本文研究一类特殊的变分不等式问题:寻找一点$ {u^ * } \in \Omega $, 使得
其中$ u = {\left( {x, y} \right)^T}, F\left( u \right) = {\left( {f\left( x \right), g\left( y \right)} \right)^T}, \Omega {\rm{ = }}\left\{ {\left( {x{\rm{, }}y} \right)\left| {x \in X{\rm{, }}} \right.{\rm{ }}y \in Y{\rm{, }}Ax{\rm{ + By}} \ge {\rm{b}}} \right\}. $将此类问题记作$ SMVI\left( {\Omega , F} \right), $这里$ X \subseteq {R^n} $和$ Y \subseteq {R^m} $为非空闭凸集, $ A \in {R^{l \times n}}, B \in {R^{l \times m}} $是矩阵, $ b \in {R^l} $是向量, $ f:X \to {R^n}, \; g:Y \to {R^m} $为单调映射, 并且以上各量均已给定.因为映射$ f $只取决于变量$ x $, 映射$ g $只取决于变量$ y $, 所以被称为是可分离带线性约束的变分不等式问题.这类问题被广泛应用于研究网络分析、交通运输、图论等领域.目前对于问题$ SMVI\left( {\Omega , F} \right) $的研究, 首先要在线性约束条件$ Ax{\rm{ + }}By{\rm{ = }}b $中引入拉格朗日乘子$ \lambda \in {R^l} $, 进而得到原$ SMVI\left( {\Omega , F} \right) $的等价形式如下:求$ {w^ * } \in Z $, 满足$ {\left( {w{\rm{ - }}{w^ * }} \right)^T}Q\left( {{w^ * }} \right) \ge 0{\rm{, }}\; w \in Z, $其中$ w = {\left( {x, y, \lambda } \right)^T}, Q\left( w \right) = {\left( {f\left( x \right) - {A^T}\lambda , g\left( y \right) - {B^T}\lambda , Ax + By - b} \right)^T}, Z{\rm{ = }}X \times Y \times {R^l} $.接着再对该等价形式进行求解.
交替方向法(ADM)是用来求解原问题$ SMVI\left( {\Omega , F} \right) $最经典的算法.一直以来, 如何快速求解两个子变分不等式问题成了考查ADM有效性的关键, 为此很多学者作了大量工作, 对ADM进行了相应的改进[1-5].虽然提出的各种改进策略在一定程度上有效提高了ADM的计算速度, 但需要注意的是, 此类改进的方法并没有完全避免求解子变分不等式问题.因为从计算角度上看, 在大部分情况下, 直接求解变分不等式并不是件容易的事情.为了能更好的提出新混合算法, 接下来我们介绍对数二次临近点法.对数二次临近点算法(LQP)[6-11]主要用于求解如下这样一类变分不等式问题, 即找一点$ {u^ * } \in \Omega $, 满足$ {\left( {u - {u^ * }} \right)^T}F\left( {{u^ * }} \right) \ge 0, \forall u \in \Omega $, 其中$ u = {\left( {x, y} \right)^T}, F\left( u \right) = {\left( {f\left( x \right) + Ay, - {A^T} + b} \right)^T}, \Omega = R_ + ^n \times Y $这里矩阵$ A \in {R^{m \times n}} $, 向量$ b \in {R^m}, $ $ Y $为$ {R^m} $中的闭凸子集, $ f:{R^n} \to {R^n} $是连续单调映射. LQP在每次迭代时只需解决这样一个非线性方程组
一般而言, 求解一个非线性方程组比一个变分不等式组更容易操作.尽管此方法是对子问题进行非精确求解, 但是相对于精确求解子问题, 非精确求解更可行、快速.因为从数值计算角度分析, 精确求解一个子问题往往不太容易实现.考虑到这个方法求解较容易的特点, LQP方法值得关注和借鉴.基于上面的考虑, 本文提出了一种新的混合算法.此算法在预测步只需求解一系列相关联的非线性方程组, 而不是去处理一系列的子变分不等式问题.同时这样做还可以在可行集中产生一个内点序列, 在一定程度上提高了算法的有效性和可行性:在修正步中, 修正值是由当前预测点和一个投影算子构成的凸组合得到的.这样保证了如果前一个迭代点是内点, 那么这样一个凸组合得到的下一个迭代点也将会是内点.另一方面需要注意的是, 当可行集为简单集时, 投影算子更容易执行.
