3 Cyclic and $(1+uv)$-Constacyclic Codes of Length $2^s$ Over $R$
Cyclic codes of length $2^s$ over $R$ are ideals of the residue ring $R_1=\frac{R[x]}{\langle x^{2^s}-1\rangle }$, and the $(1+uv)$-constacyclic codes of length $2^s$ over $R$ are ideals of the residue ring $R_2=\frac{R[x]}{\langle x^{2^s}-(1+uv)\rangle }$. It is easy to prove the following three lemmas.
Lemma 3.1 The following hold true in $R_1$:
(ⅰ) For any nonegative integer $t$, $(x-1)^{2^t}=x^{2^t}-1$.
(ⅱ) $x-1$ is nilpotent with the nilpotency index $2^s$.
Lemma 3.2 The following hold true in $R_2$.
(ⅰ) For any nonnegative integer $t$, $(x-1)^{2^t}=x^{2^t}-1$. In particular, $(x-1)^{2^s}=uv$.
(ⅱ) $x-1$ is nilpotent with the nilpotency index $2^{s+1}$.
Lemma 3.3 Let $f(x)\in R_1$ or $R_2$. Then $f(x)$ can be uniquely expressed as
$
\begin{aligned}
f(x)=&\sum\limits_{j=0}^{2^s-1}a_{0j}(x-1)^j+u\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j\\
=&a_{00}+(x-1)\sum\limits_{j=1}^{2^s-1}a_{0j}(x-1)^{j-1}+u\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j\\
&+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j,
\end{aligned}
$ |
where $a_{0j}, a_{1j}, a_{2j}, a_{3j}\in \mathbb{F}_2$. Furthermore, $f(x)$ is invertible if and only if $a_{00}\neq0$.
Proposition 3.4 The ring $R_1$ or $R_2$ is a local ring with the maximal ideal $\langle u, v, x-1\rangle$, but it is not a chain ring.
Proof By Lemma 3.3, the ideal $\langle u, v, x-1\rangle $ is the set of all non-invertible elements of $R_1$ or $R_2$. Hence $R_1$ or $R_2$ is a local ring with maximal ideal $\langle u, v, x-1\rangle $. Suppose $u\in \langle x-1\rangle .$ Then there must exist $f_1(x)$ and $f_2(x)\in R[x]$ such that $u=(x-1)f_1(x)+(x^{2^s}-1)f_2(x)$ or $u=(x-1)f_1(x)+[x^{2^s}-(1+uv)]f_2(x)$. However, this is impossible because plugging in $x=1$ yields $u=0$ or $u=uv$. Hence, $u\notin \langle x-1\rangle $. Similarly, $v\notin \langle x-1\rangle $. Next we suppose $x-1\in \langle u\rangle $ or $\langle v\rangle $. Then $(x-1)^2=0$, which is a contradiction with $s>1$. Therefore, the maximal ideal $\langle u, v, x-1\rangle$ of $R_1$ or $R_2$ is not principal. It means $R_1$ or $R_2$ is not a chain ring.
Theorem 3.5 All of cyclic codes of length $2^s$ over $R$, i.e., ideals of the ring $R_1$ are the following:
● Type 1: $\langle 0\rangle, \langle 1\rangle $;
● Type 2: $I=\langle uv(x-1)^\sigma\rangle $, where $0\leq \sigma \leq 2^s-1$;
● Type 3: $I=\langle v(x-1)^t+uv\sum\limits_{j=0}^{t} m_{1j}(x-1)^j\rangle $, where $0\leq t \leq 2^s-1$;
● Type 4: $I=\langle v(x-1)^t+uv\sum\limits_{j=0}^{t-1} m_{1j}(x-1)^j, uv(x-1)^z\rangle $, where $1\leq t \leq 2^s-1, z<t$;
● Type 5: $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l}h_{3j}(x-1)^j\rangle $, where $0\leq l \leq 2^s-1$;
● Type 6: $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l-1}h_{3j}(x-1)^j, uv(x-1)^t\rangle $, where $1\leq l \leq 2^s-1, t<l$;
● Type 7: $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{z}b_{3j}(x-1)^j\rangle $, where $0\leq l \leq 2^s-1, 0 \leq z \leq 2^s-1$;
● Type 8: $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{z-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{z-1}h_{3j}(x-1)^j,$ $v(x-1)^z+uv\sum\limits_{j=0}^{z-1}b_{3j}(x-1)^j, uv(x-1)^w\rangle, $where $1\leq l \leq 2^s-1, 1 \leq z \leq 2^s-1, $ and $w< \min \{l, z\}$;
● Type 9: $I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{i}a_{3j}(x-1)^j\rangle $, where $0\leq i\leq 2^s-1$;
● Type 10: $ I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, u(x-1)^l+$$v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j\rangle $, where $0\leq i \leq 2^s-1, 0\leq l \leq 2^s-1$ and $t\leq \min\{i, l\}$;
● Type 11: $ I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, u(x-1)^l+$$v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j, uv(x-1)^t\rangle $, where $0\leq i \leq 2^s-1, 0\leq l \leq 2^s-1$ and $t\leq \min\{i, l\}$;
● Type 12: $I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, u(x-1)^l+$$v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{t}b_{3j}(x-1)^j\rangle, $ where $0\leq i \leq 2^s-1, 0\leq l \leq 2^s-1, 0\leq z \leq 2^s-1$ and $t\leq \min\{i, l, z\}$;
● Type 13: $ I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{w}a_{3j}(x-1)^j, u(x-1)^l+$$v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{w}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{w}b_{3j}(x-1)^j, uv(x-1)^w\rangle $, where $0\leq i \leq 2^s-1, 0\leq l \leq 2^s-1, 0\leq z \leq 2^s-1$ and $w\leq \min\{i, l, z\}$.
