数学杂志  2019, Vol. 39 Issue (2): 195-202   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
QIAN Rui-shen
YANG Liu
BOUNDARY MULTIPLIES AND TOEPLITZ OPERATORS ASSOCIATED WITH ANALYTIC MORREY SPACES
QIAN Rui-shen1, YANG Liu2    
1. School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang 524048, China;
2. Department of Mathematics, Shaanxi Xueqian Normal University, Xi'an 710100, China
Abstract: In this paper, by using Hardy space's properties and elementary calculations, we study boundary characterization and boundary multipliers of analytic Moerry space, and Toeplitz operators acting on Hardy space to analytic Moerry space are also investigated. For the above questions, the necessary and sufficient conditions are obtained.
Keywords: boundary multiplies     Toeplitz operators     Hardy spaces     Morrey spaces    
边界乘子和Toeplitz算子关联的解析Morrey空间
钱睿深1, 杨鎏2    
1. 岭南师范学院数学与统计学院, 广东 湛江 524048;
2. 陕西学前师范学院数学系, 陕西 西安 710100
摘要:本文利用Hardy空间的性质和初等计算,研究了解析Moerry空间的边界值与边界值乘子,也研究了作用在Hardy空间到解析Moerry空间上的Toeplitz算子问题.对于上述问题,我们都给出了相应的等价刻画.
关键词边界乘子    Toeplitz算子    Hardy空间    Moerry空间    
1 Introduction

Denote by $ {\mathbb T} $ the boundary of the open unit disk $ {\mathbb{D}} $ in the complex plane $ {\mathbb{C}} $. Let $ H({\mathbb{D}}) $ be the space of analytic functions in $ {\mathbb{D}} $. For $ 0<p<\infty $, the Hardy space $ H^p({\mathbb{D}}) $ consists of functions $ f\in H({\mathbb{D}}) $ such that

$ \|f\|_{H^p} = \sup\limits_{0<r<1} \left( {\frac{1}{{2\pi }}\int_0^{2\pi } | f(r{e^{i\theta }}){|^p}d\theta } \right)^{1/p} < \infty $

Let $ H^\infty $ be the space of bounded analytic function on $ {\mathbb{D}} $ consisting of functions $ f\in H({\mathbb{D}}) $ with

$ \|f\|_\infty = \sup\limits_{z\in{\mathbb{D}}}|f(z)|<\infty. $

We refer to [1, 2] for $ H^p $ and $ H^\infty $ spaces.

For $ \lambda\in (0, 1] $, denote by $ {\mathcal L}^{2, \lambda}({\mathbb T}) $ the Morrey space of all Lebesgue measurable functions $ f $ on $ {\mathbb T} $ that satisfy

$ \parallel f{\parallel _{{\mathcal{L}^{2,\lambda }}(\mathbb{T})}} = \mathop {\sup }\limits_{I \subseteq \mathbb{T}} {\left( {|I{|^{ - \lambda }}\int_I | f(\zeta ) - {f_I}{|^2}|d\zeta |} \right)^{\frac{1}{2}}} < \infty , $

where $ |I| $ denotes the length of the arc $ I $ and

${f_I} = \frac{1}{{|I|}}\int_I f (\zeta )|d\zeta |.$

Clearly, $ {\mathcal L}^{2, 1}({\mathbb T}) $ coincides with $ {\rm BMO}({\mathbb T}) $, the space of functions with bounded mean oscillation on $ {\mathbb T} $ (cf. [3, 4]). Similar to a norm on $ {\rm BMO}({\mathbb T}) $ given in [4, p. 68], a norm on $ {\mathcal L}^{2, \lambda}({\mathbb T}) $ can be defined by

$ |||f|||_{{\mathcal L}^{2, \lambda}({\mathbb T})} = \left|\int_{\mathbb T} f |d\zeta|\right|+\|f\|_{{\mathcal L}^{2, \lambda}({\mathbb T})}. $

From Xiao's monograph [5, p. 52],

$ {\rm BMO}({\mathbb T})\subseteq {\mathcal L}^{2, \lambda_1}({\mathbb T})\subseteq {\mathcal L}^{2, \lambda_2}({\mathbb T}) \subseteq L^2({\mathbb T}), \ \ 0<\lambda_2<\lambda_1<1. $

