Denote by $ {\mathbb T} $ the boundary of the open unit disk $ {\mathbb{D}} $ in the complex plane $ {\mathbb{C}} $. Let $ H({\mathbb{D}}) $ be the space of analytic functions in $ {\mathbb{D}} $. For $ 0<p<\infty $, the Hardy space $ H^p({\mathbb{D}}) $ consists of functions $ f\in H({\mathbb{D}}) $ such that
Let $ H^\infty $ be the space of bounded analytic function on $ {\mathbb{D}} $ consisting of functions $ f\in H({\mathbb{D}}) $ with
We refer to [1, 2] for $ H^p $ and $ H^\infty $ spaces.
For $ \lambda\in (0, 1] $, denote by $ {\mathcal L}^{2, \lambda}({\mathbb T}) $ the Morrey space of all Lebesgue measurable functions $ f $ on $ {\mathbb T} $ that satisfy
where $ |I| $ denotes the length of the arc $ I $ and
Clearly, $ {\mathcal L}^{2, 1}({\mathbb T}) $ coincides with $ {\rm BMO}({\mathbb T}) $, the space of functions with bounded mean oscillation on $ {\mathbb T} $ (cf. [3, 4]). Similar to a norm on $ {\rm BMO}({\mathbb T}) $ given in [4, p. 68], a norm on $ {\mathcal L}^{2, \lambda}({\mathbb T}) $ can be defined by
From Xiao's monograph [5, p. 52],
It is well known that if $ f\in H^2 $, then its non-tangential limit $ f(\zeta) $ exists almost everywhere for $ \zeta\in {\mathbb T} $. For $ \lambda\in (0, 1] $, the analytic Morrey space $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $ is the set of $ f\in H^2 $ with $ f(\zeta)\in {\mathcal L}^{2, \lambda}({\mathbb T}) $. It is clear that $ {\mathcal L}^{2, 1}({\mathbb{D}}) $ is $ {\rm BMOA} $, the analytic space of functions with bounded mean oscillation (cf. [3, 4]). For $ \lambda\in (0, 1] $, $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $ is located between $ {\rm BMOA} $ and $ H^2 $. It is worth mentioning that there exists a isomorphism relation between analytic Morrey spaces and Möbius invariant $ {\mathcal{Q}}_p $ spaces via fractional order derivatives of functions (see [6]). Recall that for $ 0< p<\infty $, a function $ f\in H({\mathbb{D}}) $ belongs to the space $ {{\mathcal{Q}}_p} $ if
where $ dA $ is the area Lebesgue measure on $ {\mathbb{D}} $ and ${\sigma _a}(z) = \frac{{a - z}}{{1 - \bar az}}$ is the Möbius transformation of the unit disk $ {\mathbb{D}} $ interchanging $ a $ and $ 0 $. See [5,7 ] for a general exposition on $ {\mathcal{Q}}_p $ spaces. Recently, the interest in $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $ spaces grew rapidly (cf. [8-13]).
An important problem of studying function spaces is to characterize the multipliers of such spaces. For a Banach function space $ X $, denote by $ M(X) $ the class of all multipliers on $ X $. Namely,
Bao and Pau [14] characterized boundary multipliers of $ {\mathcal{Q}}_p $ spaces. Stegenga [15] described multipliers of $ {\rm BMO}({\mathbb T}) $ which is equal to $ {\mathcal L}^{2, 1}({\mathbb T}) $. It is natural to consider multipliers of $ {\mathcal L}^{2, \lambda}({\mathbb T}) $ with $ \lambda \in (0, 1) $ in this paper.
Given a function $ \varphi\in L^{2}({\mathbb T}) $. Let $ T_{\varphi} $ be the Toeplitz operator on $ H^2 $ with symbol $ \varphi $ defined by
For the study of Toeplitz operators on Hardy spaces and Bergman spaces, see, for example, [16, 17]. We refer to [9] for the results of Toeplitz operators on $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $ spaces.
The aim of this paper is to consider boundary multiplies and Toeplitz operators associated with analytic Morrey spaces. In Section 2, using a characterization of $ {\mathcal L}^{2, \lambda}({\mathbb T}) $ in terms of functions with absolute values, we characterize the multipliers of $ {\mathcal L}^{2, \lambda}({\mathbb T}) $. In Section 3, we characterize the boundedness and compactness of Toeplitz operators from Hardy spaces to analytic Morrey spaces.
Throughout this paper, we write $ a\lesssim b $ if there exists a constant $ C $ such that $ a\leq Cb $. Also, the symbol $ a\thickapprox b $ means that $ a\lesssim b\lesssim a $.