Proof Ideals of Type 1 are the trivial ideals. Consider an arbitrary nontrivial ideals of $R_1$.
Case 1 $I\subseteq \langle v\rangle $. Any element of $I$ must have the form $v\sum\limits_{j=0}^{2^s-1}a_{0j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j$, where $a_{0j}, a_{1j}\in \mathbb{F}_2$.
Let
$
M=\{v\sum\limits_{j=0}^{2^s-1}a_{0j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j\in
I|\sum\limits_{j=0}^{2^s-1}a_{0j}(x-1)^j\neq 0\}
$ |
and $N=\{uv\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j\in I\}$. Suppose $M=\Phi$. Then there exists the smallest integer $\sigma$ such that $n(x)=uv(x-1)^\sigma n_1(x)$ for $n(x)\in N$, where $n_1(x)\in R_1$. It is easy to verify that $uv(x-1)^\sigma\in N$. Hence $I=\langle uv(x-1)^\sigma\rangle $, and $I$ is in Type 2.
Suppose $M\neq \Phi$. Setting $\alpha=\min\{\deg (m(x))|m(x)\in M\}$. Then there is an element $m_1(x)=v\sum m_{0j}(x-1)^j+uv\sum m_{1j}(x-1)^j\in M$ with $\deg (m_1(x))=\alpha$. It has the smallest $t$ such that $m_{0t}\neq 0$. Hence we have
$
m_1(x)=v(x-1)^t[m_{0t}+\sum\limits_{j=t+1}^{2^s-1}m_{0j}(x-1)^{j-t}]+uv\sum\limits_{j=0}^{2^s-1}
m_{1j}(x-1)^j\in I.
$ |
Let
$
m_2(x)=(x-1)^t[m_{0t}+\sum\limits_{j=t+1}^{2^s-1}m_{0j}(x-1)^{j-t}]+u\sum\limits_{j=0}^{2^s-1}
m_{1j}(x-1)^j.
$ |
Then $m_1(t)=vm_2(t).$
Now we have two subcases.
Case 1.1 $N\subseteq \langle m_1(x)\rangle $. For any $f(x)\in M$, obviously, $f(x)$ can be written as $f(x)=vf_1(x)$, where $f_1(x)=\sum\limits_{j=0}^{2^s-1}a_{0j}(x-1)^j+u\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j$. By Proposition 2.1, $f_1(x)$ can be written as $f_1(x)=q(x)m_2(x)+r(x)$, where $q(x), r(x)\in R_1$ and $r(x)=0$ or $\deg(r(x))<\deg(m_2(x))=\deg(m_1(x))$. It implies that $f(x)=q(x)m_1(x)+vr(x)$. Suppose $vr(x)\notin N.$ Then $vr(x)\neq0$. Hence $vr(x)=f(x)-q(x)m_1(x)\in M, $ which contradicts with the assumption of $m_1(x)$. Thus $vr(x)\in N$. Therefore, $I=\langle v(x-1)^t+uv\sum\limits_{j=0}^{t} m_{1j}(x-1)^j\rangle, $ $0\leq t \leq 2^s-1$. Thus $I$ is in Type 3.
Case 1.2 $N\nsubseteq \langle m_1(x)\rangle $. Then there exists the smallest integer $z$ such that $n(x)=uv(x-1)^z n_1(x)$ for every $n(x)\in N$, where $n_1(x)\in R_1$. It is easy to verify that $uv(x-1)^z\in N$, but $uv(x-1)^z\notin \langle m_1(x)\rangle $, and $z<t$. Hence
$
I=\langle v(x-1)^t+uv\sum\limits_{j=0}^{t-1} m_{1j}(x-1)^j, uv(x-1)^z\rangle, 1\leq t
\leq 2^s-1, 0\leq z < t.
$ |
Therefore, $I$ is in Type 4.
