数学杂志  2019, Vol. 39 Issue (2): 171-178   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LIU Yong-hong
WANG Wei-na
A LIMINF RESULT FOR LÉVY'S MODULUS OF CONTINUITY OF A FRACTIONAL BROWNIAN MOTION
LIU Yong-hong, WANG Wei-na    
School of Mathematics and Computing Science, Guilin University of Electronic Technology; Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin 541004, China
Abstract: In this paper, we investigate functional limit for Lévy's modulus of continuity of a fractional Brownian motion. By using large deviation and small deviation for Brownian motion, a liminf for Lévy's modulus of continuity of a fractional Brownian motion is obtained, which extends the corresponding result of Brownian motion.
Keywords: fractional Brownian motion     Lévy's modulus of continuity     liminf result    
分数Brown运动Lévy连续模的一个Liminf结果
刘永宏, 王为娜    
桂林电子科技大学数学与计算科学学院; 广西高校数据分析与计算重点实验室, 广西 桂林 541004
摘要:本文研究了分数Brown运动Lévy连续模的泛函极限.利用分数Brown运动的大偏差与小偏差,得到了分数Brown运动Lévy连续模的一个Liminf.推广了Brown运动的相应结果.
关键词分数Brown运动    Lévy连续模    liminf结果    
1 Introduction and Main Result

Let $ \{X(t); t\geq 0\} $ be a standard $ \alpha $-fractional Brownian motion with $ 0<\alpha<1 $ and $ X(0) = 0 $. The $ \{X(t); t\geq 0\} $ has a covariance function

$ R(s, t) = E(X(s)X(t)) = \frac{1}{2}(s^{2\alpha}+t^{2\alpha}-|s-t|^{2\alpha}) $

for $ s, t\geq 0 $, and representation

$ X(t) = \int_{R^1}\frac{1}{k_\alpha}\left\{|x-t|^{(2\alpha-1)/2}-|x|^{(2\alpha-1)/2}\right\}dB(x), $

where

(i) $ k_{\alpha}^2 = \int_{R^1}\left\{|x-t|^{(2\alpha-1)/2}-|x|^{(2\alpha-1)/2}\right\}^2dx, $

(ii) $ \{B(t); -\infty<t<+\infty\} $ is a Brownian motion,

(iii) $ \frac{1}{k_\alpha}\left\{|x-t|^{(2\alpha-1)/2}-|x|^{(2\alpha-1)/2}\right\} $ is interpreted to be $ I_{(0, t]} $ when $ \alpha = \frac{1}{2}. $

$ \{X(t); t\geq 0\} $ has stationary increments with $ E(X(s+t)-X(s))^2 = t^{2\alpha}, s, t\geq 0 $ and is a standard Brownian motion when $ \alpha = \frac{1}{2}. $

Let $ C_0[0, 1] $ be the space of continuous functions from $ [0, 1] $ to $ R $ with value zero at the origin, endowed with usual norm $ \|f\| = \sup\limits_{0\le t\le 1}|f(t)| $, and

$ H = \bigg\{f\in C_0[0, 1]: f\hbox{ is an absolutely continuous function}, \|f\|_H^2 = \int^1_0(\dot{f}(s))^2ds<\infty\bigg\}. $

Then $ H $ is a Hilbert space with respect to the scalar product

$ \langle f, g\rangle = \int^1_0\dot{f}(x)\dot{g}(x)dx \; \; \; \mbox{for}\; \; \; f, g \in H. $

Define a mapping $ I:C_0[0, 1]\to [0, \infty] $ by

$ \begin{equation} I(f) = \left \{ \begin{array}{ll} \frac{1}{2} \int_0^1|\dot{f}(t)|^2dt, & \quad f\in H, \\ +\infty, & \quad \text{otherwise.} \end{array} \right. \end{equation} $ (1.1)

The limit set associated with functional laws of the iterated logarithm for $ \{X(t); t\geq 0\} $ is $ K_\alpha $, the subset of functions in $ C_0[0, 1] $ with the form