It is well known that if $ f\in H^2 $, then its non-tangential limit $ f(\zeta) $ exists almost everywhere for $ \zeta\in {\mathbb T} $. For $ \lambda\in (0, 1] $, the analytic Morrey space $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $ is the set of $ f\in H^2 $ with $ f(\zeta)\in {\mathcal L}^{2, \lambda}({\mathbb T}) $. It is clear that $ {\mathcal L}^{2, 1}({\mathbb{D}}) $ is $ {\rm BMOA} $, the analytic space of functions with bounded mean oscillation (cf. [3, 4]). For $ \lambda\in (0, 1] $, $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $ is located between $ {\rm BMOA} $ and $ H^2 $. It is worth mentioning that there exists a isomorphism relation between analytic Morrey spaces and Möbius invariant $ {\mathcal{Q}}_p $ spaces via fractional order derivatives of functions (see [6]). Recall that for $ 0< p<\infty $, a function $ f\in H({\mathbb{D}}) $ belongs to the space $ {{\mathcal{Q}}_p} $ if

$ \sup\limits_{a\in{\mathbb{D}}}\, \int_{{\mathbb{D}}} |f'(z)|^{2}\left(1-|\sigma_a(z)|^2\right)^pdA(z)<\infty, $

where $ dA $ is the area Lebesgue measure on $ {\mathbb{D}} $ and ${\sigma _a}(z) = \frac{{a - z}}{{1 - \bar az}}$ is the Möbius transformation of the unit disk $ {\mathbb{D}} $ interchanging $ a $ and $ 0 $. See [5,7 ] for a general exposition on $ {\mathcal{Q}}_p $ spaces. Recently, the interest in $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $ spaces grew rapidly (cf. [8-13]).

An important problem of studying function spaces is to characterize the multipliers of such spaces. For a Banach function space $ X $, denote by $ M(X) $ the class of all multipliers on $ X $. Namely,

$ M(X) = \{f\in X: fg\in X \ \text{for all }\ g\in X\}. $

Bao and Pau [14] characterized boundary multipliers of $ {\mathcal{Q}}_p $ spaces. Stegenga [15] described multipliers of $ {\rm BMO}({\mathbb T}) $ which is equal to $ {\mathcal L}^{2, 1}({\mathbb T}) $. It is natural to consider multipliers of $ {\mathcal L}^{2, \lambda}({\mathbb T}) $ with $ \lambda \in (0, 1) $ in this paper.

Given a function $ \varphi\in L^{2}({\mathbb T}) $. Let $ T_{\varphi} $ be the Toeplitz operator on $ H^2 $ with symbol $ \varphi $ defined by

$ T_{\varphi}f(z) = \frac{1}{2\pi }\int_{{\mathbb T}}\frac{\varphi(\zeta)f(\zeta)}{1-\overline{\zeta}z}|d\zeta|, \ \ f\in H^2, \ \ z\in {\mathbb{D}}. $

For the study of Toeplitz operators on Hardy spaces and Bergman spaces, see, for example, [16, 17]. We refer to [9] for the results of Toeplitz operators on $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $ spaces.

The aim of this paper is to consider boundary multiplies and Toeplitz operators associated with analytic Morrey spaces. In Section 2, using a characterization of $ {\mathcal L}^{2, \lambda}({\mathbb T}) $ in terms of functions with absolute values, we characterize the multipliers of $ {\mathcal L}^{2, \lambda}({\mathbb T}) $. In Section 3, we characterize the boundedness and compactness of Toeplitz operators from Hardy spaces to analytic Morrey spaces.

Throughout this paper, we write $ a\lesssim b $ if there exists a constant $ C $ such that $ a\leq Cb $. Also, the symbol $ a\thickapprox b $ means that $ a\lesssim b\lesssim a $.

2 Boundary Multiplies of Analytic Morrey Spaces

By the study of certain integral operators on analytic Morrey spaces, Li, Liu and Lou [8] proved that $ M(\mathcal{L}^{2, \lambda}({\mathbb{D}})) = H^\infty $. In this section, applying a characterization of $ \mathcal{L}^{2, \lambda}({\mathbb T}) $ in terms of absolute values of functions, we characterize $ M(\mathcal{L}^{2, \lambda}({\mathbb T})) $, boundary multiplies of analytic Morrey spaces.