Case 2 $\langle v\rangle \varsubsetneq I \subseteq \langle u, v\rangle $. Any element of $I$ must have the form
$
u\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j,
$ |
and there exists an element $u\sum\limits_{j=0}^{2^s-1}b_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}b_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}b_{3j}(x-1)^j$ in $I$ such that $\sum\limits_{j=0}^{2^s-1}b_{1j}(x-1)^j\neq 0$.
Let
$
\begin{eqnarray*}M&=&\{u\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j\in
I\\
&&\mid \sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j\neq
0, a_{1j}, a_{2j}, a_{3j}\in \mathbb{F}_2\}, \end{eqnarray*}
$ |
and let $N=\{v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j\in I\mid a_{2j}, a_{3j}\in \mathbb{F}_2\}$. Then there is an element $\tilde{h}_1(x)=u\sum\limits_{j=0}^{2^s-1}\tilde{h}_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}\tilde{h}_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}\tilde{h}_{3j}(x-1)^j$ in $M$ that has the smallest $l$ such that $\tilde{h}_{1l}\neq0$. Hence we have
$
\tilde{h}_1(x)=u(x-1)^l[\tilde{h}_{1l}+\sum\limits_{j=l+1}^{2^s-1}\tilde{h}_{1j}(x-1)^{j-l}]+v\sum\limits_{j=0}^{2^s-1}\tilde{h}_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}\tilde{h}_{3j}(x-1)^j\in
I.
$ |
Since $\tilde{h}_{1l}\neq0$, $\tilde{h}_{1l}+\sum\limits_{j=l+1}^{2^s-1}\tilde {h}_{1j}(x-1)^{j-l}$ is invertible, and
$
h_2(x)=\tilde{h}_1(x)[\tilde{h}_{1l}+\sum\limits_{j=l+1}^{2^s-1}\tilde
{h}_{1j}(x-1)^{j-l}]^{-1}=u(x-1)^l+
v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+\\ uv\sum\limits_{j=0}^{2^s-1}h_{3j}(x-1)^j\in
I.
$ |
Because $vh_2(x)=uv(x-1)^l\in I$, we have
$
h_1(x)=u(x-1)^l+
v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l-1}h_{3j}(x-1)^j\in
I.
$ |
For any $m(x)\in M$, obviously, $m(x)$ can be written as
$
m(x)=u(x-1)^l\sum\limits_{j=l}^{2^s-1}a_{1j}(x-1)^{j-l}+v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j,
$ |
where $a_{1j}, a_{2j}, a_{3j}\in \mathbb{F}_2$. Thus we can assume that
$
m(x)-h_1(x)\sum\limits_{j=l}^{2^s-1}a_{1j}(x-1)^{j-l}=v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j\in
N.
$ |
Now we have two subcases.
Case 2.1 $N=\{0\}$. Then $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l}h_{3j}(x-1)^j\rangle $, where $0\leq l \leq 2^s-1$. Thus, $I$ is in Type 5.
Case 2.2 $N\neq \{0\}$. We denote
$
N_1=\{v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j\in
N\mid \sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j\neq0,
a_{2j}, a_{3j}\in \mathbb{F}_2\},
$ |
and $N_2=\{uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j\in N\mid a_{3j}\in \mathbb{F}_2\}$ in the following.
Again we have two subcases.
Case 2.2.1 $N_1=\Phi$. Then $N_2\neq \{0\}$. Therefore, there exists the smallest integer $t$ such that $n_2(x)=uv(x-1)^tq(x)$ for every $n_2(x)\in N_2=N$, where $q(x)\in R_1$. It is easy to verify that $uv(x-1)^t\in N_2=N$. Hence,
$
I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l-1}h_{3j}(x-1)^j, uv(x-1)^t\rangle .
$ |
Suppose that $t\geq l.$ Then
$
uv(x-1)^t=v(x-1)^{t-l}[u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l-1}h_{3j}(x-1)^j].
$ |
Thus, $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l-1}h_{3j}(x-1)^j\rangle $, it is in Type 5. We can assume without loss of generality that $t< l$, and thus
$
I=\langle
u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l-1}h_{3j}(x-1)^j, uv(x-1)^t\rangle,
$ |
where $1\leq l \leq 2^s-1$. Therefore, $I$ is in Type 6.
Case 2.2.2 $N_1\neq\Phi$. Then there is an element
$
\tilde{a}_1(x)=v\sum\limits_{j=0}^{2^s-1}\tilde{a}_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}\tilde{a}_{3j}(x-1)^j
$ |
in $N_1$ that has smallest $z$ such that $\tilde{a}_{2z}\neq0$. Hence we have
$
\tilde{b}_1(x)=v(x-1)^z[\tilde{b}_{2z}+\sum\limits_{j=z+1}^{2^s-1}\tilde{b}_{2j}(x-1)^{j-z}]+uv\sum\limits_{j=0}^{2^s-1}\tilde{b}_{3j}(x-1)^j\in
N_1.