$ f(t) = \int_{R^1}\frac{1}{k_\alpha}\{|x-t|^{(2\alpha-1)/2}-|x|^{(2\alpha-1)/2}\}g(x)dx, \; \; \; 0\le t\le 1, $

here the function $ g(x) $ ranges over the unit ball of $ L^2(R^1) $, and hence $ \int_{R^1}g^2(s)ds\le 1 $. The subset $ K $ of $ C_0[0, 1] $ is defined by

$ K = \{f\in H: f\in K_\alpha, 2I(f)\le 1\}. $

For $ 0<h<1 $, $ 0\le s\le 1, 0\leq t\leq 1 $, let

$ l(h) = (2h^{2\alpha}\log(h^{-1}))^{\frac{1}{2}}, \; \; \Delta(t, h)(s) = X(t+hs)-X(t). $

In [1], Monrad and Rootzén gave a Chung's functional law of the iterated logarithm for fractional Brownian motion, as follows, for any $ f\in K $, $ \langle f, f\rangle<1 $,

$ \liminf\limits_{t\to 0}(\log\log t^{-1})^{\alpha+1/2}\bigg\|\frac{X(t\cdot)}{(2t^{2\alpha}\log\log t^{-1})^{1/2}}-f\bigg\| = \gamma(f)\; \; \; {\rm a.s.}, $

where $ \gamma(f) $ is a constant satifying $ 2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\le \gamma(f)\le 2^{-1/2}C^{\alpha}(1-\langle f, f\rangle)^{-\alpha} $, $ c, C $ denote the positive constants in (2.13) of [1].

Inspired by the arguments of Monrad and Rootzén, in the present paper, we obtain a liminf result for Lévy's modulus of continuity of a fractional Brownian motion. The main result is stated as follows.

Theorem 1.1 For each $ f\in K $ with $ \langle f, f\rangle<1 $, then

$ \begin{equation} \liminf\limits_{h\rightarrow 0}(\log h^{-1})^{\alpha+\frac{1}{2}} \inf\limits_{t\in [0, 1]}\bigg\|\frac{\Delta(t, h)}{l(h)}-f\bigg\| = b(f)\quad {\rm a.s.}, \end{equation} $ (1.2)

where $ b(f) $ is a constant satisfying

$ 2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\leq b(f)\leq 2^{-1/2}C^{\alpha}(1-\langle f, f\rangle)^{-\alpha}, $

here $ c $ and $ C $ denote the positive constants in (2.13) of [1].

Remark When $ \alpha = \frac{1}{2} $, $ \{X(t); t\geq 0\} $ is a standard Brownian motion, in this case $ c = C = \frac{\pi^2}{8} $, the result in Theorem 1.1 is the exact approximation rate on the modulus of continuity for Brownian motion.

2 Some Lemmas

Our proofs are based on the following lemmas.

In order to prove (3.1) below, we need the following Lemma 2.1.

Lemma 2.1 (see (3.14) of [2]) \label{lem1} Let $ \{X(t);t\ge 0\} $ be fractional Brownian motion as above, $ \sigma^2(u) = E(X(t+u)-X(t))^2 $, we have that for any $ \varepsilon>0 $, there exists a positive constant $ k_0 = k_0(\varepsilon) $ such that

$ \begin{align*} P\left(\sup\limits_{0\le t\le T}\sup\limits_{0\le s\le u}|X(t+s)-X(t)|\ge (1+\varepsilon) x \sigma(u)\right) \le \frac{k_0T}{u}\exp\left(-\frac{x^2}{2}\right) \end{align*} $

for any $ T, 0<u\le T $ and $ x\ge x_0 $ with some $ x_0>0 $.

In order to prove (6) below, we need the following Lemma 2.2 and Lemma 2.3.

