $与空间$ h_\alpha^\Phi(\mathbb{B}) $.

下列引理由Hardy等在文献[8]中给出$ n = 2 $的证明, $ n\geq 3 $的情况见文献[9].

命题 5.1   [8, 9]  给定$ \alpha>-1 $$ 0<p<\infty, $则对所有的$ f\in h(\mathbb{B}) $

$ \int_{\mathbb{B}}|f|^{p}dv_{\alpha}\thickapprox |f(0)|^{p}+ \int_{\mathbb{B}}|\nabla f(x)|^{p}(1-|x|^{2})^{p}dv_{\alpha}(x). $

$ \zeta(x, y) $$ \mathbb{B} $上的双曲型距离定义为$ \zeta(x, y): = \frac{1}{2}\log\frac{1+\delta(x, y)}{1-\delta(x, y)}, $其中$ \mathbb{B} $上的伪双曲型距离$ \delta $定义为$ \delta(x, y): = \frac{|x-y|}{[x, y]}, $对任意$ x, y \in \mathbb{B}. $这里$ [x, y]: = \sqrt{1-2x\cdot y+|x|^{2}|y|^{2}}, x, y \in \mathbb{B}, $$ x\cdot y $是关于$ x $$ y $$ \mathbb{R}^{n} $上的点积.注意到$ [x, y]\geq 1-|x||y| $对于$ x, y\in \mathbb{B}. $易得伪双曲型球$ D_{r}(x) $是一个欧氏球$ \mathbb{B}_{s}(y) $

$ \begin{equation} y = \frac{1-r^{2}}{1-|x|^{2}r^{2}}x \ \text {和} \ \ s = \frac{(1-|x|^{2})r}{1-|x|^{2}r^{2}}. \end{equation} $ (5.1)

因此有

$ \begin{equation} d(x, \partial D_{r}(x)) = \frac{r(1-|x|^{2})}{1+r|x|}. \end{equation} $ (5.2)

引理 5.1   [10]   若$ l, x, y\in \mathbb{B}, $

$ \frac{1-\delta(l, x)}{1+\delta(l, x)}\leq \frac{[l, y]}{[x, y]}\leq \frac{1+\delta(l, x)}{1-\delta(l, x)}. $

由此引理得, 对任意的$ y\in D_{r}(x), $ $ 1-|x|^{2}\thickapprox 1-|y|^{2}. $特别地, 给定$ \alpha>-1 $$ 0<r<1, $由(5.1)和(5.2)式, 对所有的$ x\in \mathbb{B}, $则有$ v_{\alpha}(D_{r}(x))\thickapprox (1-|x|^{2})^{n+\alpha}. $

引理 5.2   [10]   给定$ \alpha>-1 $和实数$ c $, 对所有的$ x \in \mathbb{B} $, 有

$ \begin{equation*} \int_{\mathbb{B}}\frac{dv_{\alpha}(y)}{[x, y]^{n+\alpha+c}}\thickapprox \begin{cases} (1-|x|^{2})^{-c}, & \text{如果}\; c>0, \\ 1+\log(1-|x|^{2})^{-1}, & \text{如果}\; c = 0, \\ 1, & \text{如果}\; c<0 \end{cases} \end{equation*} $

成立.

引理 5.3   [2]   设$ 1\leq k \leq n, $ $ x, y\in \mathbb{B}, $ $ y = (x_{1}, \cdot\cdot\cdot, x_{k-1}, tx_{k}, x_{k+1}, \cdot\cdot\cdot, x_{n}) $其中$ t $是一个标量.则

$ \lim\limits_{y\rightarrow x}\frac{\delta(x, y)}{|x-y|} = \lim\limits_{y\rightarrow x}\frac{\zeta(x, y)}{|x-y|} = \frac{1}{1-|x|^{2}}. $

定理 5.1   设$ \alpha>-1, $ $ \Phi \in \mathcal{M}_{p}(p>0), $ $ f \in h(\mathbb{B}). $则下列结果等价.

