数学杂志  2018, Vol. 38 Issue (6): 1057-1065   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
王小元
王知人
温胜男
尹枥
某类包含Hurwitz-Lerch Zeta函数的三阶积分算子
王小元1, 王知人1, 温胜男1, 尹枥2    
1. 燕山大学理学院, 河北 秦皇岛 066004;
2. 滨州学院数学系, 山东 滨州 256603
摘要:本文研究了包含Hurwitz-Lerch Zeta函数的积分算子Wsbfz)的关于亚纯函数的微分从属与微分超从属性质.利用三阶微分从属与微分超从属的定义,通过选取适当的允许函数,得到了由算子Wsbfz)定义的亚纯函数类的某些三阶微分从属和微分超从属结果,进而得到Sandwich型双从属结果,推广了二阶微分从属与超从属的相关结果.
关键词解析函数    亚纯函数    微分从属    微分超从属    Hurwitz-Lerch Zeta函数    
CERTAIN THIRD-ORDER INTEGRAL OPERATOR INVOLVING THE HURWITZ-LERCH ZETA FUNCTION
WANG Xiao-yuan1, WANG Zhi-ren1, WEN Sheng-nan1, YIN Li2    
1. College of Science, Yanshan University, Qinhuangdao 066004, China;
2. Department of Mathematics, Binzhou University, Binzhou 256603, China
Abstract: In this paper, the properties of the operator Ws, bf(z) involving Hurwitz-Lerch Zeta meromorphic function are investigated. By using the definition of third-order differential subordination and differential superordination, and choosing suitable admissible functions, we derive some results with third-order differential subordination and differential superordination associated with the operator Ws, bf(z). Furthermore, the Sandwich-type results are also considered, which extends the related work of second-order differential subordination and differential superordination results.
Keywords: analytic functions     meromorphic function     differential subordination     differential superordination     Hurwitz-Lerch Zeta function    
1 引言

$\mathcal{H}[a, n]$为单位圆盘$\mathbb{U}=\{z:\ z\in\mathbb{C} \ \, , \ \, \left| z \right| < 1\}$中的解析函数类且具有如下形式

$ \begin{equation*} \mathcal{H}[a, n]=\{f: f(z)= a+\sum\limits_{k=n}^{\infty}a_{k}z^{k}~~ (a\in\mathbb{C};n\in\mathbb{N}=\{1, 2, \cdots\})\}. \end{equation*} $

为了方便, 设$\mathcal{H}=\mathcal{H}$[1, 1].

$f(z)$$g(z)$$\mathbb{U}$中的两个解析函数, 如果存在$\mathbb{U}$内解析且满足条件$\omega(0)=0$$\left| \omega \left( z \right) \right|< 1$的Schwarz函数, 使得$f(z)=g(\omega(z))\, (z\in\mathbb{U})$恒成立, 称函数$f(z)$$\mathbb{U}$中从属于函数$g(z)$, 记为$f(z)\prec g(z)$.相应地, 称$g$$\mathbb{U}$内超从属于$f$.下列关系

$ f(z)\prec g(z)\quad(z\in\mathbb{U})\Longrightarrow f(0)=g(0)\quad \text{且} \quad f(\mathbb{U})\subset g(\mathbb{U}) $

是众所周知的.更进一步地, 如果$g$$\mathbb{U}$内单叶, 则有下列等价关系

$ f(z)\prec g(z)\quad(z\in\mathbb{U})\Longleftrightarrow f(0)=g(0)\quad \text{且} \quad f(\mathbb{U})\subset g(\mathbb{U}). $

$\Sigma$表示在去心单位开圆盘$\mathbb{U}^\ast=\{z\in\mathbb{C} \ \, , \ \, 0 < \left| z \right| < 1\}=\mathbb{U} \backslash\{0\}$内解析且具有如下形式

$ \begin{equation}\label{2.1.01} f(z) =\frac{1}{z} + \sum\limits_{n = 1}^\infty {a_n} {z^n} \end{equation} $ (1.1)

的函数类.