本文结构如下:第2节主要概述了本文所需要的预备知识, 参见文献[12-15]; 第3节在映射单调和原变分不等式解集非空的条件下提出一种新的混合算法, 并给出算法的一些性质, 相关证明技巧参见文献[16-21]; 第4节和第5节分析了新算法的收缩性及全局收敛性, 参见文献[22-26]; 第6节利用数值算例验证了算法的有效性.
用$ \left\| x \right\| = \sqrt {{x^T}x} $表示2 -范数, $ {\left\| u \right\|_G} $表示向量的$ G $ -范数, 记为$ {\left\| u \right\|_G} = \sqrt {{u^T}Gu} $, 其中$ G $为给定的对称正定矩阵.
令$ {P_\Omega }( \cdot ) $为$ {R^n} $到$ \Omega $上的投影映射, 即$ {P_\Omega }\left( x \right) = \arg \min \left\{ {\left\| {y - x} \right\|\left| {y \in \Omega } \right.} \right\} $.投影映射有如下重要性质.
引理 1 [6] 若$ \Omega\subseteq R^n $为一非空闭凸子集, $ P_\Omega(\cdot) $为$ R^n $到$ \Omega $上的投影映射, 对于任意的$ x, y \in {R^n} $, 任意$ z \in \Omega $, 有
定义 1 集合$ \Omega \subseteq {R^n} $, 设$ f $是$ \Omega \to {R^n} $的映射, 如果$ f $满足$ {\left( {x - y} \right)^T}\left( {f\left( x \right) - f\left( y \right)} \right) \ge 0, $ $ \forall x, y \in \Omega, $则称$ f $在$ \Omega $上是单调的.若不等号严格成立, 则称$ f $在$ \Omega $上是严格单调的.
以下给出新的LQP-ADM [11-24]混合算法用于求解可分离带线性约束的变分不等式问题的步骤, 然后给出此算法的一些性质.算法的步骤如下.
步 0 令$ \varepsilon {\rm{ > }}0 $, $ {\mu _1}, {\mu _2} \in \left( {0{\rm{, }}1} \right) $, $ t \in \left( {0{\rm{, }}1} \right) $, $ k{\rm{ = }}0 $, $ {w^0}{\rm{ = }}\left( {{x^0}{\rm{, }}{y^0}{\rm{, }}{\lambda ^0}} \right) \in X \times Y \times {R^l} $, H为一给定的$ l \times l $阶对称正定矩阵, $ X \subseteq {R^n} $和$ Y \subseteq {R^m} $为非空闭凸集, $ A \in {R^{l \times n}}, B \in {R^{l \times m}} $是矩阵, $ b \in {R^l} $是向量, $ f:X \to {R^n} $, $ g:Y \to {R^n} $为单调映射.
步 1(预测步) 计算预测值$ \tilde w = \left( {\tilde x, \tilde y, \tilde \lambda } \right). $
步 1.1 通过代入点$ \left( {{x^k}{\rm{, }}{y^k}{\rm{, }}{\lambda ^k}} \right) $求解下面的非线性方程得到$ {\tilde x^k} $,
这里设$ ({\tilde x^k}) = ({m_1}, {m_2}, \cdots , {m_n}), {x^k} = \{ {w_1}, {w_2}, \cdots , {w_n}\}, $则
下面的符号类似.
步 1.2 通过带入点$ \left( {{{\tilde x}^k}{\rm{, }}{y^k}{\rm{, }}{\lambda ^k}} \right) $求解下面的非线性方程得到$ {\tilde y^k} $.