$ \rm(a) $  $ f\in b^{\Phi}_{\alpha}(\mathbb{B}); $

$ \rm(b) $  存在一个正的连续函数$ g\in L^{\Phi}_{\alpha}(\mathbb{B}) $使得对所有的$ x, y\in \mathbb{B} $, 有

$ |f(x)-f(y)|\leq \delta(x, y)[g(x)+g(y)]; $

$ \rm(c) $  存在一个正的连续函数$ h\in L^{\Phi}_{\alpha}(\mathbb{B}) $使得对所有的$ x, y\in \mathbb{B} $, 有

$ |f(x)-f(y)|\leq \zeta(x, y)[h(x)+h(y)]; $

$ \rm(d) $  存在一个正的连续函数$ k\in L^{\Phi}_{p+\alpha}(\mathbb{B}) $使得对所有的$ x, y\in \mathbb{B} $, 有

$ |f(x)-f(y)|\leq |x-y|[k(x)+k(y)]. $

   $ {\rm (a)}\Rightarrow {\rm (b)} $类似于定理3.1的证明可得.

$ {\rm (b)}\Rightarrow {\rm (a)} $  假设存在一个正的连续函数$ g\in L^{\Phi}_{\alpha}(\mathbb{B}) $使得对$ \mathbb{B} $中所有不相等的两个元素$ x, y $, 有$ |f(x)-f(y)|\leq \delta(x, y)[g(x)+g(y)]. $两边同时除以$ |x-y|, $

$ \frac{|f(x)-f(y)|}{|x-y|}\leq \frac{\delta(x, y)}{|x-y|}[g(x)+g(y)]. $

固定任意的$ x\in \mathbb{B}, $$ y\rightarrow x $由引理5.3得$ (1-|x|^{2})|f'(x)|\leq 2g(x). $由于$ g\in L^{\Phi}_{\alpha}(\mathbb{B}), $$ (1-|\cdot|)f'(\cdot)\in L^{\Phi}_{\alpha}(\mathbb{B}). $由命题5.1, 得$ f\in b^{\Phi}_{\alpha}(\mathbb{B}). $

$ {\rm (b)}\Rightarrow {\rm (c)} $由于$ \delta\leq\zeta, $$ \rm(b) $易得$ \rm(c) $成立.

$ {\rm (b)}\Rightarrow {\rm (d)} $假设$ \rm(b) $成立.则存在一个正的连续函数$ g\in L^{\Phi}_{\alpha}(\mathbb{B}) $, 使得

$ |f(x)-f(y)|\leq \delta(x, y)[g(x)+g(y)] = \frac{|x-y|}{[x, y]}[g(x)+g(y)]. $

由于$ [x, y]\geq 1-|x||y|\geq 1-|x|, 1-|y|. $因此

$ |f(x)-f(y)|\leq |x-y|\bigg[\frac{g(x)}{[x, y]}+\frac{g(y)}{[x, y]}\bigg]\leq|x-y|\bigg[\frac{g(x)}{1-|x|}+\frac{g(y)}{1-|y|}\bigg]. $

$ k(x) = \frac{g(x)}{1-|x|}\leq \frac{2g(x)}{1-|x|^{2}}, $$ |f(x)-f(y)|\leq |x-y|[k(x)+k(y)]. $下证$ k\in L^{\Phi}_{p+\alpha}(\mathbb{B}). $

$ \begin{align*} & \int_{\mathbb{B}}\Phi(|k(x)|)dv_{p+\alpha}(x) = \int_{\mathbb{B}}\Phi\bigg(\frac{g(x)}{1-|x|}\bigg)dv_{p+\alpha}(x)\\ \leq& \int_{\mathbb{B}}\Phi\bigg(\frac{2g(x)}{1-|x|^{2}}\bigg)dv_{p+\alpha}(x) = \int_{\mathbb{B}}\Phi\bigg(\frac{2g(x)}{1-|x|^{2}}\bigg)(1-|x|^{2})^{p}dv_{\alpha}(x)\\ \leq& \int_{\mathbb{B}}\Phi(|g(x)|)\frac{2^{p}}{(1-|x|^{2})^{p}}(1-|x|^{2})^{p}dv_{\alpha}(x)\leq C \int_{\mathbb{B}}\Phi(|g(x)|)dv_{\alpha}(x). \end{align*} $

因此$ k\in L^{\Phi}_{p+\alpha}(\mathbb{B}). $

$ {\rm (c)}\Rightarrow {\rm (a)} $$ \alpha>-1, $ $ f\in h(\mathbb{B}). $若存在正的连续函数$ h\in L^{\Phi}_{\alpha}(\mathbb{B}) $使得对所有的$ x, y\in \mathbb{B} $, 有$ |f(x)-f(y)|\leq \zeta(x, y)[h(x)+h(y)]. $$ 1\leq k\leq n $$ y = (x_{1}, \cdot\cdot\cdot, x_{k-1}, tx_{k}, x_{k+1}, \cdot\cdot\cdot, x_{n}), $其中$ t $是一个标量.上面不等式两边同时除以$ |x-y| $且取极限$ y\rightarrow x, $由引理5.3, 得