Given $ f\in L^2({\mathbb T}) $, let $ \widehat{f} $ be the Poisson extension of $ f $. Namely,

$ \widehat{f}(z) = \int_{{\mathbb T}} f(\zeta)d\mu_z(\zeta), \ z\in {\mathbb{D}}, $

where

$ d\mu_z(\zeta) = \frac{1-|z|^2}{2\pi|\zeta-z|^2}|d\zeta|. $

Let $ 0<\lambda<1 $. From [5, p.52], $ f\in \mathcal{L}^{2, \lambda}({\mathbb T}) $ if and only if

$ \begin{equation} \sup\limits_{z\in {\mathbb{D}}}(1-|z|^{2})^{1-\lambda}\int_{\mathbb{D}} |\nabla \widehat{f}(w)|^2 (1-|\sigma_z(w)|^2) dA(w)<\infty, \end{equation} $ (2.1)

where $ \nabla $ is the Laplace operator. Also, $ f\in \mathcal{L}^{2, \lambda}({\mathbb{D}}) $ if and only if

$ \begin{equation} \|f\|_{\mathcal{L}^{2, \lambda}({\mathbb{D}})} = \sup\limits_{z\in {\mathbb{D}}}(1-|z|^{2})^{1-\lambda}\int_{\mathbb{D}} |f'(w)|^2 (1-|\sigma_z(w)|^2) dA(w)<\infty. \end{equation} $ (2.2)

We need the following useful inequality (see [18, Lemma 2.5]).

Lemma A Suppose that $ s>-1 $, $ r $, $ t\geq 0 $, and $ r+t-s>2 $. If $ t<s+2<r $, then

$ \int_{\mathbb{D}}\frac{(1-|w|^2)^s}{|1-\overline{w}z|^r |1-\overline{w}\zeta|^t}dA(w)\lesssim \frac{(1-|z|^{2})^{2+s-r}}{|1-\overline{z}\zeta|^{t}} $

for all $ z $, $ \zeta\in {\mathbb{D}} $.

Now we characterize $ \mathcal{L}^{2, \lambda}({\mathbb T}) $ via absolute values of functions as follows. See [9] for the analytic version of the following result.

Theorem 2.1 Let $ 0<\lambda<1 $ and $ f\in L^2({\mathbb T}) $. Then $ f\in \mathcal{L}^{2, \lambda}({\mathbb T}) $ if and only if

$ \sup\limits_{a\in \mathbb{D}}(1-|a|^{2})^{1-\lambda}\int_{\mathbb{D}}\int_{{\mathbb T}}|f(\zeta)|^{2}d\mu_{z}(\zeta)|\sigma_{a}'(z)|^{2}dA(z)<\infty. $

Proof Let $ f\in L^2({\mathbb T}) $. It is well known (cf. [19, p. 564]) that

$ \int_{{\mathbb T}}|f(\zeta)|^2d\mu_z(\zeta)-|\widehat{f}(z)|^2\approx \int_{\mathbb{D}} |\nabla \widehat{f}(w)|^2 (1-|\sigma_z(w)|^2) dA(w) $

for all $ z\in {\mathbb{D}} $. Combining this with the Fubini theorem, we obtain that for any $ a\in {\mathbb{D}} $,

$ \begin{eqnarray*} &\; &\int_{\mathbb{D}} \int_{{\mathbb T}}|f(\zeta)|^2d\mu_z(\zeta) |\sigma_{a}'(z)|^{2}dA(z)-\int_{\mathbb{D}} |\widehat{f}(z)|^2 |\sigma_{a}'(z)|^{2}dA(z)\\ &\approx& \int_{\mathbb{D}} |\nabla \widehat{f}(w)|^2 \int_{\mathbb{D}} (1-|\sigma_z(w)|^2) |\sigma_{a}'(z)|^{2}dA(z)dA(w)\\ &\approx& (1-|a|^2)^2 \int_{\mathbb{D}} |\nabla \widehat{f}(w)|^2 (1-|w|^2) \int_{\mathbb{D}} \frac{1-|z|^2}{|1-\overline{z}w|^2|1-\overline{a}z|^4}dA(z)dA(w). \end{eqnarray*} $