步 1.3
步 2 如果$ \max \left\{ {\left\| {{{\tilde w}^k} - {w^k}} \right\|, {\rm{ }}\left\| {A{{\tilde x}^k} + B{{\tilde y}^k} - b} \right\|} \right\} < \varepsilon $, 则停止.否则转到步3.
步 3 计算步长
步 4(修正步) 计算下一个迭代点$ {w^{k{\rm{ + }}1}}{\rm{ = }}\left( {{x^{k{\rm{ + }}1}}{\rm{, }}\; {y^{k{\rm{ + }}1}}{\rm{, }}\; {\lambda ^{k{\rm{ + }}1}}} \right), $
步 5 如果$ \max \left\{ {\left\| {{w^{k + 1}} - {{\tilde w}^k}} \right\|, {\rm{ }}\left\| {A{x^{k + 1}} + B{y^{k + 1}} - b} \right\|} \right\} < \varepsilon $, 则停止.否则令$ k: = k+1 $转到步1.
观察新算法的预测步可知, 此算法的主要任务是解下面两个非线性方程的近似解:带入点$ \left( {{x^k}, {y^k}, {\lambda ^k}} \right) $求解$ x $,
带入点$ \left( {{x^{k + 1}}, {y^k}, {\lambda ^k}} \right) $求解$ y $,
比较(3.5), (3.6)两式的共同点就相当于求解如下方程的近似解
其中$ {u^k} = ({m_1}, {m_2}, \cdots , {m_n}), u = ({w_1}, {w_2}, \cdots, {w_n}) $,
引理 2 [6] 如果$ q\left( u \right) $为$ {R^n} $上的单调映射, 则对于给定的$ {u^k} \in R_ + ^n $, 方程(3.7)存在唯一的$ u \in R_ + ^n $.
因为$ \left( x \right), g\left( y \right) $分别是关于$ x $和$ y $的单调映射, 所以由此性质可知非线性方程(3.5)和(3.6)都有唯一的解.
引理 3 对给定的$ {w^k} = \left( {{x^k}, {y^k}, {\lambda ^k}} \right) \in R_ + ^n \times R_ + ^m \times {R^l} $和$ q = \left( {{q_x}, {q_y}, q{}_\lambda } \right) \in {R^n} \times {R^m} \times {R^l} $, 若$ w = \left( {x, y, \lambda } \right) $是如下方程组的解:
则对任意$ v \ge 0 $, 有下面不等式成立:
其中
证 令$ v = \left( {{v_x}, {v_y}, {v_\lambda }} \right) $, 则(3.8)式证明包括下面三个不等式的证明:
不失一般性, 可以将不等式(3.10)中的$ x, {x^k}, {q_x}, {v_x} $简化为实数.因为$ x > 0, {\rm{ }}{x^k} > 0, {\rm{ }}{v_x} > 0 $, 故有$ {v_x}{\left( {{x^k}} \right)^2}/x \ge {v_x}\left( {2{x^k} - x} \right). $结合方程组(3.8)有
则(3.10)式得证.同理可证得(3.11)式也是成立的.下面来证明(3.12)式, 由方程组(3.8)可得
则(3.12)式得证.综上所述, 要证的不等式成立.证毕.
下面给出一个引理来解释算法中的停机准则.
引理 4 如果$ A{\tilde x^k} + B{y^k} - b = 0 $, $ {\tilde x^k} = {x^k} $, $ {\tilde y^k} = {y^k} $, 则$ \left( {{x^k}, {y^k}, {\lambda ^k}} \right) $是$ SMVI\left( {\Omega , F} \right) $的解.
