本文研究如下一维非线性Klein-Gordon方程Neumann的边值问题的数值解
其中$ \alpha>0 $为常数, $ f(x, t) $, $ g(u) $为满足相容性条件的光滑函数.
Klein-Gordon方程是相对论量子力学和量子场论中用于描述零自旋粒子的自由运动方程, 关于它的数值解法已有不少研究结果.文献[1]基于样条基函数提出了一个数值格式; 四阶紧格式在文献[2]中进行了研究; 基于变分迭代法的数值格式及边界元方法可参见文献[3, 4]; 在文献[5]中导出了以三层样条差分格式逼近非线性Klein-Gordon方程; 无界域上的问题的数值研究可参见文献[6]; 文献[7]中提出了一个基于有限差分和匹配法的新的数值格式; 而文献[8]提出了微分积分法.所有这些文献中的研究都是针对Dirichlet边界条件, 对于Neumann边界条件下的高阶差分格式还没有很好的结果.近年来, 具有Neumann边界条件的热方程的高阶差分格式已有一些研究结果如文献[9, 10, 11].文献[12]研究了Cahn-Hilliard方程Neumann边界条件下的三层线性化紧格式; 文献[13]中建立了哈密尔顿非线性波方程Neumann边界条件下的高阶显格式, 该方法空间方向基于紧格式, 时间方向基于Runge-Kutta-Nystrom方法.通过分析以上文献, 了解到Klein-Gordon方程Neumann边值问题的无条件稳定的高阶差分格式, 目前还没有这方面的结果, 其主要困难是边界点的处理.本文利用Klein-Gordon方程及边界条件可得到在边界处的三阶导数和五阶导数的函数值, 从而建立边界点和内点处的两点和三点紧差分格式, 构造一个紧格式, 并证明差分格式关于时间$ 2 $阶收敛, 关于空间$ 4 $阶收敛.
设问题(1.1)–(1.3)存在光滑解$ u $, 记$ \Omega = [a, b]\times[0, T] $, 本文假设
H1: $ u\in C^{(4, 3)}(\Omega) $, 且存在常数$ C_0 $, 使$ \forall(x, t)\in(\Omega) $有
H2:函数$ g $一阶可导, 且存在正常数$ C $, 使得当$ |s|\leq C_0+1 $时, 有
H3: $ \forall(x, t)\in\Omega $, 且存在常数$ C_1 $, 使$ \max{|\frac{\partial f}{\partial x}(x, t)| = C_1} $.
由(1.1)式中的方程可得
将(2.1)式两边关于$ x $的$ k\; (k = 3, 4, 5) $阶导数, 且由边界条件(1.3)可得
取正整数$ m, n $, 记空间和时间步长分别为$ h = \dfrac{b-a}{m} $, $ \tau = \dfrac{T}{n} $, 记$ x_i = a+ih, \; 0\le i\le m $, $ t_k = k\tau, \; 0\le k\le n $.定义
称$ (x_i, t_k) $为节点, 并设$ \{v_i^k|0\le i\le m, 0\le k\le n\} $为$ \Omega_{h\tau} $上的网格函数, 引进下面的记号
记$ V_h = \{ v|v = \{v_i|0\le i\le m\}\; \mbox{为}\; \Omega_h\; \mbox{上的网格函数}\} $, 设$ v\in V_h $, 引进下列网格函数的模与半模
引理 2.1 [3] 记$ \zeta(s) = (1-s)^3[5-3(1-s)^2], s\in[0, 1] $.
(1) 若$ g(x)\in C^6[x_0, x_1] $, 则有
(2) 若$ g(x)\in C^6[x_{m-1}, x_m] $, 则有
(3) 若$ g(x)\in C^6[x_{i-1}, x_{i+1}], 1\leq i\leq m-1 $, 则有
引理 2.2 [5] 设$ v\in V_h $, 则有$ |v|_1^2\le \dfrac{4}{h^2}\|v\|^2 $, 且对任意$ \varepsilon\!>\!0 $, 有
引理 2.3[14] 设$ h $和$ c $为两个常数, 且$ h>0 $, 若$ g(x)\in C^2[c-h, c+h] $, 则有
引理 2.4 [15] 设$ \{v_i^k|0\le i\le m, 0\le k\le n\} $为$ \Omega_{h\tau} $上的网格函数, 则
引理 2.5 设$ \{v_i^k|0\le i\le m, 0\le k\le n\} $为$ \Omega_{h\tau} $上的网格函数, 记
则当$ 0\le k\le n-1 $时, 有
证 由不等式
易得引理2.5.
