数学杂志  2019, Vol. 39 Issue (1): 53-59   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
苏倩倩
离散Leslie-Gower食物链模型的动力学行为研究
苏倩倩    
郑州成功财经学院通识教育中心, 河南 郑州 451200
摘要:本文研究了一类离散Leslie-Gower三维食物链模型动力学行为.利用差分不等式,获得了在一定的条件下种群x1x3持久而x2绝灭,然后构造适当的差分Lyapunov函数,得到了该系统全局吸引性的充分性条件,推广了Huo在文[2]中的结果.
关键词离散    食物链    持久性    绝灭性    全局吸引性    
DYNAMICAL BEHAVIOR OF A DISCRETE LESLIE-GOWER-TYPE FOOD CHAIN MODEL
SU Qian-qian    
Center for General Education, Zhengzhou Chenggong University of Finance and Economics, Zhengzhou 451200, China
Abstract: In this paper, we study the dynamics behavior of a discrete Leslie-Gower three-dimensional food chain model. By using differential inequality, we get the conclusion that under some conditions, the species x1 and x3 are permanent and the species x2 will be driven to extionction. Then, by constructing a suitable Lyapunov function, sufficient conditions are obtained to ensure the global attractivity of the system, which promotes the resluts of Huo in text[2].
Keywords: discrete     food chain     persistence     extinction     global attractivity    
1 引言

Leslie-Gower作为一个重要的生态系统模型, 已经引起了许多学者的关注, 并且得到了很多好的结果(见文献[1-12]及所引文献).但是, 对于生命短, 世代不重叠的种群或者虽然生命长, 世代重叠的种群在其数量少的时候, 用差分方程(离散的动力模型)来表示更为合理(见文献[13]).鉴于此, 本文将研究如下离散的Leslie-Gower模型

$ \left\{\begin{array}{ll} x_1(n+1) = x_1(n)\exp\{a_{0}(n)-b_{0}(n)x_1(n)-\frac{v_{0}(n)x_2(n)}{d_{0}(n) +x_1(n)}\}, \\ x_2(n+1) = x_2(n)\exp\{-a_{1}(n)+\frac{v_{1}(n)x_1(n)}{d_{1}(n)+x_1(n)} -\frac{v_{2}(n)x_3(n)}{d_{2}(n)+x_2(n)}\}, \\ x_3(n+1) = x_3(n)\exp\{c_{3}(n)-\frac{v_{3}(n)x_3(n)}{d_{3}(n)+x_2(n)}\}, \end{array}\right. $ (1.1)

其中$ x_i(n)\; (i = 1, 2, 3) $为种群$ i $$ n $时刻的密度, $ a_0, b_0, v_0, d_0, a_1, v_1, d_1, v_2, d_2, c_3, v_3 $$ d_3 $均为连续的有正的上下界的序列, 且$ x_i(0)\geq 0\; (i = 1, 2, 3). $

文[2]对离散两种群Leslie-Gower模型的周期解和全局吸引性进行了研究, 而文[3]首次提出了一类连续的三种群Leslie-Gower模型.一个自然而然的问题是:离散三维Leslie-Gower模型的动力学行为又将怎样呢?据笔者所知, 至今尚未有学者研究离散三维Leslie-Gower模型.本文参照文[14]的分析手法来研究系统(1.1)的动力学行为.更多有关Leslie-Gower模型的背景可以参考文献[3].这里对任意的序列$ \left\{a(n)\right\} $, 记$ a^u = \sup\limits_{n\in N} \left\{a(n)\right\}, \; \; a^l = \inf\limits_{n\in N}\left\{a(n)\right\}. $

2 引理

引理2.1 [15]   假设序列$ \left\{x(k)\right\} $满足$ x(k)>0 $, $ a(k) $$ b(k) $为有正的上下界的非负序列, 若$ x(k+1)\leq x(k)\exp\left\{a(k)-b(k)x(k)\right\}, \; \; k\in N, $

$ \limsup\limits_{k\to +\infty}x(k)\leq \frac{1}{b^{l}}\exp(a^{u}-1). $

引理2.2 [16]   假设序列$ \left\{x(k)\right\} $满足$ x(k)>0 $, $ a(k) $$ b(k) $为有正的上下界的非负序列, 若$ x(k+1)\geq x(k)\exp\left\{a(k)-b(k)x(k)\right\}, k\geq N_{0}, x(N_{0})>0, $其中$ N_{0}\in N $, 且$ \limsup\limits_{k\to +\infty}x(k)\leq x^{*}, $

