数学杂志  2018, Vol. 38 Issue (5): 771-781   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
CHEN Rui-juan
MENG Fan-yun
WEIGHTED INEQUALITIES FOR MAXIMAL OPERATOR IN ORLICZ MARTINGALE CLASSES
CHEN Rui-juan1, MENG Fan-yun2    
1. Guangling College, Yangzhou University, Yangzhou 225002, China;
2. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China
Abstract: In this paper, we study weighted inequalities for maximal operators in Orlicz martingale classes. By using the properties of weights, we obtain that inequalities of a(·) and b(·) imply weighted inequalities involving maximal operator in uniformly integral martingale classes. The converse is also considered, which extends the theory of class L log L.
Key words: martingale space     maximal operator     weighted inequality     regular condition    
Orlicz鞅类中极大算子的加权不等式
陈瑞娟1, 孟凡云2    
1. 扬州大学广陵学院, 江苏 扬州 225002;
2. 扬州大学数学科学学院, 江苏 扬州 225002
摘要:本文研究了极大算子的加权不等式.利用权的性质,证明了a(·)和b(·)的不等式蕴含极大算子的加权不等式,也证明了相应的逆命题.本文的结果将L log L的相关理论拓展到了加权的Orlicz鞅类中.
关键词鞅空间    极大算子    加权不等式    正则条件    
1 Introduction

As is well known, for the real-valued local integrable functions $f$ on $\mathbb{R}^n, $ the classical Hardy-Littlewood maximal operator $M$ is defined by

$ Mf(x)=\sup\limits_{x\in Q}\frac{1}{|Q|}\displaystyle\int_Q|f(y)|dy, $

where $Q$ is a non-degenerate cube with its sides paralleled to the coordinate axes and $|Q|$ is the Lebesgue measure of $Q.$

Suppose that $ {\it\Phi}: [0, \infty)\rightarrow \mathbb{R} $ is nondecreasing and continuous with $ {\it\Phi}(0)=0$ and $\lim\limits_{t\rightarrow+\infty}{\it\Phi}(t)=\infty.$ Let

$ L^{{\it\Phi}}=\Big\{f:~\displaystyle\int_{R^n} {\it\Phi}(\varepsilon|f|)dx <\infty~ \hbox{ for some }\varepsilon>0 \Big\}. $

Then $L^{\it{\Phi}}$ is called an Orlicz space. In Orlicz spaces, Kokilashvili and Krbec [1, Theorem 1.2.1] stated that the following statements are equivalent:

(a) there exists a positive constant $C$ such that

$ \begin{equation} \label{Booka1} \displaystyle\int_{{\mathbb{R}^n}}{\it\Phi}(Mf)dx\leq C\displaystyle\int_{{\mathbb{R}^n}}{\it\Phi}(C|f|)dx, ~~\forall f\in L^1_{\hbox{loc}}; \end{equation} $ (1.1)

(b) the function ${\it\Phi}^\alpha$ is quasi-convex for some $\alpha\in(0, 1).$

When $ {\it\Phi}(t)=\frac{t^p}{p}, ~~p>1, $ $L^{\it{\Phi}}$ is the space $L^p.$ The above result implies that $M$ is bounded on $L^p$ for $1 <p < \infty$ (see Grafakos [2, Theorem 2.1.6]) and unbounded on $L^1$(see Grafakos [2, Example 2.1.2]). In fact, $M$ maps $L^1$ to $L^{1, \infty}$ (see Grafakos [2, Theorem 2.1.6]).

Let $\mathbb{T}$ be the group of real numbers modulo $2\pi$ and $f(x)$ a real-valued integrable function denoted on $\mathbb{T}$ with period $2\pi.$ The Hardy-Littlewood maximal function $M_{\mathbb{T}}f(x)$ is defined by $M_{\mathbb{T}}f(x)=\sup\limits_{x\in I}\frac{1}{|I|}\displaystyle\int_I|f(y)|dy, $ where the supremum taken over all open $I\subseteq\mathbb{T}$ with $x\in I.$

Let $a(s)$ and $b(s)$ be two positive nondecreasing continuous functions defined on $[0, \infty)$ satisfying

$ \displaystyle\int_0^1\frac{a(s)}{s}ds=K <+\infty, $ (1.2)
$ \displaystyle\int_1^\infty\frac{a(s)}{s}ds=+\infty $ (1.3)

and

$ \begin{equation} \label{a2}\lim\limits_{s\rightarrow\infty}b(s)=+\infty. \end{equation} $ (1.4)

Then, we define

$ \begin{equation} \label{a3}{\it\Phi}(t)=\displaystyle\int_0^ta(s)ds, ~~~{\it\Psi}(t)=\displaystyle\int_0^tb(s)ds, ~\forall t\geq0. \end{equation} $ (1.5)

Under hypotheses (1.3)–(1.5), a series of inequalities involving $M_{\mathbb{T}}f$ and $f$ were obtained. Kita [3, Theorem 2.1] gave necessary and sufficient conditions for $a(\cdot)$ and $b(\cdot)$ in order to guarantee that $M_{\mathbb{T}}f$ is in $L^{\it{\Phi}}$ whenever $f$ is in $L^{\it{\Psi}}.$ Conversely, Kita [4, Theorem 2.1] stated necessary and sufficient conditions for $a(\cdot)$ and $b(\cdot)$ in order to guarantee that a function $f$ is in $L^{\it{\Psi}}$ whenever the function $M_{\mathbb{T}}f$ is in $L^{\it{\Phi}}, $ which is a generalization of [5, Theorem 5.4] to functions in an Orlicz space $L^{\it{\Psi}}$ and also a generalization of the result of [6, Theorem 3.1]. These are related to the class of $L\log L.$ The class was introduced by Zygmund to give a sufficient condition on the local integrability of the Hardy-Littlewood maximal operator. The necessity of this condition was observed by Stein [7].