Lemma 2.2 (see Lemma 2.3 in [3]) Let $ 0<\alpha<1, 0\le q_0<1 $ and fix $ 0<q_0<q<\alpha $. Let $ d_k = k^{k+(1-r)} $, $ s_k = k^{-k} $ for $ k\ge 1 $ and $ 0<r<1 $. Let

$ \begin{equation} Y_k(s_k, t) = \int_{|x|\notin I_k}\frac{1}{k_\alpha}\left\{|x-s_kt|^{(2\alpha-1)/2}-|x|^{(2\alpha-1)/2}\right\}dB(x), \; \; \; \; 0\le t\le 1, \end{equation} $ (2.1)

where $ I_k = (s_kd_{k-1}, s_kd_r] $. Let $ 0<\beta<r $. Then, for

$ \delta = \min\{2\beta(\alpha-q), r-\beta, (1-r)(2-2\alpha), (2\alpha-2q)r\}, $

there is a constant $ C'>0 $ depending only on $ \alpha $ such that uniformly in $ t, u, k $,

$ \begin{equation} \sigma_k^2(t, u) = E\{[Y_k(s_k, t+u)-Y_k(s_k, t)]^2\}\le C'u^{2q}s_k^{2\alpha} k^{-\delta}. \end{equation} $ (2.2)

Lemma 2.3 Let $ \{\Gamma(t): t\ge 0\} $ be a centred Gaussian process with stationary increments and $ \Gamma(0) = 0 $. We assume that $ \sigma^2(u) = E(\Gamma(t+u)-\Gamma(t))^2. $ Let $ T>0 $, we have, for $ x $ large enough, any $ \varepsilon>0 $,

$ P\left\{\sup\limits_{0\le s\le T}|\Gamma(s)|>x\sigma(T)\right\}\le C_1\exp\left(-\frac{x^2}{2+\varepsilon}\right), $

where $ C_1>0 $ is a constant.

Proof This conclusion is from page 49 in [4].

3 The Proof of Theorem 1.1

We only need to show the following two claims:

$ \begin{eqnarray} &&\liminf\limits_{h\rightarrow 0}\left(\log h^{-1}\right)^{\alpha+\frac{1}{2}} \inf\limits_{t\in [0, 1]}\|\frac{\Delta(t, h)}{l(h)}-f\| \geq 2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\quad {\rm a.s.}, \end{eqnarray} $ (3.1)
$ \begin{eqnarray} &&\liminf\limits_{h\to 0}\left(\log h^{-1}\right)^{\alpha+\frac{1}{2}}\inf\limits_ {t\in [0, 1]}\|\frac{\Delta(t, h)}{l(h)}-f\|\leq 2^{-1/2}C^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\quad{{\rm a.s.}}. \end{eqnarray} $ (3.2)

3.1 The Proof of (3.1)

Let $ h_n = n^{-d} $, $ \rho(h) = h(\log h^{-1})^{-3-\frac{1}{\alpha}} $. We further set $ k_n = [\frac{1}{\rho(h_{n})}] $, $ t_i = i\rho(h_{n}), i = 0, 1, \cdots, k_n $. Then

$ \begin{equation} \begin{aligned} &\min\limits_{0\leq i\leq k_n+1}\|\frac{\Delta(t_i, h_n)}{l(h_n)}-f\|\\ \leq & 2\sup\limits_{t\in [0, 2]}\sup\limits_{s\in [0, \rho(h_n)]}\frac{|X(t+s)-X(t)|}{l(h_n)} +\inf\limits_{t\in[0, 1]}\|\frac{\Delta(t, h_n)}{l(h_n)}-f\|. \end{aligned} \end{equation} $ (3.3)

For any $ 0<\varepsilon <1 $, choose $ \delta>0 $, such that $ \eta = -\delta+ \langle f, f\rangle+\frac{1-\langle f, f\rangle }{(1-\varepsilon)^{1/\alpha}}>1 $. Then we have