$ \liminf\limits_{k\to +\infty}x(k)\geq \min\left\{\frac{a^{l}}{b^{u}}\exp(a^{l}-b^{u}x^{*}), \frac{a^{l}}{b^{u}}\right\}. $
3 持久性与全局吸引性

定理3.1   若

$ \begin{align} v_1^u-a_1^l<0 \end{align} $ (${{\text{H}}_{\text{1}}}$)

成立, 则种群$ x_1 $$ x_3 $持久, 而种群$ x_2 $绝灭.

  设$ x(n) = (x_{1}(n), x_{2}(n), x_{3}(n))^{T} $为系统(1.1)的任意正解.由系统(1.1)的第一个方程得

$ x_{1}(n+1)\leq x_{1}(n)\exp\left\{a_0(n)-b_0(n)x_1(n)\right\}. $

由引理2.1, 得到

$ \begin{align} \limsup\limits_{n\to +\infty}x_1(n)\leq\frac{\exp(a_0^u-1)}{b_0^l}\triangleq M_1. \end{align} $ (3.1)

由系统(1.1)的第二个方程可得

$ \begin{eqnarray} && x_2(n+1) \leq x_2(n)\exp\left\{v_1(n)-a_1(n)\right\} \leq x_2(n)\exp\left\{v_1^u-a_1^l\right\}, \end{eqnarray} $ (3.2)
$ \begin{eqnarray} && x_2(n)\leq x_2(0)\exp\left\{n(v_1^u-a_1^l)\right\}. \end{eqnarray} $ (3.3)

由条件$ ({\hbox{H}}_{1}) $

$ \begin{align} \lim\limits_{n\to +\infty}x_2(n) = 0. \end{align} $ (3.4)

所以对于足够小的$ \varepsilon >0, $存在$ N_{1}>0, \; N_{1}\in N, $对任意$ n>N_{1}, $都有

$ \begin{align} x_{1}(n)\leq M_{1}+\varepsilon, \; x_2(n)\leq\varepsilon. \end{align} $ (3.5)

由系统(1.1)的第三个方程得

$ \begin{align} x_3(n+1)\leq x_3(n)\exp\left\{c_3(n)-\frac{v_3(n)}{d_3(n)+\varepsilon}x_3(n)\right\}. \end{align} $ (3.6)

由引理2.1知

$ \limsup\limits_{n\to +\infty}x_3(n)\leq\frac{d_3^u+\varepsilon}{v_3^l}\exp(c_3^u-1). $

$ \varepsilon\to 0 $

$ \begin{align} \limsup\limits_{n\to +\infty}x_3(n)\leq\frac{d_3^u}{v_3^l}\exp(c_3^u-1)\triangleq M_3. \end{align} $ (3.7)

则对于上述$ \varepsilon >0, $存在$ N_{2}>N_{1}, N_{2}\in N, $对任意$ n>N_{2}, $都有

$ \begin{align} x_{3}(n)\leq M_{3}+\varepsilon. \end{align} $ (3.8)

所以

$ \begin{align} x_1(n+1)\geq x_1(n)\exp\left\{a_0(n)-b_0(n)x_1(n)-\frac{v_0(n)}{d_0(n)}\varepsilon\right\}. \end{align} $ (3.9)

因为$ \varepsilon $足够小, 所以$ a_0(n)-\frac{v_0(n)}{d_0(n)}\varepsilon $仍为正序列.则由引理2.2知

$ \liminf\limits_{n\to +\infty}x_1(n)\geq \min\left\{\frac{a_0^l-\frac{v_0^u}{d_0^l}\varepsilon}{b_0^u} \exp(a_0^l-\frac{v_0^u}{d_0^l}\varepsilon-b_0^uM_1), \frac{a_0^l-\frac{v_0^u}{d_0^l}\varepsilon}{b_0^u}\right\}. $

$ \varepsilon\to 0 $

$ \begin{align} \liminf\limits_{n\to +\infty}x_1(n)\geq \min\left\{\frac{a_0^l}{b_0^u}\exp(a_0^l-b_0^uM_1), \frac{a_0^l}{b_0^u}\right\}\triangleq m_1. \end{align} $ (3.10)