证 由$ A{\tilde x^k} + B{y^k} - b = 0 $与$ {\tilde y^k} = {y^k} $可得$ A{\tilde x^k} + B{\tilde y^k} - b = 0. $由式(3.3)得$ {\tilde \lambda ^k} = {\lambda ^k}. $由(3.5)式, $ A{\tilde x^k} + B{y^k} - b = 0 $以及$ {\tilde x^k} = {x^k} $可知$ f\left( {{{\tilde x}^k}} \right) - {A^T}{\lambda ^k} = 0. $由此可得
同理可得
所以$ \left( {{x^k}, {y^k}, {\lambda ^k}} \right) $满足问题$ SMVI\left( {\Omega , F} \right) $中所有条件.由此说明$ \left( {{x^k}, {y^k}, {\lambda ^k}} \right) $是问题$ SMVI( \Omega, $ $ F) $的一个解.
本节准备给出任取$ {w^ * } = \left( {{x^ * }, {y^ * }, {\lambda ^ * }} \right) \in {W^ * } $, 由上面的LQP-ADM混合算法得到的序列$ \left\{ {{w^k}} \right\} $满足
其中$ R, H $为固定的正定矩阵, $ {\left\| u \right\|_R} = \sqrt {{u^T}Ru} , {\left\| u \right\|_H} = \sqrt {{u^T}Hu} $并且给出相应的分析.为了证明此结论, 需分别从新算法的预测步和修正步进行分析.
我们先来探讨提出的LQP-ADM混合算法的预测步.
引理 5 给定$ {w^k} = \left( {{x^k}, {y^k}, {\lambda ^k}} \right) \in X \times Y \times {R^l} $, 将其代入算法步1中产生预测值$ \tilde w = \left( {\tilde x, \tilde y, \tilde \lambda } \right) $.若$ {w^ * } = \left( {{x^ * }, {y^ * }, {\lambda ^ * }} \right) $是$ SMVI\left( {\Omega , F} \right) $的解, 则有
证 因为$ {w^ * } = \left( {{x^ * }, {y^ * }, {\lambda ^ * }} \right) $是$ SMVI\left( {\Omega , F} \right) $的解, 所以
以及$ A{x^ * } + B{y^ * } = b $在上面的两个不等式中, 分别令$ x' = {\tilde x^k}, y' = {\tilde y^k} $, 则
另一方面, 因为(3.5)式及下面的恒等变形
所以根据引理3可得
将(4.2)式与(4.4)式相加
又因为$ f\left( x \right) $是单调映射, 则
即
同样由(3.2)式及引理3可得
将(4.3)与(4.6)式相加有
又因为$ g $是关于$ y $单调的, 则
则
将(4.5)与(4.7)式相加有
得证.
进一步, 若将(3.3)式变形为$ A{\tilde x^k} + B{\tilde y^k} - b = {H^{ - 1}}\left( {{\lambda ^k} - {{\tilde \lambda }^k}} \right), $进而有
于是如果考虑(4.8)式, 则可得到如下引理.
引理 6 给定$ {w^k} = \left( {{x^k}, {y^k}, {\lambda ^k}} \right) \in X \times Y \times {R^l} $, 将其代入算法步1中产生预测值$ \tilde w = \left( {\tilde x, \tilde y, \tilde \lambda } \right) $.若$ {w^ * } = \left( {{x^ * }, {y^ * }, {\lambda ^ * }} \right) $是$ SMVI\left( {\Omega , F} \right) $的解, 则有
证 将(4.8)式代入引理5中有
证毕.
由上面的引理可得到关于LQP-ADM混合算法预测步的定理如下.
定理 1 给定$ {w^k} = \left( {{x^k}, {y^k}, {\lambda ^k}} \right) \in X \times Y \times {R^l} $, 将其代入算法步1中产生预测值$ \tilde w = \left( {\tilde x, \tilde y, \tilde \lambda } \right) $.若$ {w^ * } = \left( {{x^ * }, {y^ * }, {\lambda ^ * }} \right) $是$ SMVI\left( {\Omega , F} \right) $的解, 则有
证 由引理6可知
同时有
将(4.9)式与此恒等式相加可得
于是
将定理1的结论作简单变形可得到以下推论.