$ |\partial_{k}f(x)|\leq \frac{2h(x)}{1-|x|^{2}}, k = 1, \cdot\cdot\cdot, n. $

因此得

$ \begin{equation} |\nabla f(x)|\leq C\frac{h(x)}{1-|x|^{2}}. \end{equation} $ (5.3)

由于$ h\in L^{\Phi}_{\alpha}(\mathbb{B}), $由命题5.1和(5.3)式得$ {\rm (a)} $成立.

同理, 由命题5.1得$ {\rm (d)}\Rightarrow {\rm (a)}. $

考虑关于调和函数的差商$ L $在单位球上的情况.给定$ f\in h(\mathbb{B}), $ $ L $定义为

$ \begin{equation*} Lf(x, y): = \begin{cases} \frac{f(x)-f(y)}{|x-y|}, & \text{如果}\; x\neq y, \\ 0, & \text{如果}\; x = y. \end{cases} \end{equation*} $

对于$ x, y\in \mathbb{B}, $由定理5.1可以模仿定理4.1的证明, 得到在单位球上的类似结果.

定理 5.2   \label{th4.6}设$ \alpha>-1, $ $ \Phi\in \mathcal{M}_{p}, $ $ n+\alpha<p<\infty $$ 2\gamma = p+\alpha-n, $$ L $有界地映$ b^{\Phi}_{\alpha}(\mathbb{B}) $$ L^{\Phi}(v_{\gamma}\times v_{\gamma}) $上.

注意到在引理5.2中$ c<0 $的情况与引理3.1不同, 这个不同可以把上面的调和函数的结果扩展到实单位球上$ 0<p<n+\alpha $的情况.

定理 5.3   设$ \alpha>-1, $ $ \Phi\in \mathcal{M}_{p}, $ $ 0<p<n+\alpha. $$ L $有界地映$ b^{\Phi}_{\alpha}(\mathbb{B}) $$ L^{\Phi}(v_{\alpha}\times v_{\alpha}) $上.

  设$ f\in b^{\Phi}_{\alpha}(\mathbb{B}). $由定理5.1知存在一个正的连续函数$ g\in L^{\Phi}_{\alpha}(\mathbb{B}) $使得对所有的$ x\neq y\in \mathbb{B} $, 有$ |f(x)-f(y)|\leq \delta(x, y)[g(x)+g(y)] = \frac{|x-y|}{[x, y]}[g(x)+g(y)]. $因此

$ \frac{|f(x)-f(y)|}{|x-y|}\leq \frac{g(x)}{[x, y]}+\frac{g(y)}{[x, y]}. $

由于对$ x\neq y, $ $ Lf(x, y): = \frac{f(x)-f(y)}{|x-y|}. $因此$ \frac{|Lf(x, y)|}{2}\leq \frac{1}{2}\frac{g(x)}{[x, y]}+\frac{1}{2}\frac{g(y)}{[x, y]}. $$ \Phi $的凸性可得

$ \Phi\bigg(\frac{|Lf(x, y)|}{2}\bigg)\leq \frac{1}{2}\Phi\bigg(\frac{g(x)}{[x, y]}\bigg)+\frac{1}{2}\Phi\bigg(\frac{g(y)}{[x, y]}\bigg). $

因此

$ \begin{align*} & \int_{\mathbb{B}} \int_{\mathbb{B}}\Phi\bigg(\frac{|Lf(x, y)|}{2}\bigg)dv_{\alpha}(x)dv_{\alpha}(y)\\ \leq& \int_{\mathbb{B}} \int_{\mathbb{B}}\frac{1}{2}\Phi\bigg(\frac{g(x)}{[x, y]}\bigg)dv_{\alpha}(x)dv_{\alpha}(y)+ \int_{\mathbb{B}} \int_{\mathbb{B}}\frac{1}{2}\Phi\bigg(\frac{g(y)}{[x, y]}\bigg)dv_{\alpha}(x)dv_{\alpha}(y)\\ = & \int_{\mathbb{B}} \int_{\mathbb{B}}\Phi\bigg(\frac{g(x)}{[x, y]}\bigg)dv_{\alpha}(x)dv_{\alpha}(y)\leq C \int_{\mathbb{B}} \int_{\mathbb{B}}\Phi(|g(x)|)\frac{1}{[x, y]^{p}}dv_{\alpha}(x)dv_{\alpha}(y)\\ = &C \int_{\mathbb{B}}\Phi(|g(x)|)dv_{\alpha}(x) \int_{\mathbb{B}}\frac{1}{[x, y]^{p}}dv_{\alpha}(y). \end{align*} $