由系统(1.1)的第三个方程得

$ \begin{align} x_3(n+1)\geq x_3(n)\exp\left\{c_3(n)-\frac{v_3(n)}{d_3(n)}x_3(n)\right\}. \end{align} $ (3.11)

由引理2.2知

$ \begin{align} \liminf\limits_{n\to +\infty}x_3(n)\geq \min\left\{\frac{d_3^l c_3^l}{v_3^u}\exp\left\{c_3^l-\frac{v_3^u}{d_3^l}M_3\right\}, \frac{d_3^l c_3^l}{v_3^u}\right\}\triangleq m_3. \end{align} $ (3.12)

下证$ M_1>m_1 $.

(1) 当$ a_0^l-b_0^u M_1\geq 0 $时, $ m_1 = \frac{a_0^l}{b_0^u}, $此时$ M_1 = \frac{\exp(a_0^u-1)}{b_0^l}\geq\frac{a_0^u}{b_0^l}. $这里用到$ \exp(x-1)\geq x $ $ (x>0) $.又因为$ \left\{a_0(n)\right\}\left\{b_0(n)\right\} $为连续的有正的上下界的序列, 所以$ a_0^u>a_0^l, \; \; b_0^u>b_0^l, $

$ M_1 = \frac{\exp(a_0^u-1)}{b_0^l}\geq\frac{a_0^u}{b_0^l}>\frac{a_0^l}{b_0^u} = m_1. $

(2) 当$ a_0^l-b_0^uM_1<0 $, 即$ M_1>\frac{a_0^l}{b_0^u} $时,

$ m_1 = \frac{a_0^l}{b_0^u}\exp(a_0^l-b_0^uM_1), $

此时$ M_1\exp(b_0^uM_1-a_0^l)>\frac{a_0^l}{b_0^u}, $

$ M_1>\frac{a_0^l}{b_0^u}\exp(a_0^l-b_0^uM_1) = m_1, $

这里用到当$ x>\frac{a}{b} $时, $ x\exp(bx-a)>\frac{a}{b}\; (a>0, \; b>0). $

综上所述$ M_1>m_1, $同理可以证明$ M_3>m_3. $定理3.1证毕.

定理3.2   假设$ ({\hbox{H}}_1) $成立, 且

$ \lambda_1 = \max\left\{|1-b_0^uM_1|, |1-b_0^lm_1|\right\}<1, \; \; \lambda_2 = \max\left\{\left|1-\frac{v_3^u}{d_3^l}M_3\right|, \left|1-\frac{v_3^l}{d_3^u}m_3\right|\right\}<1. $

则系统(1.1)是全局吸引的.

  设$ (x_1(n), x_2(n), x_3(n))^T $, $ (\bar{x}_1(n), \bar{x}_2(n), \bar{x}_3(n))^T $为系统(1.1)的任意两个正解.因为$ v_1^u-a_1^l<0 $, 由定理3.1知$ \lim\limits_{n\to +\infty}x_2(n) = 0, $$ \lim\limits_{n\to +\infty}(x_2(n)-\bar{x}_2(n)) = 0. $所以对于上述的$ \varepsilon >0, $存在$ N_{3}>N_{2}, N_3\in N, $对于任意的$ n>N_{3}, $都有

$ \begin{eqnarray} && m_1-\varepsilon\leq x_{1}(n)\leq M_{1}+\varepsilon, |x_2(n)-\bar{x}_2(n)|\leq\varepsilon, \; \; m_3-\varepsilon\leq x_{3}(n)\leq M_{3}+\varepsilon, \\ && \lambda_{1\varepsilon} = \max\left\{|1-b_0^u(M_1+\varepsilon)|, |1-b_0^l(m_1-\varepsilon)|\right\}<1, \\ &&\lambda_{2\varepsilon} = \max\left\{\left|1-\frac{v_3^u}{d_3^l}(M_3+\varepsilon)\right|, \left|1-\frac{v_3^l}{d_3^u}(m_3-\varepsilon)\right|\right\}<1. \end{eqnarray} $ (3.13)