$ |
Thus $b_1(x)=\tilde{b}_1(x)[\tilde{b}_{2z}+\sum\limits_{j=z+1}^{2^s-1}\tilde{b}_{2j}(x-1)^{j-z}]^{-1}\in I$ and $b_1(x)$ can be expressed as $b_1(x)=v(x-1)^z+uv\sum\limits_{j=0}^{z-1}b_{3j}(x-1)^j$.
For any $n_1(x)\in N_1$, obviously, $n_1(x)$ can be written as
$
n_1(x)=v(x-1)^z\sum\limits_{j=z}^{2^s-1}a_{2j}(x-1)^{j-z}+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j,
$ |
where $a_{2j}, a_{3j}\in \mathbb{F}_2$. Thus, we can assume that
$
n_1(x)-b_1(x)\sum\limits_{j=z}^{2^s-1}a_{2j}(x-1)^{j-z}=uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j\in
I.
$ |
If $N_2=\{0\}, $ then
$
I=\langle
u(x-1)^l+v\sum\limits_{j=0}^{2^s-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{l}b_{3j}(x-1)^j\rangle,
$ |
where $0\leq l \leq 2^s-1, 0 \leq z \leq 2^s-1$. Thus, $I$ is in Type 7.
If $N_2\neq \{0\}.$ Then there exists the smallest integer $w$ such that $n_2(x)=uv(x-1)^wq(x)$ for every $n_2(x)\in N_2$, where $q(x)\in R_1$. It is easy to verify that $uv(x-1)^w\in I$. Hence,
$
I=\langle u(x-1)^l+v\sum\limits_{j=0}^{z-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{z-1}h_{3j}(x-1)^j,
v(x-1)^z+uv\sum\limits_{j=0}^{z-1}b_{3j}(x-1)^j, \\uv(x-1)^w\rangle
,
$ |
where $1\leq l \leq 2^s-1, 1 \leq z \leq 2^s-1, $ and $w<\min \{l, z\}$. Thus, $I$ is in Type 8.
Case 3 $I\nsubseteq \langle u, v\rangle $. Let $I_{u, v}=\{f(x)\in \frac{\mathbb{F}_2[x]}{\langle x^{2^s}-1\rangle }\mid $ there are $g(x), h(x), m(x)\in \mathbb{F}_2[x]\diagup \langle x^{2^s}-1\rangle $ such that $f(x)+ug(x)+vh(x)+uvm(x)\in R_1\}$. Then $I_{u, v}$ is a nonzero ideal of the ring $\frac{\mathbb{F}_2[x]}{\langle x^{2^s}-1\rangle }$. It is a chain ring with ideals $\langle (x-1)^j\rangle $, where $0\leq j \leq 2^s$. Hence there is an integer $i\in \{0, 1, \cdots, 2^s-1\}$ such that $I_{u, v}=\langle (x-1)^i\rangle \subseteq \frac{\mathbb{F}_2[x]}{\langle x^{2^s}-1\rangle }.$ Therefore, there are three elements
$
c_i(x)=\sum\limits_{j=0}^{2^s-1}c^{(i)}_{0j}(x-1)^j+u\sum\limits_{j=0}^{2^s-1}c^{(i)}_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}c^{(i)}_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}c^{(i)}_{3j}(x-1)^j\in
R_1
$ |
for $i=1, 2, 3$ such that $(x-1)^i+uc_1(x)+vc_2(x)+uvc_3(x)\in I$, where $c^{(i)}_{0j}, c^{(i)}_{1j}, c^{(i)}_{2j}, c^{(i)}_{3j}\in \mathbb{F}_2$. Because
$
\begin{aligned}
&(x-1)^i+uc_1(x)+vc_2(x)+uvc_3(x)\\
=&(x-1)^i+u\sum\limits_{j=0}^{2^s-1}c^{(1)}_{0j}(x-1)^j
+v\sum\limits_{j=0}^{2^s-1}c^{(2)}_{0j}(x-1)^j
+uv\sum\limits_{j=0}^{2^s-1}(c^{(1)}_{2j}+c^{(2)}_{1j}+c^{(3)}_{0j})(x-1)^j\\
&=(x-1)^i+u\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j,
\end{aligned}
$ |
where $a_{1j}=c^{(1)}_{0j}, a_{2j}=c^{(2)}_{0j}, a_{3j}=c^{(1)}_{2j}+c^{(2)}_{1j}+c^{(3)}_{0j}, $ and for all $l$ with $i\leq l \leq 2^s-1$,
$
uv(x-1)^l=uv[(x-1)^i+u\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+\\ uv\sum\limits_{j=0}^{2^s-1}a_{3j}(x-1)^j](x-1)^{l-i}\in I.
$ |
It follows that
$
(x-1)^i+u\sum\limits_{j=0}^{2^s-1}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^s-1}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l-1}a_{3j}(x-1)^j\in I.