By Lemma A and the same argument in [19, p. 563], we get that

$ \int_{\mathbb{D}} \frac{1-|z|^2}{|1-\overline{z}w|^2|1-\overline{a}z|^4}dA(z)\approx \frac{1}{(1-|a|^2)|1-\overline{a}w|^2}. $

Thus,

$ \begin{eqnarray} &\; &\int_{\mathbb{D}} \int_{{\mathbb T}}|f(\zeta)|^2d\mu_z(\zeta) |\sigma_{a}'(z)|^{2}dA(z)-\int_{\mathbb{D}} |\widehat{f}(z)|^2 |\sigma_{a}'(z)|^{2}dA(z)\\ &\approx& \int_{\mathbb{D}} |\nabla \widehat{f}(w)|^2 \frac{(1-|a|^2)(1-|w|^2)}{|1-\overline{a}w|^2}dA(w)\\ &\approx& \int_{\mathbb{D}} |\nabla \widehat{f}(w)|^2 (1-|\sigma_a(w)|^2) dA(w) \end{eqnarray} $ (2.3)

for all $ a\in {\mathbb{D}} $.

Let

$ \sup\limits_{a\in \mathbb{D}}(1-|a|^{2})^{1-\lambda}\int_{\mathbb{D}}\int_{{\mathbb T}}|f(\zeta)|^{2}d\mu_{z}(\zeta)|\sigma_{a}'(z)|^{2}dA(z)<\infty. $

From (1) and (3), we get that $ f\in\mathcal{L}^{2, \lambda}({\mathbb T}) $.

On the other hand, let $ f\in\mathcal{L}^{2, \lambda}({\mathbb T}) $. Without loss of generality, we may assume that $ f $ is real valued. Denote by $ \widetilde{f} $ the harmonic conjugate function of $ \widehat{f} $. Set $ g = \widehat{f}+i\widetilde{f} $. The Cauchy-Riemann equations give $ |\nabla \widehat{f}(z)|\thickapprox |g'(z)| $. Thus $ g\in \mathcal{L}^{2, \lambda}({\mathbb{D}}) $. By the growth estimates of functions in $ \mathcal{L}^{2, \lambda}({\mathbb{D}}) $ (cf. [8, Lemma 2]), one gets that

$ |\widehat{f}(z)|\leq |g(z)|\lesssim (1-|z|)^{\frac{\lambda-1}{2}}\|g\|_{\mathcal{L}^{2, \lambda}({\mathbb{D}})} $

for all $ z\in {\mathbb{D}} $. Consequently,

$ \begin{eqnarray*} &\; &\sup\limits_{a\in \mathbb{D}}(1-|a|^{2})^{1-\lambda}\int_{\mathbb{D}} |\widehat{f}(z)|^2 |\sigma_{a}'(z)|^{2}dA(z)\\ &\lesssim& \|g\|_{\mathcal{L}^{2, \lambda}({\mathbb{D}})}^2 \sup\limits_{a\in \mathbb{D}}(1-|a|^{2})^{3-\lambda} \int_{\mathbb{D}} \frac{(1-|z|)^{\lambda-1}}{|1-\overline{a}z|^4}dA(z)\\ &\lesssim& \|g\|_{\mathcal{L}^{2, \lambda}({\mathbb{D}})}^2. \end{eqnarray*} $

Combining this with (2.3), $ f\in\mathcal{L}^{2, \lambda}({\mathbb T}) $, we get that

$ \sup\limits_{a\in \mathbb{D}}(1-|a|^{2})^{1-\lambda}\int_{\mathbb{D}}\int_{{\mathbb T}}|f(\zeta)|^{2}d\mu_{z}(\zeta)|\sigma_{a}'(z)|^{2}dA(z)<\infty. $

The proof is completed.

Denote by $ L^\infty({\mathbb T}) $ the space of essentially bounded measurable functions on $ {\mathbb T} $. Using Theorem 2.1, we characterize multipliers of $ \mathcal{L}^{2, \lambda}({\mathbb T}) $ as follows.

Theorem 2.2 Let $ 0<\lambda<1 $. Then $ M(\mathcal{L}^{2, \lambda}({\mathbb T})) = L^\infty({\mathbb T}) $.