$ \begin{aligned} & P\left(\left(\log h_n^{-1}\right)^{\alpha+\frac{1}{2}}\min\limits_{0\leq i\leq k_n+1}\| \frac{\Delta(t_i, h_n)}{l(h_n)}-f\|\leq (1-\varepsilon )2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\right)\\ \leq & \sum _{0\leq i\leq k_n+1}P\left(\left(\log h_n^{-1}\right)^{\alpha+\frac{1}{2}}\| \frac{\Delta(t_i, h_n)}{l(h_n)}-f\|\leq (1-\varepsilon)2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\right)\\ \leq &(2+k_n)P\left(\left\|\frac{X(h_n\cdot)}{h_n^{\alpha}} -(2\log h_n^{-1})^{\frac{1}{2}}f\right\| \leq \sqrt{2}(\log h_n^{-1})^{-\alpha}(1-\varepsilon)2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\right).\\ \end{aligned} $

By Proposition 4.2 in [1], we have for any $ \delta>0 $ and $ n $ large enough

$ \begin{aligned} &\left(\log h_n^{-1}\right)^{-1}\log P\left(\left\|\frac{X(h_n\cdot)}{h_n^{\alpha}} -(2\log h_n^{-1})^{\frac{1}{2}}f\right\| \leq\sqrt{2}(\log h_n^{-1})^{-\alpha}(1-\varepsilon)2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\right)\\ \leq&\left(\log h_n^{-1}\right)^{-1}\log P\left(\left\|\frac{X(h_n\cdot)}{h_n^{\alpha}}\right\| \leq \sqrt{2}(\log h_n^{-1})^{-\alpha}(1-\varepsilon)2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\right)-\langle f, f\rangle+\delta.\\ \end{aligned} $

By Corollary 2.2 in [1],

$ \begin{aligned} &\left(\log h_n^{-1}\right)^{-1}\log P\left(\left\|\frac{X(h_n\cdot)}{h_n^{\alpha}}\right\| \leq \sqrt{2}(\log h_n^{-1})^{-\alpha}(1-\varepsilon)2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\right)-\langle f, f\rangle+\delta\\ \leq&\left(\log h_n^{-1}\right)^{-1}\left(-2^{-1/(2\alpha)}c(1-\varepsilon)^{-1/\alpha}(2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha})^{-1/\alpha}\log h_n^{-1}\right) -\langle f, f\rangle +\delta = -\eta. \end{aligned} $

Thus

$ \begin{aligned} & P\left(\left(\log h_n^{-1}\right)^{\alpha+\frac{1}{2}}\min\limits_{0\leq i\leq k_n+1}\| \frac{\Delta(t_i, h_n)}{l(h_n)}-f\|\leq (1-\varepsilon )2^{-1/2}c^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\right)\\ \leq &\frac{2+\rho(h_{n})}{\rho(h_{n})}h_n^{\eta}.\\ \end{aligned} $

Choose $ d>(\eta-1)^{-1} $, then

$ \sum\limits_{n = 1}^\infty\left(1+\frac{2}{\rho(h_{n})}\right)h_n^{\eta}<\infty, $

which implies, by the Borel-Cantelli lemma,

$ \begin{equation} \mathop{\liminf}\limits_{n\rightarrow\infty}\left(\log h_n^{-1}\right)^{\alpha+\frac{1}{2}} \mathop{\min}\limits_{0\leq i\leq k_n+1 }\|\frac{X(t_i+h_n\cdot)-X(t_i)}{l(h_n)}-f\|\geq \frac{2^{-1/2}c^{\alpha}}{(1-\langle f, f\rangle)^{\alpha}}\; \; {\rm a.s.}. \end{equation} $ (3.4)