$ u(n) = \ln x_1(n)-\ln \bar x_1(n) $.当$ n>N_3 $时, 有

$ \begin{eqnarray} |u(n+1)|& = &\left|\ln x_1(n+1)-\ln \bar{x}_1(n+1)\right|\\ &\leq& \left|\ln x_1(n)-\ln \bar{x}_1(n)-b_0(n)(x_1(n)-\bar{x}_1(n))\right|\\ &&+v_0(n)\left|\frac{x_2(n)-\bar x_2(n)}{d_0(n)+x_1(n)}\right|+ v_0(n)\bar x_2(n)\left|\frac{x_1(n)-\bar x_1(n)}{(d_0(n)+x_1(n))(d_0(n)+\bar x_1(n))}\right|\\ &\leq& \left|\ln x_1(n)-\ln \bar{x}_1(n)-b_0(n)(x_1(n)-\bar{x}_1(n))\right|\\ &&+\frac{v_0(n)}{d_0(n)+m_1-\varepsilon}\left|x_2(n)-\bar{x}_2(n)\right| +v_0(n)\varepsilon\left|\frac{x_1(n)-\bar{x}_1(n)}{(d_0(n)+m_1-\varepsilon)^2}\right|\\ &\leq&\left|\ln x_1(n)-\ln \bar{x}_1(n)-b_0(n)(x_1(n)-\bar{x}_1(n))\right|\\ &&+\left|\frac{v_0^u}{d_0^l+m_1-\varepsilon}+ \frac{2v_0^u(M_1+\varepsilon)}{(d_0^l+m_1-\varepsilon)^2}\right|\varepsilon. \end{eqnarray} $ (3.14)

又因为$ x_1(n)-\bar{x}_1(n) = \xi_1(n)(\ln x_1(n)-\ln \bar{x}_1(n)), $其中$ \xi_1(n) $介于$ x_1(n) $$ \bar x_1(n) $之间.

$ n>N_3 $时, 有$ m_1-\varepsilon\leq \xi_1(n)\leq M_1+\varepsilon. $则由(3.13), (3.14)式知

$ \begin{eqnarray} \left|u(n+1)\right|&\leq&\left|(1-b_0(n)\xi_1(n))(\ln x_1(n)-\ln \bar{x}_1(n))\right|\\ &&+\left|\frac{v_0^u}{d_0^l+m_1-\varepsilon}+ \frac{2v_0^u(M_1+\varepsilon)}{(d_0^l+m_1-\varepsilon)^2}\right|\varepsilon\\ &\leq & \max\left\{|1-b_0^u(M_1+\varepsilon)|, |1-b_0^l(m_1-\varepsilon)|\right\}|u(n)|\\ &&+\left|\frac{v_0^u}{d_0^l+m_1-\varepsilon}+ \frac{2v_0^u(M_1+\varepsilon)}{(d_0^l+m_1-\varepsilon)^2}\right|\varepsilon\\ &\leq & \lambda_{1\varepsilon}|u(n)|+\left|\frac{v_0^u}{d_0^l+m_1-\varepsilon}+ \frac{2v_0^u(M_1+\varepsilon)}{(d_0^l+m_1-\varepsilon)^2}\right|\varepsilon. \end{eqnarray} $ (3.15)

$ \varepsilon\to 0 $$ |u(n+1)|\leq \lambda_1|u(n)|. $因此$ |u(n+1)|\leq \lambda_1^{n+1-N_3}|u(N_3)|, $所以

$ \begin{equation} \lim\limits_{n\to + \infty}(x_1(n)-\bar{x}_1(n)) = 0. \end{equation} $ (3.16)

$ v(n) = \ln x_3(n)-\ln \bar{x}_3(n) $.

$ n>N_3 $时, 有

$ \begin{eqnarray} |v(n+1)|& = &|\ln x_3(n+1)-\ln \bar{x}_3(n+1)|\\ & = & |\ln x_3(n)-\ln\bar{x}_3(n)\\ &&-v_3(n)[\frac{x_3(n)-\bar x_3(n)}{d_3(n)+x_2(n)}+\bar{x}_3(n)\frac{\bar{x}_2(n)- x_2(n)}{(d_3(n)+x_2(n))(d_3(n)+\bar{x}_2(n))}]|\\ &\leq& |\ln x_3(n)-\ln\bar{x}_3(n)-\frac{v_3(n)}{d_3(n)+x_2(n)}(x_3(n)-\bar{x}_3(n))|\\ &&+\frac{{v}_3^u(M_3+\varepsilon)}{(d_3^l)^2}|x_2(n)-\bar x_2(n)|. \end{eqnarray} $ (3.17)