$ |
Hence it can be assumed without loss of generality that
$
a(x)=(x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{i}a_{3j}(x-1)^j\in
I.
$ |
Now we have two subcases.
Case 3.1 $I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{i}a_{3j}(x-1)^j\rangle $, where $0\leq i \leq 2^s-1$. Then $I$ is in Type 9.
Case 3.2 $\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+$$v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{i}a_{3j}(x-1)^j\rangle\varsubsetneq I $. For every $f(x)\in I \backslash \langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+$$v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{i}a_{3j}(x-1)^j\rangle $, there is an element $g(x)\in R_1$ such that
$
0\neq
b_f(x)=f(x)-g(x)[(x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+\\ uv\sum\limits_{j=0}^{i}a_{3j}(x-1)^j]\in
I,
$ |
and $b_f(x)$ can be expressed as
$
b_f(x)=\sum\limits_{j=0}^{i}b_{0j}(x-1)^j+u\sum\limits_{j=0}^{i}b_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}b_{2j}(x-1)^j+uv\sum\limits_{j=0}^{i}b_{3j}(x-1)^j\in
I,
$ |
where $b_{0j}, b_{1j}, b_{2j}, b_{3j}\in \mathbb{F}_2.$ Now, by the definition of $I_{u, v}$, we have
$
\sum\limits_{j=0}^{i}b_{0j}(x-1)^j\in I_{u, v}=\langle
(x-1)^i\rangle.
$ |
It implies that $b_{0j}$ for all $0\leq j \leq i$, i.e.,
$
b_f(x)=u\sum\limits_{j=0}^{i}b_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}b_{2j}(x-1)^j+uv\sum\limits_{j=0}^{i}b_{3j}(x-1)^j\in
I.
$ |
Similarly with Case 2, we have
$
\begin{aligned}
I=&\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, \\
&u(x-1)^l+v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j\rangle,
\end{aligned}
$ |
where $0\leq i \leq 2^s-1, 0\leq l \leq 2^s-1$ and $t\leq \min\{i, l\}$. Therefore, $I$ is in Type 10.
$
\begin{aligned}
I=&\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, u(x-1)^l\\
&+v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j, uv(x-1)^t\rangle,
\end{aligned}
$ |
where $0\leq i \leq 2^s-1, 0\leq l \leq 2^s-1$ and $t\leq \min\{i, l\}$. Thus, $I$ is in Type 11.
$
\begin{aligned}
I=&\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, \\
&u(x-1)^l+v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{t}b_{3j}(x-1)^j\rangle,
\end{aligned}
$ |
where $0\leq i \leq 2^s-1, 0\leq l \leq 2^s-1, 0\leq z \leq 2^s-1$ and $t\leq \min \{i, l, z\}$. Thus, $I$ is in Type 12.
$
\begin{aligned}
I=&\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{w}a_{3j}(x-1)^j, u(x-1)^l\\
&+v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{w}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{w}b_{3j}(x-1)^j, uv(x-1)^w\rangle,
\end{aligned}
$ |
where $0\leq i \leq 2^s-1, 0\leq l \leq 2^s-1, 0\leq z \leq 2^s-1$ and $w\leq \min\{i, l, z\}$. Thus, $I$ is in Type 13.
Similar to discussion in Theorem 3.5, and note that $(x-1)^{2^s}=uv$, we have following theorem.
Theorem 3.6 $(1+uv)$-constacyclic codes of length $2^s$ over $R$, i.e., ideals of the ring $R_2$ are
● Type 1: $\langle 0\rangle, \langle 1\rangle $;
● Type 2: $I=\langle uv(x-1)^\sigma\rangle $, where $0\leq \sigma \leq 2^{s}-1$;
● Type 3: $I=\langle v(x-1)^t+uv\sum\limits_{j=0}^{t} m_{1j}(x-1)^j\rangle $, where $0\leq t \leq 2^{s}-1$;
● Type 4: $I=\langle v(x-1)^t+uv\sum\limits_{j=0}^{t-1} m_{1j}(x-1)^j, uv(x-1)^z\rangle $, where $1\leq t \leq 2^{s}-1, z<t$;
● Type 5: $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^{s}-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l}h_{3j}(x-1)^j\rangle $, where $0\leq l \leq 2^{s}-1$;
● Type 6: $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^{s}-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l-1}h_{3j}(x-1)^j, uv(x-1)^t\rangle $, where $1\leq l \leq 2^{s}-1, t<l$;