On the other hand, for any $ \delta>0 $,

$ \begin{align*} &P\bigg(\left(\log h_n^{-1}\right)^{\alpha+\frac{1}{2}}\sup\limits_{0\leq t\leq 2}\sup\limits_{0\leq s \leq \rho(h_{n})}\frac{|X(t+s)-X(t)|}{l(h_n)}\geq \delta\bigg)\\ = &P\bigg(\left(\frac{(\log h_n^{-1})^{\alpha}}{\sqrt{2}h_n^{\alpha}}\right)\sup\limits_{0\leq t \leq 2}\sup\limits_{0\leq s\leq \rho(h_{n})}|X(t+s)-X(t)|\geq \delta\bigg)\\ = &P\bigg(\left(\log h_n^{-1}\right)^{-2\alpha-1}\sup\limits_{0\leq t\leq \frac{{2}}{\rho(h_{n})}}\sup\limits_{0\leq s\leq 1}|X(t+s)-X(t)|\geq\sqrt{2} \delta \bigg) \\\leq& \frac{2+\rho(h_{n})}{\rho(h_{n})} P\bigg(\left(\log h_n^{-1}\right)^{-2\alpha-1}\sup\limits_{0\leq t \leq 1}\sup\limits_{0\leq s\leq 1}|X(t+s)-X(t)|\geq \sqrt{2}\delta\bigg)\\ = &\frac{2+\rho(h_{n})}{\rho(h_{n})}P\bigg(\sup\limits_{0\leq t\leq 1}\sup\limits_{0\leq s\leq 1}|X(t+s)-X(t)|\geq 2\delta\left(\log h_n^{-1}\right)^{2\alpha+1}\bigg). \end{align*} $

By Lemma 2.1, we have that for any $ \varepsilon>0 $, there exists a positive $ k_0 = k_0(\varepsilon) $ such that

$ \begin{align*} &P\bigg(\sup\limits_{0\leq t\leq 1}\sup\limits_{0\leq s\leq 1}|X(t+s)-X(t)|\geq \sqrt{2}\delta\left(\log h_n^{-1}\right)^{4\alpha+2}\bigg)\\ \leq& k_0\exp\left(-\left(\frac{\delta}{(1+\varepsilon)}\right)^2\left(\log h_n^{-1}\right)^{4\alpha+2}\right). \end{align*} $

Taking into account $ \log h_n^{-1}\rightarrow\infty $ as $ n\rightarrow\infty $, we have

$ k_0\sum\limits_{n = 1}^\infty \frac{2+\rho(h_{n})}{\rho(h_{n})}h_n^{\left(\frac{\delta}{(1+\varepsilon)}\right)^2 \left(\log h_n^{-1}\right)^{4\alpha+1}}<\infty. $

By the Borel-Cantelli lemma,

$ \begin{equation} \limsup\limits_{n\rightarrow\infty}\left(\log h_n^{-1}\right)^{\alpha+\frac{1}{2}}\sup\limits_{0\leq t\leq 2}\sup\limits_{0\leq s\leq \rho(h_{n})}\frac{|X(t+s)-X(t)|}{l(h_n)} = 0\; \; {\rm a.s.}. \end{equation} $ (3.5)

By (3.3)–(3.5), we get

$ \begin{equation} \lim\limits_{n\to \infty}\left(\log h_n^{-1}\right)^{\alpha+\frac{1}{2}} \inf\limits_{t\in[0, 1]}\|\frac{X(t+h_n\cdot)-X(t)}{l(h_n)}-f\|\geq \frac{2^{-1/2}c^{\alpha}}{(1-\langle f, f\rangle)^\alpha}\; \; {\rm a.s.}. \end{equation} $ (3.6)

Remark that $ h_n $ is ultimately strictly decreasing to 0, so for any small $ h $, there is a unique $ n $ such that $ h\in(h_{n+1}, h_{n}]. $ Let $ \phi_{t, h}(s) = \frac{X(t+hs)-X(t)}{l(h)}, s\in [0, 1], t\in[0, 1] $. We define

$ \xi(h) = (\log h^{-1})^{\frac{1}{2}+\alpha}\mathop{\inf}\limits_{t\in [0, 1]} \|\phi_{t, h}(\cdot)-f(\cdot)\|, \; \; \xi_n = \mathop{\inf}\limits_{h_{n+1}\leq h\leq h_{n}}\xi(h). $