下面的函数$\Phi(z, s, a)$称为广义的Hurwitz-Lerch Zeta函数(可参考文献[1, 2])

$ \begin{eqnarray}\label{2.1.02} && \Phi(z, s, a):=\sum\limits_{k = 0}^\infty \frac{z^{k}}{(k+a)^s}\\ &&(a\in\mathbb{C} \backslash\mathbb{Z}^{-}_{0}; \left| z \right|<1, s\in\mathbb{C};\left| z \right|=1, \Re(s)>1\; \mathbb{Z}^{-}_{0}:=\mathbb{Z}^{-}\cup\{0\}=\{0, -1, -2, \cdots\}).\nonumber \end{eqnarray} $ (1.2)

关于Hurwitz-Lerch Zeta函数$\Phi(z, s, a)$的一些有趣的性质和特征可以参见最近的文献, 例如Choi和Srivastava [3], Srivastava等[4], Lin等[5]和Garg等[6].

利用Hurwitz-Lerch Zeta函数$\Phi(z, s, a)$, Srivastava和Attiya[7] (也可参考文献[8-11])引入和研究了下面的积分算子

$ \begin{equation} \mathcal{J}_{s, \, b}f(z)=z+\sum\limits_{k=2}^{\infty} \left(\frac{1+b}{k+b}\right)^{s}c_{k}z^{k} \quad(b\in\mathbb{C}\backslash\mathbb{Z}^{-}; s\in\mathbb{C}; z\in\mathbb{U}). \end{equation} $ (1.3)

类似于算子$\mathcal{J}_{s, \, b}f(z)$, Wang和Shi[12]引入了积分算子

$ \begin{equation}\label{2.1.04} \mathcal{W}_{s, \, b}:\Sigma\longrightarrow\Sigma. \end{equation} $ (1.4)

通过Hadamard卷积得到以下定义的形式

$ \begin{equation}\label{2.1.05} \mathcal{W}_{s, \, b}f(z):=\Theta_{s, \, b}(z)*f(z)\quad (b\in\mathbb{C}\backslash\{\mathbb{Z}_{0}^{-}\cup\{1\}\}; s\in\mathbb{C};f\in\Sigma;z\in\mathbb{U}^\ast), \end{equation} $ (1.5)

其中

$ \begin{equation}\label{2.1.06} \Theta_{s, \, b}(z):=(b-1)^s\left[\Phi(z, s, b)-b^{-s}+\frac{1}{z(b-1)^s}\right]\quad(z\in\mathbb{U}^\ast). \end{equation} $ (1.6)

可以很容易从公式(1.1), (1.2), (1.5)和(1.6)中发现

$ \begin{equation}\label{2.1.07} \mathcal{W}_{s, \, b}f(z)=\frac{1}{z}+\sum\limits_{k=1}^{\infty}\left(\frac{b-1}{b+k}\right)^{s}a_{k}z^{k}. \end{equation} $ (1.7)

$b\in\mathbb{C}\backslash\{\mathbb{Z}^{-}\cup\{1\}\}$时, 算子$\mathcal{W}_{s, \, b}$可以被定义为

$ \mathcal{W}_{s, \, 0}f(z):=\lim\limits_{b\rightarrow 0}\{\mathcal{W}_{s, \, b}f (z)\}. $

容易观察到

$ \begin{align} &\mathcal{W}_{0, \, b}f(z)=f(z), \end{align} $ (1.8)
$ \begin{align} &\mathcal{W}_{-1, \, 0}f(z)=-zf'(z), \end{align} $ (1.9)
$ \begin{align} &\mathcal{W}_{-1, \, -1}f(z)=\frac{f(z)-zf'(z)}{2}, \end{align} $ (1.10)
$ \begin{align} &\mathcal{W}_{s, \, 2}f(z)=\frac{1}{z}+\sum\limits_{k=1}^{\infty}\left(\frac{1}{k+2}\right)^{s}a_{k}z^{k}\label{2.1.11} \end{align} $ (1.11)

$ \begin{align} \mathcal{W}_{1, \, b+1}f(z)= \frac{1}{z}+\sum\limits_{k=1}^{\infty}\left(\frac{b}{k+b+1}\right)a_{k}z^{k} =\frac{b}{z^{b+1}}\int_{0}^{z}t^bf(t)dt\quad (b>0), \end{align} $ (1.12)
$ \begin{equation}\label{2.1.13} \mathcal{W}_{\alpha, \, \beta+1}f(z)=\frac{\beta^\alpha}{\Gamma(s)z^{\beta+1}}\int_{0}^{z}t^b \left(\log\frac{z}{t}\right)^{s-1}f(t)dt \quad (\alpha>0;\, \beta>0). \end{equation} $ (1.13)