● Type 7: $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{2^{s}-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{l}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{z}b_{3j}(x-1)^j\rangle $, where $0\leq l \leq 2^{s}-1, 0 \leq z \leq 2^{s}-1$;
● Type 8: $I=\langle u(x-1)^l+v\sum\limits_{j=0}^{z-1}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{z-1}h_{3j}(x-1)^j ,$$v(x-1)^z+uv\sum\limits_{j=0}^{z-1}b_{3j}(x-1)^j, uv(x-1)^w\rangle, $ where $1\leq l \leq 2^{s}-1, 1 \leq z \leq 2^{s}-1, $ and $w< \min \{l, z\}$;
● Type 9: $I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{i}a_{3j}(x-1)^j\rangle $, where $0\leq i \leq 2^{s}-1$;
● Type 10: $ I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, u(x-1)^l+$$ v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j\rangle $, where $0\leq i \leq 2^{s}-1, 0\leq l \leq 2^{s}-1$ and $t\leq \min\{i, l\}$;
● Type 11: $ I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, u(x-1)^l+$$ v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j, uv(x-1)^t\rangle $, where $0\leq i \leq 2^s-1, 0\leq l \leq 2^{s}-1$ and $t\leq \min\{i, l\}$;
● Type 12: $I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}a_{3j}(x-1)^j, u(x-1)^l+$$v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{t}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{t}b_{3j}(x-1)^j\rangle $, where $0\leq i \leq 2^{s}-1, 0\leq l \leq 2^{s}-1, 0\leq z \leq 2^{s}-1$ and $t\leq \min \{i, l, z\}$;
● Type 13: $ I=\langle (x-1)^i+u\sum\limits_{j=0}^{i}a_{1j}(x-1)^j+v\sum\limits_{j=0}^{i}a_{2j}(x-1)^j+uv\sum\limits_{j=0}^{w}a_{3j}(x-1)^j, u(x-1)^l+$$v\sum\limits_{j=0}^{i}h_{2j}(x-1)^j+uv\sum\limits_{j=0}^{w}h_{3j}(x-1)^j, v(x-1)^z+uv\sum\limits_{j=0}^{w}b_{3j}(x-1)^j, uv(x-1)^w\rangle $, where $0\leq i \leq 2^{s}-1, 0\leq l \leq 2^{s}-1, 0\leq z \leq 2^{s}-1$ and $w\leq \min\{i, l, z\}$.
4 Constacyclic Codes of Length $2^s$ over $R$
In this section, we discuss the $\lambda$-constacyclic codes,
$
\lambda=1+u, 1+v, 1+u+uv, 1+v+uv, 1+u+v, 1+u+v+uv.
$ |
First, we study the structure of the $(1+u)$-constacyclic codes of length $2^s$ over $R$. Obviously, $(1+u)$-constacyclic codes of length $2^s$ over $R$ are ideals of the residue ring $R_3=\frac{R[x]}{\langle x^{2^s}-(1+u)\rangle }$. It is easy to verify the following lemmas.
Lemma 4.1 The following hold true in $R_3$.
(ⅰ) For any nonnegative integer $t$, $(x-1)^{2^t}=x^{2^t}-1$. In particular, $(x-1)^{2^s}=u$.
(ⅱ) $x-1$ is nilpotent with the nilpotency index $2^{s+1}$.
Lemma 4.2 Let $f(x)\in R_3$. Then $f(x)$ can be uniquely expressed as
$
f(x)=\sum\limits_{j=0}^{2^{s+1}-1}a_{0j}(x-1)^j+v\sum\limits_{j=0}^{2^{s+1}-1}a_{1j}(x-1)^j,
$ |
where $a_{0j}, a_{1j}\in \mathbb{F}_2$. Furthermore, $f(x)$ is invertible if and only if $a_{00}\neq0$
Proof Since each element $r\in R$ has a unique presentation $r=r_1+ur_2+vr_3+uvr_4$, where $r_1, r_2, r_3, r_4\in \mathbb{F}_2, $ each element $f(x)$ over $R_3$ can be uniquely represented as
$
f(x)=\sum\limits_{j=0}^{2^{s+1}-1}b_{0j}(x-1)^j+u\sum\limits_{j=0}^{2^{s+1}-1}b_{1j}(x-1)^j+v\sum\limits_{j=0}^{2^{s+1}-1}b_{2j}(x-1)^j+uv\sum\limits_{j=0}^{2^{s+1}-1}b_{3j}(x-1)^j.
$ |
Because $(x-1)^{2^s}=u$ in $R_3$, it can be uniquely represented without loss of generality that $f(x)=\sum\limits_{j=0}^{2^{s+1}-1}a_{0j}(x-1)^j+v\sum\limits_{j=0}^{2^{s+1}-1}a_{1j}(x-1)^j$, where $a_{0j}, a_{1j}\in \mathbb{F}_2$. The last assertion follows from the fact that $v$ and $x-1$ are both nilpotent in $R_3$.
Similar to the discussions in Proposition 3.3, we have the following proposition.
Proposition 4.3 The ring $R_{3}$ is a local ring with the maximal ideals $\langle v, x-1\rangle$, but it is not a chain ring.