By the definition of infimum, for any $ \varepsilon>0 $, there exists $ h_n'\in (h_{n+1}, h_{n}] $ such that $ \xi_n\geq \xi(h_n')-\varepsilon. $

For any $ r\in[0, 1] $, let $ x = \frac{rh_{n+1}}{h_n'} $. Then we have $ 0\leq x\leq 1, $

$ \begin{equation} \begin{aligned} &\inf\limits_{t\in [0, 1]} \|\frac{X(t+h_{n+1}\cdot)-X(t)}{l(h_{n+1})}-f\|\\ = & \inf\limits_{t\in [0, 1]}\sup\limits_{0\leq r\leq 1}|\phi_{t, h_{n+1}}(r)-f(r)|\\ \le& \inf\limits_{t\in [0, 1]}\sup\limits_{0\leq x\leq 1}\left|\phi_{t, h_{n+1}}(\frac{h'_n}{h_{n+1}}x)-f(\frac{h'_n}{h_{n+1}}x)\right|\\ \leq& (l(h_{n+1}))^{-1}l(h_n')(\log h_n'^{-1})^{-\alpha-\frac{1}{2}}\xi(h_n')+ \left\|\frac{l(h_{n})}{l(h_{n+1})}-1\right|\|f(\cdot)\|+\left\|f(\cdot)- f(\frac{h'_n}{h_{n+1}}\cdot)\right\|. \end{aligned} \end{equation} $ (3.7)

Noting that

$ \begin{eqnarray} &&\|f(\frac{h_n'}{h_{n+1}}\cdot)-f(\cdot)\|\le \sqrt{1-\frac{h_{n+1}}{h_n}}\le\sqrt{1-(1-\frac{1}{n+1})^d}, \end{eqnarray} $ (3.8)
$ \begin{eqnarray} &&\left|\frac{l(h'_n)}{l(h_{n+1})}-1\right|\le (1+\frac{1}{n})^{d\alpha/2}-1. \end{eqnarray} $ (3.9)

By (3.6)–(3.9), we have

$ \begin{equation*} \begin{aligned} \liminf\limits_{n\to \infty}\xi(h'_n)\ge \frac{2^{-1/2}c^{\alpha}}{(1-\langle f, f\rangle)^\alpha}\; \; {\rm a.s.}. \end{aligned} \end{equation*} $

Since $ \liminf\limits_{h\to 0}\xi(h)\geq\liminf\limits_{n\to \infty}\xi_n\geq\liminf\limits_{n\to \infty}\xi(h'_n)-\varepsilon, $ which ends the proof.

3.2 The Proof of (3.2)

Note that

$ \liminf\limits_{h\to 0}\left(\log h^{-1}\right)^{\alpha+\frac{1}{2}}\inf\limits_{t\in [0, 1]}\| \frac{\Delta(t, h)}{l(h)}-f\|\leq \liminf\limits_{h\to 0}\left(\log h^{-1}\right)^{\alpha+\frac{1}{2}}\|\frac{X(h\cdot)}{l(h)}-f\|\quad{{\rm a.s.}}, $

then it is sufficient to show that

$ \begin{align} \liminf\limits_{n\to \infty}\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|\frac{X(h_n\cdot)}{l(h_n)}-f\|\leq 2^{-1/2}C^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\quad{{\rm a.s.}, } \end{align} $ (3.10)

where $ h_n = \frac{1}{n} $.