Proof Let $ f\in L^\infty({\mathbb T}) $ and $ g\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. From Theorem 2.1, one gets that

$ \begin{eqnarray*} &\; &\sup\limits_{a\in \mathbb{D}}(1-|a|^{2})^{1-\lambda}\int_{\mathbb{D}}\int_{{\mathbb T}}|f(\zeta)g(\zeta)|^{2}d\mu_{z}(\zeta)|\sigma_{a}'(z)|^{2}dA(z)\\ &\leq& \|f\|_{L^\infty({\mathbb T})}\sup\limits_{a\in \mathbb{D}}(1-|a|^{2})^{1-\lambda}\int_{\mathbb{D}}\int_{{\mathbb T}}|g(\zeta)|^{2}d\mu_{z}(\zeta)|\sigma_{a}'(z)|^{2}dA(z)\\ &<&\infty. \end{eqnarray*} $

Applying Theorem again, we know that $ fg\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. Thus $ L^\infty({\mathbb T})\subseteq M(\mathcal{L}^{2, \lambda}({\mathbb T})) $.

On the other hand, let $ f\in M(\mathcal{L}^{2, \lambda}({\mathbb T})) $. By the closed graph theorem, there exists a positive constant $ C $ such that $ |||fg|||_{\mathcal{L}^{2, \lambda}({\mathbb T})}\leq C |||g|||_{\mathcal{L}^{2, \lambda}({\mathbb T})} $ for any $ g\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. Set $ h = f/C $. Clearly, $ h\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. We deduce that $ |||h^n|||_{\mathcal{L}^{2, \lambda}({\mathbb T})}\leq |||h|||_{\mathcal{L}^{2, \lambda}({\mathbb T})} $ for all positive integer $ n $. As mentioned in Section 1, $ \mathcal{L}^{2, \lambda}({\mathbb T}) \subseteq L^2({\mathbb T}) $. Form the closed graph theorem again, there exists a positive constant $ C_1 $ satisfying

$ \left(\int_{\mathbb T} |f(\zeta)|^2 |d\zeta|\right)^{1/2}\leq C_1 |||f|||_{\mathcal{L}^{2, \lambda}({\mathbb T})} $

for all $ f\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. Consequently,

$ \left(\int_{\mathbb T} |h^n(\zeta)|^2 |d\zeta|\right)^{1/2}\leq C_1 |||h^n|||_{\mathcal{L}^{2, \lambda}({\mathbb T})}\leq C_1|||h|||_{\mathcal{L}^{2, \lambda}({\mathbb T})}<\infty. $

Since $ n $ is arbitrary, we know that $ h\in L^\infty({\mathbb T}) $. Hence $ f\in L^\infty({\mathbb T}) $. The proof is completed.

3 Toeplitz Operators from Hardy Spaces to Analytic Morrey Spaces

In this section, we characterize the boundedness and compactness of Toeplitz operators from the Hardy space $ H^p $ to the analytic Morrey space $ \mathcal{L}^{2, 1-\frac{2}{p}}(\mathbb{D}) $ for $ 2<p<\infty $. Toeplitz operators on analytic Morrey spaces were investigated in [9]. We refer to [8] for the study of some integral operators from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}(\mathbb{D}) $ for $ 2<p<\infty $.

Following [9], we use a norm of $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $, $ \lambda\in (0, 1) $, defined by

$ |||f|||_{\mathcal{L}^{2, \lambda}({\mathbb{D}})} = |f(0)|+\sup\limits_{w\in \mathbb{D}}\Big((1-|w|^{2})^{1-\lambda}\int_{\mathbb{D}}\int_{{\mathbb T}}|f(\zeta)|^{2}d\mu_{z}(\zeta)|\sigma_{w}'(z)|^{2}dA(z)\Big)^{1/2}. $

The following well-known lemma can be found in [17].

Lemma B Suppose $ s>0 $ and $ t>-1 $. Then there exists a positive constant $ C $ such that

$ \int_\mathbb{D} {\frac{{{{(1 - |w{|^2})}^t}}}{{|1 - \bar zw{|^{2 + t + s}}}}} dA(w) \leqslant \frac{C}{{{{(1 - |z{|^2})}^s}}} $

for all $ z\in {\mathbb{D}} $.

Applying some well-known results of Toeplitz operators and composition operators on Hardy spaces, we characterize the boundedness of $ T_{\varphi} $ from Hardy spaces to analytic Morrey spaces as follows.