推论 1 若已知$ {w^k} = \left( {{x^k}, {y^k}, {\lambda ^k}} \right) \in X \times Y \times {R^l} $以及其产生的预测值$ \tilde w = \left( {\tilde x, \tilde y, \tilde \lambda } \right) $, 对于$ {w^ * } = \left( {{x^ * }, {y^ * }, {\lambda ^ * }} \right) \in {\Omega ^ * } $, 有
证 由定理1可得
基于以上对混合算法中预测步的讨论, 结合算法的修正步可得到算法的收缩性定理如下.
定理 2 给定$ {w^k} = \left( {{x^k}, {y^k}, {\lambda ^k}} \right) \in X \times Y \times {R^l} $, 将其代入算法中得到预测值为$ \tilde w = \left( {\tilde x, \tilde y, \tilde \lambda } \right) $以及修正值为$ {w^{k + 1}} = \left( {{x^{k + 1}}, {y^{k + 1}}, {\lambda ^{k{\rm{ + }}1}}} \right) $.若$ {w^ * } = \left( {{x^ * }, {y^ * }, {\lambda ^ * }} \right) $是$ SMVI\left( {\Omega , F} \right) $的解, 则有
证 由式(3.4)得到
利用柯西-施瓦茨不等式和投影的非扩张性, 可推出
再结合推论1可得
在证明算法的全局收敛性之前, 先给出一个重要的引理.
引理 7 给定$ {w^k} = \left( {{x^k}, {y^k}, {\lambda ^k}} \right) \in X \times Y \times {R^l} $, 由新算法产生的预测值为$ {\tilde w^k} = \left( {{{\tilde x}^k}, {{\tilde y}^k}, {{\tilde \lambda }^k}} \right) $, 则对任意的$ w = \left( {x, y, \lambda } \right) \in Z $, 有
证 在引理3中, 令$ v = x $, $ w = {\tilde x^k} $, $ q\left( w \right) = {f_k}\left( {{{\tilde x}^k}} \right) $, 则由(2.12)式可得
将此不等式右端变形为
于是(5.1)式成立.若再令$ v = y $, $ w = {\tilde y^k} $, $ q\left( w \right) = {g_k}\left( {{{\tilde y}^k}} \right) $, 同理可证(5.2)式也成立.证毕.
基于对LQP-ADM混合算法收缩性的讨论, 接下来给出此算法的全局收敛性分析.
定理 3 假设由新算法产生的无穷迭代序列为$ \left\{ {{w^k}} \right\} = \left\{ {\left( {{x^k}, {y^k}, {\lambda ^k}} \right)} \right\} $, 则此序列必定收敛于变分不等式问题$ SMVI\left( {\Omega , F} \right) $的解点$ {w^\infty } $.
证 此定理可以分两步来证:首先利用已经得到的结论证明$ {w^\infty } $是$ SMVI\left( {\Omega , F} \right) $的解, 然后再证明序列$ \left\{ {{w^k}} \right\} $收敛于$ {w^\infty } $.
步 1 由定理2可得
因为$ {\mu _1} $, $ {\mu _2} $, $ t \in \left( {0, 1} \right) $, 所以
由(5.5)式可知必定存在常数$ c > 0 $, 使得
进而由上面不等式可知序列$ \left\{ {{w^k}} \right\} $有界且$ \mathop {\lim }\limits_{k \to \infty } {\left\| {{w^k} - {{\tilde w}^k}} \right\|_R} = 0 $.从而
由上可知序列$ \left\{ {{{\tilde w}^k}} \right\} $也是有界的, 并且至少存在一个聚点.由定理1可知
取$ \mu = \min \left\{ {1 - {\mu _1}, 1 - {\mu _2}} \right\} $, 则
进而有
由上面的证明可知序列$ \left\{ {{w^k}} \right\} $, $ \left\{ {{{\tilde w}^k}} \right\} $都是有界的.则
故
结合(5.3)式和(5.4)式可得
进而由(5.1), (5.2)及(5.7)式可得
令$ {w^\infty } $为$ \left\{ {{{\tilde w}^k}} \right\} $的一个聚点且其中一个子列$ \left\{ {{{\tilde w}^{{k_j}}}} \right\} $收敛于$ {w^\infty } $.则由(5.7)及(5.8)式可得
因此
即$ {\left( {w - {w^\infty }} \right)^T}Q\left( {{w^\infty }} \right) \ge 0, \forall w \in Z, $这说明$ {w^\infty } $是$ SMVI\left( {\Omega , F} \right) $的解.