For $ r = 1, 2, 3, \cdot\cdot\cdot, $ we define

$ \begin{eqnarray} &&Z_r(t) = \int_{|x|\in(d_{r-1}, d_r]}\frac{1}{k_\alpha}\left\{|x-t|^{(2\alpha-1)/2}-|x|^{(2\alpha-1)/2}\right\}dB(x), \end{eqnarray} $ (3.11)
$ \begin{eqnarray} &&\tilde{X}_r(t) = X(t)-Z_r(t) \end{eqnarray} $ (3.12)

for $ 0\le t\le 1, d_r = r^{r+(1-\gamma)}, s_r = r^{-r}, 0<\gamma<1 $. Then $ \{Z_r(\cdot)\}, r = 1, 2, \cdot\cdot\cdot $ are independent and

$ \begin{equation} \{s_r^\alpha\tilde{X}_r(\cdot)\} \mathop{ = }\limits^{\mathcal{D}}\{Y_r(s_r, \cdot)\}, \end{equation} $ (3.13)

where $ {Y_r(s_r, \cdot)} $ is as in Lemma 2.2.

In order to prove (14), we need to prove that for any $ \varepsilon>0 $,

$ \begin{equation} \sum\limits_{n = 1}^\infty P\left\{\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|\frac{Z_n(h_n\cdot)}{l(h_n)}-f\|\leq (1+\varepsilon)2^{-1/2}C^{\alpha}(1-\langle f, f\rangle)^{-\alpha}\right\} = \infty \end{equation} $ (3.14)

and

$ \begin{equation} \sum\limits_{n = 1}^\infty P\left\{\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|\frac{\tilde{X}_n(h_n\cdot)}{l(h_n)}\|\geq \varepsilon\right\}<\infty. \end{equation} $ (3.15)

First of all, we prove (3.15).

Now using the argument as in Lemma 2.2, we have

$ \sigma^2_n(t, u) = E(Y_n(s_n, t+u)-Y_n(s_n, t))^2\le C'u^{2q}s_n^{2\alpha}n^{-\delta}, $

where $ q, \delta $ are as in Lemma 2.2. For any $ \varepsilon>0 $, we have, by Lemma 2.3,

$ \begin{equation} \begin{aligned} &P\left\{\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|\frac{\tilde{X}_n(h_n\cdot)}{l(h_n)}\|\geq \varepsilon\right\}\\ = & P\left\{\|\tilde{X}_n(\cdot)\|\geq\sqrt{2}(\log h_n^{-1})^{-\alpha}\varepsilon\right\}\\ = & P\left\{\sup\limits_{0\le t\le 1}|\tilde{X}_n(t)|\geq\sqrt{2}(\log h_n^{-1})^{-\alpha}\varepsilon\right\}\\ = & P\left\{\sup\limits_{0\le t\le 1}|Y_n(s_n, t)|\geq\sqrt{2}(C'^{1/2} s_n^{\alpha}n^{-\delta/2})C'^{-1/2}(\log h_n^{-1})^{-\alpha}n^{\delta/2}\varepsilon\right\}\\ \le& C_1\exp\left(-\frac{C''n^{\delta}\varepsilon^2}{2+\varepsilon}\left (\log h_n^{-1}\right)^{-2\alpha}\right). \end{aligned} \end{equation} $ (3.16)

Taking $ n $ sufficiently large such that $ \frac{C''n^{\delta/2}\varepsilon^2}{2+\varepsilon}>1 $, we get (19) by the definition of the sequence $ \{h_n:n\ge 1\} $

Second, we prove (3.14).

For any $ \; \varepsilon>0 $, choose $ \delta>0 $, such that $ \eta' = \frac{1-\langle f, f\rangle}{(1+\varepsilon)^{1/\alpha}}+\langle f, f\rangle+\delta<1 $. Let $ \beta = 2^{-1/2}C^{\alpha}(1-\langle f, f\rangle)^{-\alpha} $, then

$ \begin{align*} &P\left\{\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|\frac{Z_n(h_n\cdot)}{l(h_n)}-f\|\leq (1+2\varepsilon)\beta\right\}\\ \geq& P\left\{\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|(2\log h^{-1}_n)^{-1/2}X(\cdot)-f\|\leq (1+\varepsilon)\beta\right\}\\ &-P\left\{\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|(2\log h^{-1}_n)^{-1/2}\tilde{X}_n(\cdot)\|\geq\varepsilon \beta\right\}\\ = :&I_1-I_2. \end{align*} $