Theorem 3.3 Let $ 2<p<\infty $ and $ \varphi \in L^2({\mathbb T}) $. Then the Toeplitz operator $ T_{\varphi} $ is bounded from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb T}) $ if and only if $ \varphi\in L^{\infty}({\mathbb T}) $.

Proof Suppose that $ T_{\varphi} $ is bounded from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}}) $. For $ b\in {\mathbb{D}} $, let

$ f_{b}(z) = \frac{(1-|b|^{2})^{1-\frac{1}{p}}}{1-\overline{b}z}, \ \ z \in {\mathbb{D}}. $

Note that $ p>2 $. By the well known estimates in [20, p. 9], one gets that

$ \mathop {\sup }\limits_{b \in \mathbb{D}} \int_0^{2\pi } | {f_b}({e^{i\theta }}){|^p}d\theta = \mathop {\sup }\limits_{b \in \mathbb{D}} {(1 - |b{|^2})^{p - 1}}\int_0^{2\pi } {\frac{1}{{|1 - \bar b{e^{i\theta }}{|^p}}}} d\theta<\infty. $

Thus functions $ f_{b} $ belong to $ H^{p} $ uniformly for all $ b\in {\mathbb{D}} $. Consequently,

$ \begin{equation} \nonumber \begin{split} \infty>|||T_{\varphi}f_{b}|||_{\mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}})}^{2}&\gtrsim (1-|b|^{2})^{\frac{2}{p}}\int_{\mathbb{D}}\int_{{\mathbb T}}|T_{\varphi}f_{b}(\zeta)|^{2}d\mu_{z}(\zeta)|\sigma_{b}'(z)|^{2}dA(z) \\&\approx(1-|b|^{2})^{\frac{2}{p}}\int_{\mathbb{D}}\int_{{\mathbb T}}|T_{\varphi}f_{b}(\zeta)|^{2}d\mu_{\sigma_{b}(z)}(\zeta)dA(z) \\&\gtrsim(1-|b|^{2})^{\frac{2}{p}}\int_{\mathbb{D}}|T_{\varphi}f_{b}(\sigma_{b}(z))|^{2}dA(z) \\&\gtrsim(1-|b|^{2})^{\frac{2}{p}}|T_{\varphi}f_{b}(b)|^{2}. \end{split} \end{equation} $

Note that

$ (1-|b|^{2})^{\frac{2}{p}}|T_{\varphi}f_{b}(b)|^{2} = \frac{1}{4\pi^2}\left|\int_{\mathbb T} \frac{\varphi(\zeta)(1-|b|^2)}{(1-\overline{\zeta}b)(1-\overline{b}\zeta)}|d\zeta|\right|^2 = |\hat{\varphi}(b)|^{2}. $

Thus $ \sup\limits_{b\in {\mathbb{D}}}|\hat{\varphi}(b)|<\infty $. By [1, p. 5], $ \varphi\in L^\infty({\mathbb T}) $.

On the other hand, let $ \varphi\in L^{\infty}({\mathbb T}) $. It is well known that $ T_{\varphi} $ is bounded on $ H^{p} $ (cf. [21-23]). Namely, $ \|T_{\varphi}g\|_{H^p}\lesssim \|\varphi\|_{L^\infty({\mathbb T})}\|g\|_{H^p} $ for all $ g\in H^p $. Let $ f\in H^p $, we deduce that