By the study of certain integral operators on analytic Morrey spaces, Li, Liu and Lou [8] proved that $ M(\mathcal{L}^{2, \lambda}({\mathbb{D}})) = H^\infty $. In this section, applying a characterization of $ \mathcal{L}^{2, \lambda}({\mathbb T}) $ in terms of absolute values of functions, we characterize $ M(\mathcal{L}^{2, \lambda}({\mathbb T})) $, boundary multiplies of analytic Morrey spaces.
Given $ f\in L^2({\mathbb T}) $, let $ \widehat{f} $ be the Poisson extension of $ f $. Namely,
where
Let $ 0<\lambda<1 $. From [5, p.52], $ f\in \mathcal{L}^{2, \lambda}({\mathbb T}) $ if and only if
where $ \nabla $ is the Laplace operator. Also, $ f\in \mathcal{L}^{2, \lambda}({\mathbb{D}}) $ if and only if
We need the following useful inequality (see [18, Lemma 2.5]).
Lemma A Suppose that $ s>-1 $, $ r $, $ t\geq 0 $, and $ r+t-s>2 $. If $ t<s+2<r $, then
for all $ z $, $ \zeta\in {\mathbb{D}} $.
Now we characterize $ \mathcal{L}^{2, \lambda}({\mathbb T}) $ via absolute values of functions as follows. See [9] for the analytic version of the following result.
Theorem 2.1 Let $ 0<\lambda<1 $ and $ f\in L^2({\mathbb T}) $. Then $ f\in \mathcal{L}^{2, \lambda}({\mathbb T}) $ if and only if
Proof Let $ f\in L^2({\mathbb T}) $. It is well known (cf. [19, p. 564]) that
for all $ z\in {\mathbb{D}} $. Combining this with the Fubini theorem, we obtain that for any $ a\in {\mathbb{D}} $,
By Lemma A and the same argument in [19, p. 563], we get that
Thus,
for all $ a\in {\mathbb{D}} $.
Let
From (1) and (3), we get that $ f\in\mathcal{L}^{2, \lambda}({\mathbb T}) $.
On the other hand, let $ f\in\mathcal{L}^{2, \lambda}({\mathbb T}) $. Without loss of generality, we may assume that $ f $ is real valued. Denote by $ \widetilde{f} $ the harmonic conjugate function of $ \widehat{f} $. Set $ g = \widehat{f}+i\widetilde{f} $. The Cauchy-Riemann equations give $ |\nabla \widehat{f}(z)|\thickapprox |g'(z)| $. Thus $ g\in \mathcal{L}^{2, \lambda}({\mathbb{D}}) $. By the growth estimates of functions in $ \mathcal{L}^{2, \lambda}({\mathbb{D}}) $ (cf. [8, Lemma 2]), one gets that
for all $ z\in {\mathbb{D}} $. Consequently,
Combining this with (2.3), $ f\in\mathcal{L}^{2, \lambda}({\mathbb T}) $, we get that
The proof is completed.
Denote by $ L^\infty({\mathbb T}) $ the space of essentially bounded measurable functions on $ {\mathbb T} $. Using Theorem 2.1, we characterize multipliers of $ \mathcal{L}^{2, \lambda}({\mathbb T}) $ as follows.
Theorem 2.2 Let $ 0<\lambda<1 $. Then $ M(\mathcal{L}^{2, \lambda}({\mathbb T})) = L^\infty({\mathbb T}) $.
Proof Let $ f\in L^\infty({\mathbb T}) $ and $ g\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. From Theorem 2.1, one gets that
Applying Theorem again, we know that $ fg\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. Thus $ L^\infty({\mathbb T})\subseteq M(\mathcal{L}^{2, \lambda}({\mathbb T})) $.
On the other hand, let $ f\in M(\mathcal{L}^{2, \lambda}({\mathbb T})) $. By the closed graph theorem, there exists a positive constant $ C $ such that $ |||fg|||_{\mathcal{L}^{2, \lambda}({\mathbb T})}\leq C |||g|||_{\mathcal{L}^{2, \lambda}({\mathbb T})} $ for any $ g\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. Set $ h = f/C $. Clearly, $ h\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. We deduce that $ |||h^n|||_{\mathcal{L}^{2, \lambda}({\mathbb T})}\leq |||h|||_{\mathcal{L}^{2, \lambda}({\mathbb T})} $ for all positive integer $ n $. As mentioned in Section 1, $ \mathcal{L}^{2, \lambda}({\mathbb T}) \subseteq L^2({\mathbb T}) $. Form the closed graph theorem again, there exists a positive constant $ C_1 $ satisfying
for all $ f\in \mathcal{L}^{2, \lambda}({\mathbb T}) $. Consequently,
Since $ n $ is arbitrary, we know that $ h\in L^\infty({\mathbb T}) $. Hence $ f\in L^\infty({\mathbb T}) $. The proof is completed.