Following the proposition and lemmas above, we can list all $(1+u)$-constacyclic codes of length $2^s$ over $R_3$ as follows.
Theorem 4.4 $(1+u)$-constacyclic codes of length $2^s$ over $R$, i.e., ideals of the ring $R_3$ are
● Type 1: $\langle 0\rangle, \langle 1\rangle $;
● Type 2: $I=\langle v(x-1)^k\rangle $, where $0\leq k \leq 2^{s}-1$;
● Type 3: $I=\langle (x-1)^l+v\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j\rangle $, where $1\leq l \leq 2^{s+1}-1$;
● Type 4: $I=\langle (x-1)^l+v\sum\limits_{j=0}^{w-1}c_{1j}(x-1)^j, v(x-1)^w\rangle $, where $1\leq l \leq 2^{s+1}-1, ~w\leq l$.
Proof Ideals of Type 1 are the trivial ideals. Consider an arbitrary nontrivial ideal of $R_3$.
Case 1 $I\subseteq \langle v\rangle $. Any element of $I$ must have the form $v\sum\limits_{j=0}^{2^{s+1}-1}a_{0j}(x-1)^j$, where $a_{0j}\in \mathbb{F}_2$. Let $b(x)\in I$ be an element that has the smallest $k$ such that $a_{0k}\neq 0$. Hence all element $a(x)\in I$ have the form
$
a(x)=v(x-1)^k\sum\limits_{j=k}^{2^{s+1}-1}a_{0j}(x-1)^{j-k},
$ |
which implies $I\subseteq \langle u(x-1)^k\rangle $.
On the other hand, we have $b(x)\in I$ with
$
b(x)=v(x-1)^k[a_{0k}+\sum\limits_{j=k+1}^{2^{s+1}-1}a_{0j}(x-1)^{j-k}].
$ |
As $a_{0k}\neq 0$, $a_{0k}+\sum\limits_{j=k+1}^{2^{s+1}-1}a_{0j}(x-1)^{j-k}$ is invertible, and $v(x-1)^k\in I.$ That is to say, the ideal of $R_3$ contained in $\langle v\rangle $ are $\langle v(x-1)^k\rangle, 0 \leq k \leq 2^{s+1}-1.$ It means that $I$ is in Type 2.
Case 2 $I\nsubseteq \langle v\rangle $. Any element of $I$ must have the form
$
\sum\limits_{j=0}^{2^{s+1}-1}a_{0j}(x-1)^j+v\sum\limits_{j=0}^{2^{s+1}-1}a_{1j}(x-1)^j,
$ |
and there exists a polynomial
$
\sum\limits_{j=0}^{2^{s+1}-1}b_{0j}(x-1)^j+v\sum\limits_{j=0}^{2^{s+1}-1}b_{1j}(x-1)^j
$ |
in $I$ such that $\sum\limits_{j=0}^{2^{s+1}-1}b_{0j}(x-1)^j\neq 0$. Let
$
M=\{\sum\limits_{j=0}^{2^{s+1}-1}a_{0j}(x-1)^j+v\sum\limits_{j=0}^{2^{s+1}-1}a_{1j}(x-1)^j\in
I\mid
\sum\limits_{j=0}^{2^{s+1}-1}a_{0j}(x-1)^j\neq0, a_{0j}, a_{1j}\in
\mathbb{F}_2\}
$ |
and $N=\{v\sum\limits_{j=0}^{2^{s+1}-1}a_{1j}(x-1)^j\in I\mid a_{1j}\in \mathbb{F}_2\}.$ Setting $\delta= \min\{\deg (m(x))\mid m(x)\in M\}$. Suppose that $H=\{h(x)\in M\mid \deg (h(x))=\delta\}$. Then there is an element
$
h_1(x)=\sum\limits_{j=0}^{2^{s+1}-1}h_{0j}(x-1)^j+v\sum\limits_{j=0}^{2^{s+1}-1}h_{1j}(x-1)^j
$ |
in $H$ that has the smallest $l$ such that $h_{0l}\neq 0$. Hence we have
$
h_1(x)=(x-1)^l[h_{0l}+\sum\limits_{j=l+1}^{2^{s+1}-1}h_{0j}(x-1)^{j-l}]+v\sum\limits_{j=0}^{2^{s+1}-1}h_{1j}(x-1)^j\in
M \subset I.
$ |
Now, we have two subcases.