记$ U_{i}^{k} = u(x_{i}, t_{k}), \; 0\leq i\leq m, \; 0\leq k\leq n $, 则$ U = [U_i^k|0\leq i\leq m, 0\leq k\leq n] $为定义在$ \Omega_{h\tau} $上的网格函数.再设$ g\in{V_h} $, 定义算子$ \mathscr{P} $:
令$ v = \frac{\partial^2 u}{\partial x^2} $, 记$ V_i^k = v(x_i, t_k), 0\leq i\leq m, \; 0\leq k\leq n $处考虑方程(1.1), 则有
在结点$ (x_i, t_k) $处考虑方程(3.1), 并对两边作用算子$ \mathscr{P} $, 且$ 1\!\leq\! i\!\leq\!m-1\!, \; 0\!\leq\! k\!\leq\!n-1\! $, 可得
根据引理2.1, 边界条件及作用算子$ \mathscr{P} $可得
由Taylor展开知
将(3.6)–(3.7)式带入到(3.2)式, 且$ 0\leq i\leq m-1, 0\leq k \leq n-1, $得到
由(3.3)–(3.5)式求得$ \mathscr{P}V_i^{k+1}, \mathscr{P}V_i^{k-1} $, 将其带入到(3.8)式, 结合(3.7)–(3.8)式和引理2.3得
其中$ |R_i^k|\!\leq\! M_1(\tau^2+h^4), 0\!\leq \! i \!\leq\! m-1, 0\leq\! k\! \leq\! n-1\!, M_1 $为正常数, 由初始条件有$ u(x_i, 0)\! = \!\varphi(x_i), 0\!\leq\! i\!\leq\! m $, 并由(1.1)式且根据带积分余项的Taylor展开式以及初始条件得到
其中
易知$ |r_i^1|\leq M_2\tau^3, M_2 $为正常数, 令
在(3.9)–(3.12)式中分别略去小量项$ R_i^k, r_i^1 $, 并用$ u_i^k $代替$ U_i^k $, 可得如下差分格式
定理1 设$ u(x_i, t_k) $是问题(1.1)–(1.3)式的解, $ \{u_i^k|0\leq i\leq m, 0\leq k\leq n\} $是差分格式的解(3.13)–(3.17)的解, 记$ e_i^k = u(x_i, t_k)-u_i^k $, 则当$ \tau\leq \sqrt\frac{C_0+1}{2\tilde{c}}, h\leq \sqrt\frac{C_0+1}{2\tilde{c}} $时, 有
证 将(3.9)–(3.12)式分别与(3.13)–(3.17)式相减, 且$ 1\leq k\leq n-1, $得到误差方程
令
则有
从而得到$ \!|e_i^1|_1^2\leq c_1^2(b-a)\tau^6\! $, 由$ \!|r_1^1|\leq M_2(\tau^2+h^4)\! $可知$ \|e^1\|^2\leq M_2^2(b-a)\tau^6 $.由引理2.2得到
显然, (4.1)式对于$ k = 1 $成立, 现假设(4.1)式对于$ 1\leq k\leq l $成立, 其中$ 1\leq l\leq \!n-1\! $.下面证明(4.2)式对$ k = l+1 $也成立, 用$ 2h D_{\widehat{t}}e_i^k, hD_{\widehat{t}}e_0^k, hD_{\widehat{t}}e_m^k $, 分别乘方程(4.2)–(4.4)三式, 并关于$ i $从1到$ m-1 $求和, 且将三式相加可得$ J_1+J_2 = J_3 $, 其中
上述$ \beta $为常数, 其中$ a_i^k, b_i^k, c_i^k $如下
则$ J_1+J_2 = J_3 $可写为
记$ \lambda = \frac{3}{4}+\frac{3\beta}{2} $, 且当$ \lambda\tau\leq \frac{1}{2} $时, 则(4.7)式可表示为
令$ F^k = \max (E^k, E^{k-1}, E^{k-2}, \cdots, E^1, E^0) $, 则有
记$ M_4 = 2(2\lambda+3kT^2\beta), M_4 $为正整数, 故$ F^k\leq(1+M_4\tau)F^{k-1}+2\tau\|R^k\|^2 $, 由Granwall不等式可得到
由$ F^k $的定义可知$ F^0 = E^0 $, 则有
取$ M = \max(M_1, M_2, M_3, M_4) $, 并由引理2.5可得
由此可得
由引理2.4和引理2.5可知
由(4.8)–(4.9)两式和引理2.2可知, 对于任意的$ \varepsilon>0 $, 有
其中$ \widetilde{c} $在定理中已经说明, 因此上述结论对于$ l = k+1 $也成立由归纳原理知(4.1)式成立.
类似讨论差分格式的收敛性可以得到差分格式(3.13)–(3.17)式关于初值的稳定性.
定理2 设$ u_i^k, v_i^k $分别是差分格式(3.13)–(3.17)的解, 记$ \varepsilon_i^k = u_i^k-v_i^k $, 假设条件H1, H2, H3成立, 则当$ h, \tau $充分小时, 且$ \; 1\leq k\leq n-1 $时, 有
且$ B_1, B_2 $是与$ h, \tau $无关的正的常数, 证明略.
本节利用构造的差分格式(3.13)–(3.17)计算下面的定解问题
该问题的精确解为$ u(x, t) = (x^2-1)^2\cos{t} $.计算结果见表 6.1和表 6.2.表 6.1给出了在不同步长时某些节点处的误差, 表 6.2给出了不同步长时数值解的最大误差和误差比, 其中
由表 6.2可以看出, 差分格式在无穷范数下的收敛阶为$ O(\tau^2+h^4) $, 这和理论分析结果一致.