由引理5.2得$ \int_{\mathbb{B}}\frac{1}{[x, y]^{p}}dv_{\alpha}(y)\thickapprox 1. $因此

$ \int_{\mathbb{B}} \int_{\mathbb{B}}\Phi\bigg(\frac{|Lf(x, y)|}{2}\bigg)dv_{\alpha}(x)dv_{\alpha}(y)\leq C \int_{\mathbb{B}}\Phi(|g(x)|)dv_{\alpha}(x). $

为完成证明, 只需考虑$ \|g\|_{b^{\Phi}_{\alpha}(H)} = 1. $此时$ \int_{H}\Phi(|g(x)|)dv_{\alpha}(x) = 1, $$ \lambda = \max\{C, 1\}, $

$ \begin{align*} \int_{H} \int_{H}\Phi\bigg(\frac{|Lf(x, y)|}{2\lambda}\bigg)dV_{\gamma}(x)dV_{\gamma}(y)&\leq\frac{1}{\lambda} \int_{H} \int_{H}\Phi\bigg(\frac{|Lf(x, y)|}{2}\bigg)dV_{\gamma}(x)dV_{\gamma}(y)\\ &\leq \frac{C}{\lambda} \int_{H}\Phi(|g(x)|)dV_{\alpha}(x)\leq\frac{C}{\lambda}\leq 1. \end{align*} $

所以$ \|Lf\|_{L^{\Phi}(V_{\gamma}\times V_{\gamma})}\leq 2\lambda. $因此由伸缩性得对任意的$ g\in b^{\Phi}_{\alpha}(H), $则有$ \|Lf\|_{L^{\Phi}(V_{\gamma}\times V_{\gamma})}\leq 2\lambda\|g\|_{b^{\Phi}_{\alpha}}. $$ L $有界地映$ b^{\Phi}_{\alpha}(H) $$ L^{\Phi}(V_{\gamma}\times V_{\gamma}) $上.

参考文献
[1] Wulan H, Zhu K. Lipschitz type characterizations for Bergman spaces[J]. Canad. Math. Bull., 2009, 52(4): 613–626. DOI:10.4153/CMB-2009-060-6
[2] Nam K. Lipschitz type characterizations of harmonic Bergman spaces[J]. Bull. Korean Math. Soc., 2013, 50(4): 1277–1288. DOI:10.4134/BKMS.2013.50.4.1277
[3] Choe B R, Yi H. Representations and interpolations of harmonic Bergman functions on half spaces[J]. Nagoya Math. J., 1998, 151(39): 51–89.
[4] Coifman R R, Rochberg R. Representation theorems for holomorphic and harmonic functions in[J]. Astérisque., 1980, 77: 459–460.
[5] M. On subharmonic behavior and oscilation of functions on balls in $ \mathbb{R}^{n}$[J]. Publ. Inst. Math. (Beograd) (N.S.), 1994, 55(69): 18–22.
[6] Axler S, Bourdon P, Ramey W. Harmonic function theory[M]. New York: Springer-Verlag, 1992.
[7] Choe B R, Nam K. Berezin transform and Toepliz operators on harmonic Bergman spaces[J]. J. Funct. Anal., 2009, 257(10): 3135–3166. DOI:10.1016/j.jfa.2009.08.006
[8] Hardy G H, Littlewood J E. Some properties of conjugate functions[J]. J. Reine Angew. Math., 1932, 1932(167): 405–423. DOI:10.1515/crll.1932.167.405
[9] M. Hardy-Stein type characterization of harmonic Bergman spaces[J]. Potential Anal., 2010, 32(1): 1–15.
[10] Choe B R, Koo H, Lee Y J. Positive Schatten class Toeplitz operators on the ball[J]. Studia Math., 2008, 189(1): 65–90.