$ \begin{equation} \nonumber \begin{split} &|||T_{\varphi}f|||_{\mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}})}\\ = & |T_{\varphi}f(0)|+\sup\limits_{w\in \mathbb{D}}\Big((1-|w|^{2})^{\frac{2}{p}}\int_{\mathbb{D}}\int_{{\mathbb T}}\Big|\frac{1}{2\pi} \int_{{\mathbb T}}\frac{\varphi(\zeta)f(\zeta)}{1-\overline{\zeta}\xi}|d\zeta|\Big|^{2}d\mu_{z}(\xi) |\sigma'_w(z)|^{2} dA(z)\Big)^{1/2} \\\lesssim& \|\varphi\|_{L^{\infty}({\mathbb T})}\|f\|_{H^{1}}+\sup\limits_{w\in \mathbb{D}}\Big((1-|w|^{2})^{\frac{2}{p}}\int_{\mathbb{D}}\int_{{\mathbb T}}\Big|\frac{1}{2\pi} \int_{{\mathbb T}}\frac{\varphi(\zeta)f(\zeta)}{1-\overline{\zeta}\sigma_{z}(\xi)}|d\zeta|\Big|^{2}|d\xi| |\sigma'_w(z)|^{2}dA(z) \Big)^{1/2} \\\lesssim& \|\varphi\|_{L^{\infty}({\mathbb T})}\|f\|_{H^{p}}+ \sup\limits_{w\in \mathbb{D}}\Big((1-|w|^{2})^{\frac{2}{p}}\int_{\mathbb{D}}\|(T_{\varphi}f)\circ\sigma_{z}\|_{H^{2}}^{2} |\sigma'_w(z)|^{2}dA(z) \Big)^{1/2} \\\lesssim& \|\varphi\|_{L^{\infty}({\mathbb T})}\|f\|_{H^{p}}+ \sup\limits_{w\in \mathbb{D}}\Big((1-|w|^{2})^{\frac{2}{p}}\int_{\mathbb{D}}\|(T_{\varphi}f)\circ\sigma_{z}\|_{H^{p}}^{2} |\sigma'_w(z)|^{2}dA(z) \Big)^{1/2}. \end{split} \end{equation} $

By the well-known characterization of composition operators on $ H^p $ (cf. [17, Theorem 11.12]), we get that

$ \|(T_{\varphi}f)\circ\sigma_{z}\|_{H^{p}}\leq \left(\frac{1+|z|}{1-|z|}\right)^{1/p}\|T_{\varphi}f\|_{H^{p}}. $

Thus,

$ \begin{eqnarray*} &&|||T_{\varphi}f|||_{\mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}})}\\&\lesssim& \|\varphi\|_{L^{\infty}({\mathbb T})}\|f\|_{H^{p}}+ \sup\limits_{w\in \mathbb{D}}\Big((1-|w|^{2})^{\frac{2}{p}}\|T_{\varphi}f\|_{H^{p}}^{2}\int_{\mathbb{D}} (1-|z|)^{-2/p} |\sigma'_w(z)|^{2}dA(z) \Big)^{1/2}\\ &\lesssim& \|\varphi\|_{L^{\infty}({\mathbb T})}\|f\|_{H^{p}}+\|\varphi\|_{L^{\infty}({\mathbb T})}\|f\|_{H^p} \sup\limits_{w\in \mathbb{D}}\Big((1-|w|^{2})^{\frac{2}{p}+2}\int_{\mathbb{D}} \frac{(1-|z|)^{-2/p}} {|1-\overline{w}z|^{4}}dA(z) \Big)^{1/2}. \end{eqnarray*} $

Note that $ p>2 $. By Lemma B, we get that $ |||T_{\varphi}f|||_{\mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}})}\lesssim\|\varphi\|_{L^{\infty}({\mathbb T})}\|f\|_{H^{p}}. $ The proof is completed.

We characterize the compactness of Toeplitz operators from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb T}) $ as follows.

Theorem 3.4 Let $ 2<p<\infty $ and $ \varphi \in L^\infty({\mathbb T}) $. Then the Toeplitz operator $ T_{\varphi} $ is compact from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}}) $ if and only if $ \varphi = 0 $.

Proof It suffices to prove the necessity. Let $ \{a_{n}\}_{n = 1}^\infty\subseteq {\mathbb{D}} $ be a sequence such that $ |a_{n}|\rightarrow 1 $ as $ n\rightarrow \infty $. Set

$ f_{n}(z) = \frac{(1-|a_{n}|^{2})^{1-\frac{1}{p}}}{1-\overline{a_{n}}z}, \ \ z\in {\mathbb T}. $

As explained in the proof of Theorem 3.3, $ \sup\limits_n \|f_{n}\|_{H^{p}}<\infty $. Clearly, $ f_{n}\rightarrow 0 $ uniformly on compact subsets of $ {\mathbb{D}} $ as $ n\rightarrow \infty $. Since $ T_{\varphi} $ is compact, we get that

$ \lim\limits_{n\rightarrow\infty}\|T_{\varphi}f_{n}\|_{\mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}})} = 0. $

By the proof of Theorem 3.3, one gets that $ |\hat{\varphi}(a_{n})|\lesssim \|T_{\varphi}f_{n}\|_{\mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}})} $ for all $ n $. Consequently, $ |\hat{\varphi}(a_{n})|\rightarrow 0, \ \ n\rightarrow \infty. $ Since $ a_{n} $ is arbitrary and $ \hat{\varphi} $ is harmonic, by the maximum principle, $ \hat{\varphi}\equiv0 $ on $ {\mathbb{D}} $. Hence $ \varphi = 0 $ on $ {\mathbb T} $. We finish the proof.