又因为$ x_3(n)-\bar{x}_3(n) = \xi_3(n)(\ln x_3(n)-\ln \bar{x}_3(n)) $, 其中$ \xi_3(n) $介于$ x_3(n) $$ \bar x_3(n) $之间.当$ n>N_3 $时, 有$ m_3-\varepsilon\leq \xi_3(n)\leq M_3+\varepsilon. $由(3.17)式知

$ \begin{array}{rcl} |v(n+1)|&\leq& \left|\left(1-\frac{v_3(n)}{d_3(n)+x_2(n)}\xi_3(n)\right)|\ln x_3(n)-\ln \bar{x}_3(n)|\right| +\frac{{v}_3^u(M_3+\varepsilon)}{(d_3^l)^2}\varepsilon\\[15pt] &\leq&\max\left\{\left|1-\frac{v_3^u(M_3+\varepsilon)}{d_3^l}\right|, \left|1- \frac{v_3^l(m_3-\varepsilon)}{d_3^u}\right|\right\}|v(n)|+\frac{v_3^u(M_3+\varepsilon)}{(d_3^l)^2}\varepsilon\\[15pt] & = &\lambda_{2\varepsilon}|v(n)|+\frac{v_3^u(M_3+\varepsilon)}{(d_3^l)^2}\varepsilon. \end{array} $ (3.18)

$ \varepsilon\to 0 $$ |v(n+1)|\leq \lambda_2|v(n)|. $因此$ |v(n+1)|\leq\lambda_2^{n+1-N_3}|v(N_3 )|, $所以

$ \begin{align} \lim\limits_{n\to+\infty}(x_3(n)-\bar{x}_3(n)) = 0. \end{align} $ (3.19)

定理3.2证毕.

4 数值模拟

例4.1   考虑下面的系统

$ \left\{\begin{array}{ll} x_1(n+1) = x_1(n)\exp\left\{0.2(\cos^2(n+0.1)+1)-2(\sin^2n+1.5)x_1(n)-\frac{x_2(n)}{x_1(n)+2}\right\}, \\ x_2(n+1) = x_2(n)\exp\left\{-(\cos^2n+2)+\frac{0.5(\sin^2(n+5)+1)x_1(n)}{x_1(n)+2}-\frac{x_3(n)}{x_2(n)+2}\right\}, \\ x_3(n+1) = x_3(n)\exp\left\{0.5(\sin^2n+1)-\frac{0.01(\sin^2n+10)x_3(n)}{0.01(\cos^2n+10)+x_2(n)}\right\}. \end{array} \right. $ (4.1)

对应于系统(1.1), 计算可知

$ \begin{eqnarray*} && M_1\approx 0.1829, \; m_1\approx 0.0196, \; M_3\approx 1.100, m_3\approx 0.2235, \\ && v_1^u-a_1^l = -1<0, \\ && \lambda_1 = \max\left\{|1-b_0^uM_1|, |1-b_0^lm_1|\right\}\approx 0.9412<1, \\ && \lambda_2 = \max\left\{\left|1-\frac{v_3^u}{d_3^l}M_3\right|, \left|1-\frac{v_3^l}{d_3^u}m_3\right|\right\}\approx 0.7968<1. \end{eqnarray*} $

满足定理3.1和定理3.2的条件, 下面给出系统(4.1)的模拟图像.

图 1 具有初始条件$ (x_{1}(n), x_{2}(n), x_{3}(n))^{T} = (0.62, \; 0.60, \; 0.65)^{T}, $ $ (0.7, \; 0.72, \; 0.45)^{T}, \; (0.45, \; 0.5, \; 0.75)^{T} $系统(4.1)的动力学行为
5 结论