By Proposition 4.2 in [1], we have for any $ \delta>0 $ and $ n $ large enough,

$ \begin{aligned} &\left(\log h^{-1}_n\right)^{-1}\log P\left(\left\|X(\cdot) -(2\log h^{-1}_n)^{\frac{1}{2}}f\right\| \leq\sqrt{2}(\log h^{-1}_n)^{-\alpha}(1+\varepsilon)\beta\right)\\ \geq&\left(\log h^{-1}_n\right)^{-1}\log P\left(\left\|X(\cdot)\right\| \leq\sqrt{2}(\log h^{-1}_n)^{-\alpha}(1+\varepsilon)\beta\right)-\langle f, f\rangle-\delta.\\ \end{aligned} $

By Corollary 2.2 in [1],

$ \begin{aligned} &\left(\log h^{-1}_n\right)^{-1}\log P\left(\left\|X(\cdot)\right\| \leq\sqrt{2}(\log h^{-1}_n)^{-\alpha}(1+\varepsilon)\beta\right)-\langle f, f\rangle-\delta\\ \geq&\left(\log h^{-1}_n\right)^{-1}\left(-2^{-\frac{1}{2\alpha}}C(1+\varepsilon)^{-1/\alpha}\beta^{-1/\alpha}\log h^{-1}_n\right) -\langle f, f\rangle -\delta. \end{aligned} $

Thus

$ \begin{aligned} I_1: = P\left\{\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|(2\log h^{-1}_n)^{-1/2}X(\cdot)-f\|\leq (1+\varepsilon)\beta\right\} \geq \bigg(h_n\bigg)^{\eta'}.\\ \end{aligned} $

Similar to the proof of (3.15), we have the following estimate for $ I_2 $,

$ \begin{align*} I_2&: = P\left\{\left(\log h^{-1}_n\right)^{\alpha+\frac{1}{2}}\|(2(\log h^{-1}_n)^{-1/2}\tilde{X}_n(\cdot)\|\geq\varepsilon\beta\right\}\\ & = P\left\{\|\tilde{X}_n(\cdot)\|\geq\sqrt{2}(\log h^{-1}_n)^{-\alpha}\beta\varepsilon\right\}\nonumber\\ & = P\left\{\sup\limits_{0\le t\le 1 }|Y_n(s_n, t)|\geq\sqrt{2}(C'^{1/2}s_n^{\alpha}n^{-\delta/2})C'^{-1/2}(\log h^{-1}_n)^{-\alpha}n^{\delta/2}\beta\varepsilon\right\}\\ &\le C_1\exp\left(-\frac{C''n^{\delta}(2^{-1/2}C^{\alpha}(1-\langle f, f\rangle)^{-\alpha})^2\varepsilon^2}{2+\varepsilon} \left(\log h^{-1}_n\right)^{-2\alpha}\right). \end{align*} $

Thus $ \sum\limits_{n = 1}^\infty I_2<\infty. $ The proof of (3.14) is completed.

References
[1]
Monrad D, Rootzén H. Small values of Gaussian processes and functional laws of the iterated logarithm[J]. Prob. The. Rel. Fields, 1995, 101: 173-192. DOI:10.1007/BF01375823
[2]
Wang W. Functional limit theorems for the increments of Gaussian samples[J]. J. Theor. Prob., 2005, 18(2): 327-343.
[3]
Lin Z Y, Wang W S, Hwang K S. Functional limit theorems for d-dimensional FBM in Hölder norm[J]. Acta Math. Sin., Engl. Ser., 2006, 22(6): 1767-1780. DOI:10.1007/s10114-005-0744-9
[4]
Ortega J. On the size of the increments of nonstationary Gaussian processes[J]. Stoch. Proc. Appl., 1984, 18: 47-56. DOI:10.1016/0304-4149(84)90160-1