In this section, we characterize the boundedness and compactness of Toeplitz operators from the Hardy space $ H^p $ to the analytic Morrey space $ \mathcal{L}^{2, 1-\frac{2}{p}}(\mathbb{D}) $ for $ 2<p<\infty $. Toeplitz operators on analytic Morrey spaces were investigated in [9]. We refer to [8] for the study of some integral operators from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}(\mathbb{D}) $ for $ 2<p<\infty $.
Following [9], we use a norm of $ {\mathcal L}^{2, \lambda}({\mathbb{D}}) $, $ \lambda\in (0, 1) $, defined by
The following well-known lemma can be found in [17].
Lemma B Suppose $ s>0 $ and $ t>-1 $. Then there exists a positive constant $ C $ such that
for all $ z\in {\mathbb{D}} $.
Applying some well-known results of Toeplitz operators and composition operators on Hardy spaces, we characterize the boundedness of $ T_{\varphi} $ from Hardy spaces to analytic Morrey spaces as follows.
Theorem 3.3 Let $ 2<p<\infty $ and $ \varphi \in L^2({\mathbb T}) $. Then the Toeplitz operator $ T_{\varphi} $ is bounded from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb T}) $ if and only if $ \varphi\in L^{\infty}({\mathbb T}) $.
Proof Suppose that $ T_{\varphi} $ is bounded from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}}) $. For $ b\in {\mathbb{D}} $, let
Note that $ p>2 $. By the well known estimates in [20, p. 9], one gets that
Thus functions $ f_{b} $ belong to $ H^{p} $ uniformly for all $ b\in {\mathbb{D}} $. Consequently,
Note that
Thus $ \sup\limits_{b\in {\mathbb{D}}}|\hat{\varphi}(b)|<\infty $. By [1, p. 5], $ \varphi\in L^\infty({\mathbb T}) $.
On the other hand, let $ \varphi\in L^{\infty}({\mathbb T}) $. It is well known that $ T_{\varphi} $ is bounded on $ H^{p} $ (cf. [21-23]). Namely, $ \|T_{\varphi}g\|_{H^p}\lesssim \|\varphi\|_{L^\infty({\mathbb T})}\|g\|_{H^p} $ for all $ g\in H^p $. Let $ f\in H^p $, we deduce that
By the well-known characterization of composition operators on $ H^p $ (cf. [17, Theorem 11.12]), we get that
Note that $ p>2 $. By Lemma B, we get that $ |||T_{\varphi}f|||_{\mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}})}\lesssim\|\varphi\|_{L^{\infty}({\mathbb T})}\|f\|_{H^{p}}. $ The proof is completed.
We characterize the compactness of Toeplitz operators from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb T}) $ as follows.
Theorem 3.4 Let $ 2<p<\infty $ and $ \varphi \in L^\infty({\mathbb T}) $. Then the Toeplitz operator $ T_{\varphi} $ is compact from $ H^p $ to $ \mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}}) $ if and only if $ \varphi = 0 $.
Proof It suffices to prove the necessity. Let $ \{a_{n}\}_{n = 1}^\infty\subseteq {\mathbb{D}} $ be a sequence such that $ |a_{n}|\rightarrow 1 $ as $ n\rightarrow \infty $. Set
As explained in the proof of Theorem 3.3, $ \sup\limits_n \|f_{n}\|_{H^{p}}<\infty $. Clearly, $ f_{n}\rightarrow 0 $ uniformly on compact subsets of $ {\mathbb{D}} $ as $ n\rightarrow \infty $. Since $ T_{\varphi} $ is compact, we get that
By the proof of Theorem 3.3, one gets that $ |\hat{\varphi}(a_{n})|\lesssim \|T_{\varphi}f_{n}\|_{\mathcal{L}^{2, 1-\frac{2}{p}}({\mathbb{D}})} $ for all $ n $. Consequently, $ |\hat{\varphi}(a_{n})|\rightarrow 0, \ \ n\rightarrow \infty. $ Since $ a_{n} $ is arbitrary and $ \hat{\varphi} $ is harmonic, by the maximum principle, $ \hat{\varphi}\equiv0 $ on $ {\mathbb{D}} $. Hence $ \varphi = 0 $ on $ {\mathbb T} $. We finish the proof.