也可观察到

$ \begin{equation}\label{2.1.14} \mathcal{W}_{1, \, \gamma}f(z)=\frac{\gamma-1}{z^{\gamma}}\int_{0}^{z}t^{\gamma-1}f(t)dt\quad(\Re(\gamma)>1). \end{equation} $ (1.14)

更进一步, 通过算子(1.7)式可以发现

$ \begin{equation}\label{2.1.15} \mathcal{W}_{s+1, \, b}f(z)=\frac{b-1}{z^b}\int_{0}^{z}t^{b-1}\mathcal{W}_{s, \, b}f(z)dt\quad(\Re(b)>1). \end{equation} $ (1.15)

值得注意的是, 算子(1.11)是被Alhindi和Darus[13]引入和研究的; 算子(1.12)和(1.13)是被Lashin[14]引入和研究的.

$Q$表示内射于$\overline{\mathbb{U}}\backslash \mathcal{E}(q)$且解析的全体函数族, 其中$ \mathcal{E}(q)=\{\zeta\in\partial\mathbb{U}:\lim\limits_{z\rightarrow \zeta}q(z)=\infty\}, $且满足当$\zeta\in\partial\mathbb{U}\backslash \mathcal{E}(q)$时, $\mathrm{min}|q'(\zeta)|=\varepsilon>0$.可以设为$Q(a)=\{q(z)\in Q:q(0)=a\}, $ $Q_{1}=Q(1).$

本文的主要目的是通过研究算子$\mathcal{W}_{s, \, b}f(z)$得出微分从属, 微分超从属和Sandwich定理的相关结论.

2 预备知识

为了证明本文的主要结果, 需要用到如下的定义和引理.

定义2.1 [15] 设$\Psi:\mathbb{C}^{4}\times\mathbb{U}\rightarrow\mathbb{C}$, 函数$q(z)$$h(z)$$\mathbb{U}$内单叶.若$p(z)$$\mathbb{U}$内解析且满足三阶微分从属条件

$ \begin{equation}\label{2.2.01} \psi(p(z), zp'(z), z^2p''(z), z^3p'''(z);z)\prec h(z), \end{equation} $ (2.1)

则称$p(z)$为上述微分从属的一个解.如果对所有的解$p(z)$, 有$p(z)\prec q(z)$, 则称$q(z)$为微分从属解的一个控制.进一步, 若存在一个控制$\widetilde{q}(z)$对所有适合(2.1)式的控制$q(z)$满足$\widetilde{q}(z)\prec q(z), $则称$\widetilde{q}(z)$为最佳控制.

定义2.2 [15] 设$\Omega$$\mathbb{U}$的一个子集, 函数$q\in Q$$n\in\mathbb{N}\backslash\{1\}$.又设$\psi : \mathbb{C}^4 \times\mathbb{U}\rightarrow\mathbb{C}$满足如下的允许条件

$ \begin{eqnarray*} && r=q(\zeta), s=k\zeta q'(\zeta), \\ && \Re\left(\frac{t}{s}+1\right)\geq k\Re\left(\frac{\zeta q''(\zeta)}{q'(\zeta)}+1\right), \\ && \Re\left(\frac{u}{s}\right)\geq k^2 \Re\left(\frac{\zeta q''(\zeta)}{q'(\zeta)}\right) \end{eqnarray*} $

时, $ \psi(r, s, t, u; z)\notin \Omega $成立, 其中$z\in\mathbb{U}; \zeta\in\partial\mathbb{U}\backslash \mathcal{E}(q)$$k\geq n$.称上述函数$\psi$的集合为允许函数类, 记作$\Psi_{n}[\Omega, q]$.

类似于Miller和Mocanu[16]引入的二阶微分超从属, Tang等[17]给出如下三阶微分超从属定义.

定义2.3 [17] 设$\psi$$\mathbb{C}^{4}\times\mathbb{U}\rightarrow\mathbb{C}$的映射,函数$h(z)$$\mathbb{U}$内解析.如果$p(z)$

$ \psi(p(z), zp'(z), z^2p''(z), z^3p'''(z);z) $

$\mathbb{U}$内单叶且满足三阶微分超从属

$ \begin{equation}\label{2.2.02} h(z)\prec \psi(p(z), zp'(z), z^2p''(z), z^3p'''(z);z), \end{equation} $ (2.2)

则称$p(z)$为上述微分超从属的一个解.若对所有的解$p(z)$, 有$q(z)\prec p(z)$, 则称$q(z)$为微分超从属的一个从属子.进一步, 若存在一个单叶从属子$\widetilde{q}(z)$对所有适合(2.2)式的从属子$q(z)$, 均有$q(z)\prec \widetilde{q}(z), $则称$\widetilde{q}(z)$为最佳从属子.