Case 2.1 $N\subseteq \langle h_1(x)\rangle $. For any $f(x)\in M$, by Proposition 2.1, $f(x)$ can be written as $f(x)=q(x)h_1(x)+r(x), $ where $q(x), r(x)\in R_3, $ and $r(x)=0$ or $\deg (r(x))< \deg(h_1(x))$. Suppose $r(x)\notin N.$ Then $r(x)\neq 0$. Hence $r(x)=f(x)-q(x)h_1(x)\in M, $ which contradicts with the assumption of $h_1(x)$. Thus $r(x)\in N.$ Therefore, $I=\langle h_1(x)\rangle $. Because $vh_1(x)=v(x-1)^l[h_{0l}+\sum\limits_{j=l+1}^{2^{s+1}-1}h_{1j}(x-1)^{j-t}]\in I$ and $h_{0l}+\sum\limits_{j=l+1}^{2^{s+1}-1}h_{0j}(x-1)^{j-t}$ is an invertible element in $R_3$, $v(x-1)^l\in I, $ it follows that
$
\tilde{h}_1(x)=(x-1)^l[h_{0l}+\sum\limits_{j=l+1}^{2^{s+1}-1}h_{0j}(x-1)^{j-l}]+v\sum\limits_{j=0}^{l-1}h_{1j}(x-1)^j\in
I.
$ |
Thus
$
c(x)=\tilde{h}_1(x)[h_{0l}+\sum\limits_{j=l+1}^{2^{s+1}-1}h_{0j}(x-1)^{j-l}]^{-1}\in
I
$ |
and $c(x)$ can be expressed as $c(x)=(x-1)^l+v\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j$, where $c_{1j} \in \mathbb{F}_2.$ Therefore,
$
I=\langle (x-1)^l+v\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j\rangle,
$ |
where $1\leq l \leq 2^{s+1}-1.$ Hence $I$ is in Type 3.
Case 2.2 $N\nsubseteq \langle h_1(x)\rangle =\langle c(x)\rangle $. Then there exists the smallest integer $w$ such that $n(x)=v(x-1)^wn_1(x)$ for every $n(x)\in N, $ where $n_1(x)\in R_3.$ Obviously, $v(x-1)^w\in N, $ but $v(x-1)^w\notin \langle h_1(x)\rangle =\langle c(x)\rangle $. Hence $I=\langle (x-1)^l+v\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j, v(x-1)^w\rangle .$
Suppose that $w> l.$ Then
$
v(x-1)^w=v(x-1)^{w-l}[(x-1)^l+v\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j]\in
\langle c(x)\rangle .
$ |
It is impossible. Thus
$
I=\langle (x-1)^l+v\sum\limits_{j=0}^{w-1}c_{1j}(x-1)^j, v(x-1)^w\rangle,
$ |
where $1\leq l \leq 2^{s+1}-1, ~w\leq l$. Therefore, $I$ is in Type 4.
Next we study the structure of $(1+v), (1+u+uv), (1+v+uv), (1+u+v), (1+u+v+uv)$-constacyclic codes of length $2^s$ over $R$. Similar to the discussion in Theorem 4.4, we have the following theorems.
Theorem 4.5 $(1+u+uv), (1+u+v), (1+u+v+uv)$-constacyclic codes over $R$ are
● Type 1: $\langle 0\rangle, \langle 1\rangle $;
● Type 2: $I=\langle v(x-1)^k\rangle $, where $0\leq k \leq 2^{s+1}-1$;
● Type 3: $I=\langle (x-1)^l+v\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j\rangle $, where $1\leq l \leq 2^{s+1}-1$;
● Type 4: $I=\langle (x-1)^l+v\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j, v(x-1)^w\rangle $, where $1\leq l \leq 2^{s+1}-1, ~w\leq l$.
Proof
$
f(x)=\sum\limits_{j=0}^{2^{s+1}-1}a_{0j}(x-1)^j+v\sum\limits_{j=0}^{2^{s+1}-1}a_{1j}(x-1)^j,
$ |
where $a_{0j}, a_{1j}\in \mathbb{F}_2$. Furthermore, $f(x)$ is invertible if and only if $a_{00}\neq0$.
Now, Similar to the discussion in Theorem 4.4, we can complete the proof of statement.
Theorem 4.6 $(1+v), (1+v+uv)$-constacyclic codes over $R$ are
● Type 1: $\langle 0\rangle, \langle 1\rangle $;
● Type 2: $I=\langle u(x-1)^k\rangle $, where $0\leq k \leq 2^{s+1}-1$;
● Type 3: $I=\langle (x-1)^l+u\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j\rangle $, where $1\leq l \leq 2^{s+1}-1$;
● Type 4: $I=\langle (x-1)^l+u\sum\limits_{j=0}^{l-1}c_{1j}(x-1)^j, u(x-1)^w\rangle $, where $1\leq l \leq 2^{s+1}-1, w\leq l$.
Proof $f(x)=\sum\limits_{j=0}^{2^{s+1}-1}a_{0j}(x-1)^j+u\sum\limits_{j=0}^{2^{s+1}-1}a_{1j}(x-1)^j$, where $a_{0j}, a_{1j}\in \mathbb{F}_2$. Furthermore, $f(x)$ is invertible if and only if $a_{00}\neq0$.
Now, in the proof of Theorem 4.4, we replace each $v$ by $u$ and get our statement.