本文研究了一类离散Leslie-Gower三维食物链模型, 首先运用差分不等式的有关结论得到:若(H$ _1) $成立, 则种群$ x_1, $ $ x_3 $持久$ x_2 $绝灭, 即当中级捕食者$ x_2 $的死亡率大于食饵$ \; x_1 $的人均减少率的最大值时, 高级捕食者$ x_3 $和食饵$ x_1 $持久生存, 而中级捕食者$ x_2 $将走向绝灭.其次, 通过采用文[14]的手法, 构造适当的差分Lyapunov函数, 得到了该系统全局吸引的充分性条件.文[2]研究了离散两种群Leslie-Gower模型的周期解和全局吸引性, 文[3]首次提出并研究了一类连续的三种群Leslie-Gower模型, 证明了该系统的有界性, 吸引集的存在性, 以及表示高级或中级捕食者灭绝的均衡的局部或全局稳定性.但文[17]指出, 文[3]中关于有界解和不变吸引集的结论是错误的.所以对于连续模型的动力学行为还有待进一步研究.本文是在文[3, 17]的基础上研究了离散三种群Leslie-Gower模型, 是对文[2]的补充和完善.最后, 数值模拟说明结论是可行的.

参考文献
[1] Yu Shengbin, Chen Fengde. Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type Ⅱ schemes and mutual interference[J]. Int. J. Bio., 2014, 7(3): 1450028.
[2] Huo Haifeng, Li Wantong. Stable Periodic Solution of the Discrete Periodic Leslie-Gower PredatorPrey Model[J]. Math. Comput. Model., 2004, 40(3-4): 261–269. DOI:10.1016/j.mcm.2004.02.026
[3] Aziz-Alaoui M A. Study of Leslie-Gower-type tritrophic population model[J]. Chaos Solitons Fract., 2002, 14(8): 1275–1293. DOI:10.1016/S0960-0779(02)00079-6
[4] Yu Shengbin. Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes[J]. Discrete Dyn. Nat. Soc., 2012, 2012: 208167.
[5] Xie Xiangdong, Xue Yalong, Chen Jinhuang, Li Tingting. Permanence and global attractivity of a nonantonomous modified Leslie-Gower predator-prey model with Holling-type Ⅱ schemes and a prey refuge[J]. Adv. Diff. Equ., 2016, 2016(1): 1–11. DOI:10.1186/s13662-015-0739-5
[6] Kang Aihua, Xue Yakui, Fu Jianping. Dynamical Behaviors of a Leslie-Gower Ecoepidemiological Model[J]. Dis. Dyn. Nat. Soc., 2015, 2015: 169242.
[7] Zhu Yanling, Wang Kai. Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type Ⅱ schemes[J]. J. Math. Anal. Appl., 2011, 384(2): 400–408. DOI:10.1016/j.jmaa.2011.05.081
[8] 周军. 一类具有修正的Leslie-Gower功能函数的捕食-食饵模型的全局渐近稳定性[J]. 西南大学学报(自然科学版), 2014, 36(7): 53–57.
[9] 李祖雄. 一类具有反馈控制的修正Leslie-Gower模型的周期解[J]. 应用数学学报, 2015, 38(1): 37–52.
[10] 李瑞, 李艳玲. 一类Leslie-Gower捕食食饵模型的分歧[J]. 工程数学学报, 2015, 32(4): 557–567.
[11] 郜欣春. 修正Leslie-Gower模型的全局正则渐近周期解[J]. 科技通报, 2017, 33(1): 14–17.
[12] 伏升茂, 吴守妍. 食饵有强弱之分的Leslie-Gower捕食者-食饵扩散模型的稳定性[J]. 西北师范大学学报(自然科学版), 2015, 51(1): 1–5.
[13] 陈兰荪. 数学生态学模型与研究方法[M]. 北京: 科学出版社, 1988.
[14] Wu Liping, Chen Fengde, Li Zhong. Permanence and global attractivity of a discrete Schoener's competition model with delays[J]. Math. Comput. Model., 2009, 49(7-8): 1607–1617. DOI:10.1016/j.mcm.2008.06.004
[15] Chen Fengde. Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey system[J]. Appl. Math. Comput., 2006, 182(1): 3–12.
[16] Chen Fengde. Permanence for the discrete mutualism model with time delays[J]. Math. Comput. Model., 2008, 47(3-4): 431–435. DOI:10.1016/j.mcm.2007.02.023
[17] Rana D Parshad, Nitu Kumari, Said Kouachi. A remark on" Study of a Leslie-Gower-type tritrophic population model"[Chaos, Solitons and Fractals 14(2012)1275-1293][J]. Chaos Soli. Frac., 2015, 71: 22–28. DOI:10.1016/j.chaos.2014.11.014