步 2 对于$ SMVI\left( {\Omega , F} \right) $的所有解都满足不等式(5.6), 所以可推出
因为$ {\tilde w^{{k_j}}} \to {w^\infty }\left( {j \to \infty } \right) $和$ {w^k} - {\tilde w^k} \to 0\left( {k \to \infty } \right) $, 对任意的$ \varepsilon > 0 $, 存在整数$ l > 0 $, 使得
所以$ \forall k \ge l $, 由(5.11)式可得
这说明序列$ \left\{ {{w^k}} \right\} $收敛到$ SMVI\left( {\Omega , F} \right) $的解$ {w^\infty } $证毕.
为了考察LQP-ADM混合算法的数值表现, 用Matlab软件编程来进行数值实验, 所有程序在Windows 2007系统下进行.考虑这样一个优化问题$ \min \left\{ {{c^T}x\left| {x \in {\Omega _1} \cap {\Omega _2}} \right.} \right\}, $其中
为了保证问题的可行性, $ \left\| b \right\| \le {r_1}{\rm{ + }}{r_2} $必须满足.比如选取$ {r_1}{\rm{ = }}0.5\left\| b \right\|, {r_2}{\rm{ = }}0.6\left\| b \right\| $.
引入辅助变量$ y $, 则上述问题转化后的形式如下:
其中$ {B_r} $表示圆心为原点、半径为$ r $的圆.
接着将上述凸规划问题转化为可分离带线性约束的变分不等式问题, 即找一点$ {u^ * } \in \Omega $, 满足$ {\left( {u{\rm{ - }}{u^ * }} \right)^T}F\left( {{u^ * }} \right) \ge 0{\rm{, }}\; \forall u \in \Omega, $其中
在数值实验中, 选取初始迭代点$ {w^0} = \left( {{x^0}, {y^0}, {\lambda ^0}} \right) $为$ {x^0} = {\left( {1, 1} \right)^T} $, $ {y^0} = {\left( {1, 1} \right)^T} $, $ {\lambda ^0} = {\left( {1, 1} \right)^T} $, 二维列向量$ c $的元素随机分布在$ \left( { - 20, 20} \right) $, 二维列向量$ b $的元素随机分布在$ \left( {0, 20} \right) $.给定误差界$ \varepsilon = {10^{ - 6}} $, 参数$ {\mu _1} = {\mu _2} = \frac{1}{2} $, 对称正定矩阵$ H = \left( {\begin{array}{*{20}{c}} 2&1\\ 1&2 \end{array}} \right). $
由于向量$ c $与向量$ b $的元素均是随机产生的, 所以每次运行LQP-ADM混合算法求得变分不等式的解都不相同, 但是解均是收敛的并且收敛性态是一致的.为了说明情况, 从多次运行结果中选取下面三组图——图 1、图 2与图 3来分析.从这三组图可知, $ x $与$ \lambda $的收敛趋势是一样的, 都是随着迭代次数的增加其中一个分量增大另一分量减小, 但是$ y $的收敛趋势却不同, 图 1中$ y $的两个分量随着不断迭代都是增大的, 图 2中都是减小的, 而图 3中却是一个增大另一个减小, 同时容易看出新算法的收敛速度很快, 所以LQP-ADM混合算法求解问题$ SMVI(\Omega, F) $的解是收敛的, 也是有效的.