定义2.4 [17] 设$\Omega$$\mathbb{C}$的子集, 函数$q\in \mathcal{H}[a, n]$$q'(z)\neq0.$又设函数$\psi:\mathbb{C}^4\times \overline{\mathbb{U}}\rightarrow\mathbb{C}$满足如下的允许条件:当

$ \begin{eqnarray*}&& r=q(z), s=\frac{zq'(z)}{m}, \\ && \Re\biggl(\frac{t}{s}+1\biggr)\leq\frac{1}{m}\Re\biggl(\frac{zq''(z)}{q'(z)}+1\biggr), \\ && \Re\biggl(\frac{u}{s}\biggr)\leq\frac{1}{m^2}\Re\biggl(\frac{zq'''(z)}{q'(z)}\biggr)\end{eqnarray*} $

时, 有$\psi(r, s, t, u; z)\in\Omega$成立, 其中$z\in\mathbb{U}$, $\zeta\in\partial\mathbb{U}$$m\geq n\geq 2$.则称上述函数$\psi$的集合为允许函数类, 记作$\Psi'_{n}[\Omega, q]$.

关于微分从属与微分超从属的条件, 本文选择如下的允许函数.

定义2.5 设$\Omega$$\mathbb{C}$的子集且函数$q(z)\in Q$$q'(z)\neq 0.$又设函数$\psi:\mathbb{C}^4\times \overline{\mathbb{U}}\rightarrow\mathbb{C}$满足如下的允许条件:当

$ \begin{align*} &a_1=q(\zeta), \quad a_2=\frac{k\zeta q'(\zeta)+(b-1)q(\zeta)}{b-1}, \\ &\Re\left(\frac{(b-1)(a_3-a_1)}{a_2-a_1}-2(b-1)\right)\geq k\Re\left(\frac{\zeta q''(\zeta)}{q'(\zeta)}+1\right), \\ &\Re\left(\frac{(b-1)^2(a_4-a_1)-3b(b-1)(a_3-a_1)}{a_2-a_1}+3b^2-1\right) \geq k^2\Re\left(\frac{\zeta^2 q'''(\zeta)}{q'(\zeta)}\right) \end{align*} $

时, 有$ \phi(a_1, a_2, a_3, a_4;z)\notin\Omega, $其中$z\in\mathbb{U}, b\in\mathbb{C}\backslash\{\mathbb{Z}_{0}^{-}\cup\{1\}\}, s\in\mathbb{C}, \zeta\in\partial\mathbb{U}\backslash\mathcal{E}(q)$$k\in \mathbb{N}\backslash\{1\}$.则称上述函数$\phi$的集合为允许函数, 记作$\Phi_{\Gamma}[\Omega, q]$.

定义2.6 设$\Omega$$\mathbb{C}$的子集且函数$q(z)\in \mathcal{H}$$q'(z)\neq 0.$又设函数$\psi:\mathbb{C}^4\times \overline{\mathbb{U}}\rightarrow\mathbb{C}$满足如下的允许条件:当

$ \begin{align*} &a_1=q(z), \quad a_2=\frac{\zeta q'(z)+(b-1)q(z)}{m(b-1)}, \\ &\Re\left(\frac{(b-1)(a_3-a_1)}{a_2-a_1}-2(b-1)\right)\leq\frac{1}{m}\Re\left(\frac{\zeta q''(z)}{q'(z)}+1\right), \\ &\Re\left(\frac{(b-1)^2(a_4-a_1)-3b(b-1)(a_3-a_1)}{a_2-a_1}+3b^2-1\right)\leq\frac{1}{m^2}\Re\left(\frac{z^2q'''(z)}{q'(z)}\right), \end{align*} $

则有$\phi(a_1, a_2, a_3, a_4;\zeta)\in\Omega, $其中$z\in\mathbb{U}, b\in\mathbb{C}\backslash\{\mathbb{Z}_{0}^{-}\cup\{1\}\}, s\in\mathbb{C}, \zeta\in\partial\mathbb{U}\backslash\mathcal{E}(q)$$m\in \mathbb{N}\backslash\{1\}$.则称上述函数$\phi$的集合为允许函数类, 记作$\Phi^{'}_{\Gamma}[\Omega, q]$.