References
[1]
Duren P. Theory of Hp spaces[M]. New York: Academic Press, 1970.
[2]
Garnett J. Bounded analytic functions[M]. New York: Academic Press, 1981.
[3]
Baernstein A. Analytic functions of bounded mean oscillation[M]. London, New York: Academic Press, 1980.
[4]
Girela D. Analytic functions of bounded mean oscillation, complex function spaces[M]. Joensuu: Univ. Joensuu, 2001.
[5]
Xiao J. Geometric $\mathcal{Q}_{p}$ functions[M]. Basel, Boston, Berlin: Birkhäuser Verlag, 2006.
[6]
Wu Z, Xie C. $\mathcal{Q}$ spaces and Morrey spaces[J]. J. Funct. Anal., 2003, 201: 282-297. DOI:10.1016/S0022-1236(03)00020-X
[7]
Xiao J. Holomorphic $\mathcal{Q}$ classes[M]. LNM 1767, Berlin: Springer, 2001.
[8]
Li Pengtao, Liu Junming, Lou Zengjian. Integral operators on analytic Morrey spaces[J]. Sci. China Math., 2014, 57: 1961-1974. DOI:10.1007/s11425-014-4811-5
[9]
Liu Junming, Lou Zengjian. Properties of analytic Morrey spaces and applications[J]. Math. Nachr., 2015, 288: 1673-1693. DOI:10.1002/mana.201300301
[10]
Wang J, Xiao J. Holomorphic Campanato spaces on the unit ball[J]. Math. Nachr.. DOI:10.1002/mana.201600115
[11]
Wang J, Xiao J. Analytic Campanato spaces by functionals and operators[J]. J. Geom. Anal.. DOI:10.1007/s12220-015-9658-7
[12]
Xiao J, Xu W. Composition operators between analytic Campanato spaces[J]. J. Geom. Anal., 2014, 24: 649-666. DOI:10.1007/s12220-012-9349-6
[13]
Xiao J, Yuan C. Analytic Campanato spaces and their compositions[J]. Indiana Univ. Math. J., 2015, 64: 1001-1025. DOI:10.1512/iumj.2015.64.5575
[14]
Bao Guanlong, Pau J. Boundary multipliers of a family of Möbius invariant function spaces[J]. Ann. Acad. Sci. Fenn. Math., 2016, 41: 199-220. DOI:10.5186/aasfm.2016.4113
[15]
Stegenga D. Bounded Toeplitz operators on H1 and applications of the duality between H1 and the functions of bounded mean oscillation[J]. Amer. J. Math., 1976, 98: 573-589. DOI:10.2307/2373807
[16]
Douglas R. Banach algebra techniques in operator theory[M]. New York: Springer-Verlag, 1998.
[17]
Zhu K. Operator theory in function spaces[M]. Providence, RI: American Math. Soc., 2007.
[18]
Ortega J, Fábrega J. Pointwise multipliers and corona type decomposition in BMOA[J]. Ann. Inst. Fourier (Grenoble), 1996, 46: 111-137. DOI:10.5802/aif.1509
[19]
Bao Guanlong, Lou ZengJian, Qian Ruishen, Wulan Hasi. On absolute values of $\mathcal{Q}_{K}$ functions[J]. Bull. Korean Math. Soc., 2016, 53: 561-568. DOI:10.4134/BKMS.2016.53.2.561
[20]
Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman spaces[M]. New York: Springer, 2000.
[21]
Havin V. The factorization of analytic functions that are smooth up to the boundary[J]. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1971, 22: 202-205.
[22]
Korenbljum B. A certain extremal property of outer functions[J]. Mat. Zametki., 1971, 10: 53-56.
[23]
Papadimitrakis M, Virtanen J. Hankel and Toeplitz transforms on H1:continuity, compactness and Fredholm properties[J]. Integ. Equ. Oper. The., 2008, 61: 573-591. DOI:10.1007/s00020-008-1609-2