引理2.1 [15] 设$p(z)\in \mathcal{H}[a, n], n\in\mathbb{N}\backslash\{1\}$, 函数$q(z)\in Q(a)$且满足条件

$ \begin{equation*} \Re\left(\frac{\zeta q''(\zeta)}{q'(\zeta)}\right)>0, \quad \left|\frac{zp'(z)}{q'(z)}\right|\leq k, \end{equation*} $

其中$z\in\mathbb{U}$; $\zeta\in\partial\mathbb{U}\backslash \mathcal{E}(q)$$k\geq n$.如果$\Omega$$\mathbb{C}$的一个子集, 满足条件$\psi\in\Psi_n[\Omega, q]$

$ \begin{equation*} \psi(p(z), zp'(z), z^2p''(z), z^3p'''(z);z)\in\Omega, \end{equation*} $

$p(z)\prec q(z).$

引理2.2 [17] 设$q(z)\in \mathcal{H}[a, n]$$\psi\in\Psi'_{n}[\Omega, q]$.如果$\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z)$$\mathbb{U}$中单叶, 且满足条件

$ \begin{eqnarray*}&& \Re\biggl(\frac{zq''(z)}{q'(z)}\biggr)\geq 0, \quad \biggl|\frac{\zeta p'(\zeta)}{q'(z)} \biggr|\leq m~~ (z\in\mathbb{U};\zeta\in\partial\mathbb{U}; m\geq n\geq 2), \\ && \Omega\subset\Big\{\psi(p(z), zp'(z), z^{2}p''(z), z^{3}p'''(z);z):z\in\mathbb{U}\Big\}, \end{eqnarray*} $

$q(z)\prec p(z).$

3 主要结果

本文研究关于算子$\mathcal{W}_{s, \, b}f(z)$的微分从属与超从属的亚纯函数的性质, 进而得到Sandwich型双从属结果.

定理3.1 设$\phi\in\Psi_{\Gamma}[\Omega, q]$.如果$f(z) \in \Sigma$$q(z)\in Q_{1}$满足条件

$ \begin{equation}\label{2.3.21} \Re\left(\frac{\zeta q''(\zeta)}{q'(\zeta)}\right)\geq 0, \;\; \left|\frac{z(\mathcal{W}_{s, \, b}f(z)-\mathcal{W}_{s+1, \, b}f(z))}{q'(\zeta)}\right|\leq\frac{k}{|b-1|} \end{equation} $ (3.1)

$ \begin{equation}\label{2.3.22} \Big\{\phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z):z\in\mathbb{U}\Big\}\subset\Omega, \end{equation} $ (3.2)

$ \begin{equation}\label{2.3.23} z\mathcal{W}_{s+1, \, b}f(z)\prec q(z). \end{equation} $ (3.3)

 设

$ \begin{equation}\label{2.3.24} p(z)=z\mathcal{W}_{s+1, \, b}f(z)\quad (z\in\mathbb{U} ). \end{equation} $ (3.4)

通过(1.7)式, 可以发现

$ \begin{equation}\label{2.3.25} z(\mathcal{W}_{s+1, \, b}f)'(z)=(b-1)\mathcal{W}_{s, \, b}f(z)-b\mathcal{W}_{s+1, \, b}f(z). \end{equation} $ (3.5)

然后, 可以得出

$ \begin{equation}\label{2.3.26} z\mathcal{W}{s, \, b}f(z)=\frac{zp'(z)+(b-1)p(z)}{b-1}, \end{equation} $ (3.6)

推断出

$ \begin{equation}\label{2.3.27} z\mathcal{W}_{s-1, \, b}f(z)=\frac{z^{2}p''(z)+(2b-1)zp'(z)+(b-1)^{2}p(z)}{(b-1)^2}. \end{equation} $ (3.7)

进一步推断得到

$ \begin{equation}\label{2.3.28} z\mathcal{W}_{s-2, \, b}f(z)=\frac{z^{3}p'''(z)+3bz^{2}p''(z)+(3b^{2}-3b+1)zp'(z)+(b-1)^{3}p(z)}{(b-1)^3}. \end{equation} $ (3.8)

定义变量$a_1, a_2, a_3$$a_4$

$ \begin{eqnarray*} && a_1=r, \; a_2=\frac{s+(b-1)r}{b-1}, \; a_3=\frac{t+(2b-1)s+(b-1)^2r}{(b-1)^2}, \\ && a_4=\frac{u+3bt+(3b^2-3b+4)s+(b-1)^3r}{(b-1)^3}. \end{eqnarray*} $

现在定义变换形式

$ \begin{eqnarray} && \psi:\mathbb{C}^4\times \mathbb{U}\rightarrow\mathbb{C} , \nonumber\\ && \label{2.3.29} \psi(r, s, t, u;z)=\phi(a_1, a_2, a_3, a_4;z). \end{eqnarray} $ (3.9)

通过关系(3.5)-(3.8), 有

$ \begin{eqnarray}\label{2.3.30} &&\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z);z)\nonumber\\&=& \phi(z\mathcal{W}_{s+1, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z). \end{eqnarray} $ (3.10)

因此(3.2)式可写成$\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z); z)\in\Omega.$因为

$ \begin{equation*} \frac{t}{s}+1=\frac{(b-1)(a_3-a_1)}{a_2-a_1}-2(b-1) \end{equation*} $

$ \begin{equation*} \frac{u}{s}=\frac{(b-1)^2(a_4-a_1)-3b(b-1)(a_3-a_1)}{a_2-a_1}+3b^2-1, \end{equation*} $

所以在定义2.5中当$\phi\in\Phi_{\Gamma}[\Omega, q]$时, 结果可被证明.也可等价的看作$\psi$在定义2.2的条件$n=2$时可证明结果.注意到

$ \begin{equation*} \left|\frac{zp'(\zeta)}{q'(\zeta)}\right|=\left|\frac{(b-1)z(\mathcal{W}_{s, b}f(z)- \mathcal{W}_{s+1, b}f(z))}{q'(\zeta)}\right|\leq k. \end{equation*} $

因此$\psi\in\Psi_2[\Omega, q]$且通过引理2.1, 得到定理3.1.

如果$\Omega\neq\mathbb{C}$是一个单连通区域, 且$\Omega=h(\mathbb{U})$$\mathbb{U}$中的一些共形映射$h(z)$$\Omega$, 则函数类$\Phi_{\Gamma}[h(\mathbb{U}), q]$被看作$\Phi_{\Gamma}[h, q]$.可以得到以下结果.

推论3.1 设$\phi \in \Phi_{\Gamma}[h, q]$.如果$f(z)\in \Sigma$$q(z)\in Q_{1}$满足条件

$ \begin{equation}\label{2.3.31} \Re\left(\frac{\zeta q''(\zeta)}{q'(\zeta)}\right)\geq 0, \;\; \left|\frac{z(\mathcal{W}_{s, \, b}f(z)-\mathcal{W}_{s+1, \, b}f(z))}{q'(\zeta)}\right|\leq\frac{k}{|b-1|} \end{equation} $ (3.11)

$ \begin{equation}\label{2.3.32} \phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z) \prec h(z), \end{equation} $ (3.12)

$z\mathcal{W}_{s+1, \, b}f(z)\prec q(z).$

下面的推论是定理3.1的推广, 其中$q(z)$$\mathbb{U}$的边界$\partial\mathbb{U}$是未知的.

推论3.2 设$\Omega\subset\mathbb{C}, q(z)$$\mathbb{U}$中单叶且$q(0)=1$.又设$\sigma \in (0, 1)$$\phi\in\Phi_{\Gamma}[\Omega, q_{\sigma}]$成立, 其中$q_{\sigma}(z)=q(\sigma z)$.如果函数$f(z)\in \Sigma$满足

$ \begin{equation}\label{2.3.33} \Re\left(\frac{\zeta q^{''}_{\sigma}(\zeta)}{q^{'}_{\sigma}(\zeta)}\right)\geq 0, \;\; \left|\frac{z(\mathcal{W}_{s, \, b}f(z)-\mathcal{W}_{s+1, \, b}f(z))} {q_{\sigma}^{'}(\zeta)}\right|\leq\frac{k}{|b-1|} \end{equation} $ (3.13)

$ \begin{equation}\label{2.3.34} \phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z)\in\Omega, \end{equation} $ (3.14)

$z\mathcal{W}_{s+1, \, b}f(z)\prec q(z), $其中$z\in\mathbb{U}, \zeta\in\mathbb{U}\backslash\mathcal{E}(q_{\sigma})$.

 通过定理3.1, 可以得出$z\mathcal{W}_{s+1, \, b}f(z) \prec q_{\sigma}(z)$.因此从$q_{\sigma}(z)\prec q(z)$可以得到结果的证明.

推论3.3 设$\Omega\subset\mathbb{C}, q(z)$$\mathbb{U}$中单叶且$q(0)=1$.又设$\sigma \in (0, 1)$$\phi\in\Phi_{\Gamma}[\Omega, q_{\sigma}]$成立, 其中$q_{\sigma}(z)=q(\sigma z)$.如果函数$f(z)\in \Sigma$满足

$ \begin{equation}\label{2.3.35} \Re\left(\frac{\zeta q^{''}_{\sigma}(\zeta)}{q^{'}_{\sigma}(\zeta)}\right)\geq 0, \;\; \left|\frac{z(\mathcal{W}_{s, \, b}f(z)-\mathcal{W}_{s+1, \, b}f(z))} {q_{\sigma}^{'}(\zeta)}\right|\leq\frac{k}{|b-1|} \end{equation} $ (3.15)

$ \begin{equation}\label{2.3.36} \phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z)\prec h(z), \end{equation} $ (3.16)

$z\mathcal{W}_{s+1, \, b}f(z)\prec q(z), $其中$z\in\mathbb{U}, \zeta\in\mathbb{U}\backslash\mathcal{E}(q_{\sigma})$.

定理3.2 设$\phi \in \Phi'_{\Gamma}[\Omega, q]$.如果$f(z)\in\Sigma, \; z\mathcal{W}_{s, \, b}f(z)\in Q_1$

$ \begin{equation}\label{2.3.37} \Re\left(\frac{z q''(\zeta)}{q'(z)}\right)\geq 0, \;\; \left|\frac{z(\mathcal{W}_{s, \, b}f(z)-\mathcal{W}_{s+1, \, b}f(z))}{q'(z)}\right|\leq\frac{m}{|b-1|}, \end{equation} $ (3.17)
$ \Big\{\phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z):z\in\mathbb{U}\Big\} $

是单叶的, 且

$ \begin{equation}\label{2.3.38} \Omega\subset\Big\{\phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z):z\in\mathbb{U}\Big\}, \end{equation} $ (3.18)

$q(z)\prec z\mathcal{W}_{s+1, \, b}f(z).$

 设函数$p(z)$$\psi$分别被(2.1)式和(3.9)式定义.因为$\phi \in \Phi'_{\Gamma}[\Omega, q], $所以从(3.10)式和(3.18)式推出

$ \begin{equation*} \Omega\subset \Big\{\psi(p(z), zp'(z), z^2p''(z), z^3p'''(z);z):z\in \mathbb{U}\Big\}. \end{equation*} $

定义2.6中的允许条件$\phi \in \Phi'_{\Gamma}[\Omega, q]$等价与定义2.4中$n=2$时的允许条件.因此$\phi \in \Phi'_{2}[\Omega, q]$, 应用引理2.2和(3.18)式, 有$q(z)\prec p(z), $从而推出$q(z)\prec z\mathcal{W}_{s+1, \, b}f(z).$至此, 定理3.2被证明.

如果$\Omega\neq\mathbb{C}$是一个单连通区域, 且$\Omega=h(\mathbb{U})$$\mathbb{U}$中的一些共形映射$h(z)$$\Omega$, 则函数类$\Phi'_{\Gamma}[h(\mathbb{U}), q]$被看作$\Phi'_{\Gamma}[h, q]$.可以得到以下结果.

推论3.4 设$\phi \in \Phi'_{\Gamma}[h, q]$$h(z)$$\mathbb{U}$中解析.如果函数$f(z)\in\Sigma, \; z\mathcal{W}_{s, \, b}f(z)\in Q_1$

$ \Big\{\phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z):z\in\mathbb{U}\Big\} $

是单叶的, 且

$ \begin{equation}\label{2.3.39} h(z)\prec \phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z) , \end{equation} $ (3.19)

$ \begin{equation*} q(z)\prec z\mathcal{W}_{s+1, \, b}f(z). \end{equation*} $

结合推论3.1和推论3.4, 得到下面的Sandwich型双从属结果.

推论3.5 设$h_1(z)$$q_1(z)$$\mathbb{U}$中解析, $h_2(z)$$\mathbb{U}$中单叶, $q_2(z)\in Q_1$$q_1(0)=q_2(0)=1$, $\phi\in\Phi_{\Gamma}[h, q]\cap\Phi'_{\Gamma}[h, q]$.如果函数$f(z)\in\Sigma, z\mathcal{W}_{s+1, \, b}f(z)\in Q_1\cap \mathcal{H}$

$ \Big\{\phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z):z\in\mathbb{U}\Big\} $

$\mathbb{U}$中单叶, 且满足条件(3.11)式和(3.17)式, 则可由

$ \begin{equation}\label{3.3.41} h_1(z)\prec \phi(z\mathcal{W}_{s+1, \, b}f(z), z\mathcal{W}_{s, \, b}f(z), z\mathcal{W}_{s-1, \, b}f(z), z\mathcal{W}_{s-2, \, b}f(z);z)\prec h_2(z) \end{equation} $ (3.20)

推出

$ \begin{equation}\label{3.3.42} q_1(z)\prec z\mathcal{W}_{s+1, \, b}f(z)\prec q_2(z). \end{equation} $ (3.21)
参考文献
[1] Srivastava H M, Choi J. Series associated with the Zeta and related functions[M]. Dordrecht, Boston, London: Kluwer Academic Publishers, 2001.
[2] Srivastava H M, Choi J. Zeta and q-Zeta functions and associated series and integrals[M]. Amsterdam: Elsevier, 2012.
[3] Choi J, Srivastava H M. Certain families of series associated with the Hurwitz-Lerch Zeta function[J]. Appl. Math. Comput., 2005, 170: 399–409.
[4] Srivastava H M, Luo M J, Raina R K. New results involving a class of generalized Hurwitz-Lerch Zeta functions and their applications[J]. Turkish J. Anal. Number Theory, 2013, 1: 26–35.
[5] Lin S D, Srivastava H M. Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations[J]. Appl. Math. Comput., 2004, 154: 725–733.
[6] Garg M, Jain K, Srivastava H M. Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions[J]. Integral Trans. Spec. Funct., 2006, 17: 803–815. DOI:10.1080/10652460600926907
[7] Srivastava H M, Attiya A A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination[J]. Integral Trans. Spec. Funct., 2007, 18: 207–216. DOI:10.1080/10652460701208577
[8] Liu J L. Suffcient condtions for strongly starlike functions involving the generalized Srivastava-Attiya operator[J]. Integral Trans. Spec. Funct., 2011, 22: 79–90. DOI:10.1080/10652469.2010.498110
[9] Sun Y, Kuang W P, Wang Z G. Properties for uniformly starlike and related functions under the Srivastava-Attiya operator[J]. Appl. Math. Comput., 2011, 218: 3615–3623.
[10] Wang Z G, Liu Z H, Sun Y. Some properties of the generalized Srivastava-Attiya operator[J]. Integral Trans. Spec. Funct., 2012, 23: 223–236. DOI:10.1080/10652469.2011.585425
[11] Yuan S M, Liu Z M. Some properties of two subclasses of k-fold symmetric functions associated with Srivastava-Attiya operator[J]. Appl. Math. Comput., 2011, 218: 1136–1141.
[12] Wang Z G, Shi L. Some subclasses of meromorphic functions involving the Hurwitz-Lerch Zeta function[J]. Hacet. J. Math. Stat., 2016, 45: 1449–1460.
[13] Alhindi K R, Darus M. A new class of meromorphic functions involving the polylogarithm function[J]. J. Complex Anal., 2014, Art. ID 864805, 5 pp.
[14] Lashin A Y. On certain subclasses of meromorphic functions associated with certain integral operators[J]. Comput. Math. Appl., 2010, 59: 524–531. DOI:10.1016/j.camwa.2009.06.015
[15] Antonino J A, Miller S S. Third-order differential inequalities and subordinations in the complex plane[J]. Complex Var. Theory Appl., 2011, 56: 439–454. DOI:10.1080/17476931003728404
[16] Miller S S, Mocanu P T. Subordinants of differential superordinations[J]. Complex Var. Theory Appl., 2003, 48: 815–826.
[17] Tang H, Srivastava H M, Li S H, Ma L N. Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator[J]. Abstr. Appl. Anal., 2014, Art. ID 792175, 11 pp.