Under the additional hypothesis $(1.2), $ Kita [8, Theorem 2.3, Theorem 2.5] extended the above results [3, Theorem 2.1] and [4, Theorem 2.1] to the cases on $\mathbb{R}^n.$ Moreover, Kita [9, 10] obtained the related weighted theory on $\mathbb{R}^n.$ Specially, Kita [10] also dealt with the iterated maximal operator.

Comparing with the results without weights on $\mathbb{R}^n$ and $\mathbb{T}$, Mei and Liu [11, 12] considered the martingale cases. In our paper, we prove weighted inequalities for maximal operators in Orlicz martingale classes. Let us introduce some preliminaries.

Let $(\Omega, \mathcal {F}, \mu)$ be a complete probability space, and $(\mathcal {F}_n)_{n\geq0}$ be an increasing sequence of sub-$\mathcal {F}$-fields of $\mathcal{F}$ with $\mathcal{F}=\bigvee\mathcal{F}_n.$ If $f=(f_n)_{n\geq0}$ is a martingale adapted to $(\mathcal {F}_n)_{n\geq0}, $ the maximal function (operator) $Mf$ for martingale $f=(f_n)$ is defined by $Mf=\sup\limits_{n\geq 0}|f_n|.$ In this paper, the limit of $f_n$ is also denoted by $f.$ Specifically, $\big({\Omega}, (\mathcal {F}_n)_{n\geq0}, \mathcal{F}, \nu\big)$ is said to satisfy the $R\hbox{-condition}$ (or simply $\nu\in R$), if for all $n\geq1, ~F_n\in\mathcal {F}_n, $ there exists a $G_n\in \mathcal {F}_{n-1}$ such that $F_n\subset G_n$ and $\nu(G_n)\leq d\cdot\nu(F_n).$ In our paper, we assume that $\mathcal {F}_{0}=\{\emptyset, \Omega\}.$

A weight $\omega$ is a positive random variable with $E \omega <\infty.$ For convenience, we assume $E \omega=1$ in this paper. In addition, we say $\omega\in A_1$ (or $B_1$), if $\omega^{-1}\in L^{\infty}(d\mu)$ and there exists a constant $C\geq1$ such that $\omega_n\leq C \omega$ (or $C \omega_n\geq\omega$). Moreover, for the weights as above, a function $f\in L^1(\omega d\mu)$ implies $f\in L^1(d\mu).$

Let $a(s), $ $b(s), $ $\it{\Phi(t)}$ and $\it{\Psi(t)}$ satisfy (1.2)-(1.5). It is clear that $\it{\Phi}$ and $\it{\Psi}$ are convex. Recall that $L^{\it{\Phi}}(d\mu)\cup L^{\it{\Psi}}(d\mu)\subset L^1(d\mu)$ when $\mu({\Omega}) <\infty.$

Then we have the following Theorems 1.1 and 1.2, which are martingale versions of [8, Theorem 2.3]. Kita [8, Theorem 2.3] gave an assumption that the function $\frac{a(s)}{s}$ is bounded in a neighborhood of zero. However, we do not need the assumption in our Theorems 1.1 and 1.2.

Theorem 1.1 Let $\omega\in A_1.$ Suppose that there exists a positive constant $C_1$ such that

$ \begin{equation} \label{2b1} \displaystyle\int_1^s\frac{a(t)}{t}dt\leq C_1b(C_1s), ~s\geq1. \end{equation} $ (1.6)

Then there exist positive constants $C_2$ and $C_3$ such that

$ \begin{equation} \label{2bb1}\displaystyle\int_{{\Omega}}{\it\Phi}(Mf)\omega d\mu\leq C_2\|f\|_{L^1(\omega d\mu)}+C_2\displaystyle\int_{{\Omega}}{\it\Psi}(C_3|f|)\omega d\mu, \end{equation} $ (1.7)

where $C_2$ and $C_3$ are constants independent of $f=(f_n).$

Theorem 1.2 Let $(\Omega, \mathcal {F}, \omega)$ be non-atomic and $\omega\in R\cap B_1.$ Suppose that $f\in L^{\it{\Psi}}(\omega d\mu)$ implies $Mf\in L^{{\it\Phi}}(\omega d\mu).$ Then $(1.6)$ holds.

Following from Theorems 1.1 and 1.2, we easily have Corollaries 1.3 and 1.4, respectively.

Corollary 1.3 Let $\omega\in A_1.$ Suppose that $(1.6)$ is valid, then $Mf\in L^{\it{\Phi}}(\omega d\mu)$ for all $f\in L^{\it{\Psi}}(\omega d\mu).$

Corollary 1.4 Let $(\Omega, \mathcal {F}, \omega)$ be non-atomic and $\omega\in R\cap B_1.$ Suppose that $(1.7)$ is valid, then we have $(1.6).$

We consider the converse inequality of maximal functions. Theorems 1.5 and 1.6 are martingale versions of [8, Theorem 2.5] and involve weights.

Theorem 1.5 Let $\omega\in B_1\cap R.$ Suppose that there exist positive constants $C_6$ and $s_0>1$ such that

$ \begin{equation} \label{add2} \displaystyle\int_1^s\frac{a(t)}{t}dt\geq C_6b(C_6s), ~s\geq s_0. \end{equation} $ (1.8)

Then there exist positive constants $C_7$ and $C_8$ such that

$ \begin{equation} \label{add3}\displaystyle\int_{{\Omega}}{\it\Psi}(C_7|f|)\omega d\mu\leq C_8\|f\|_{L^1(\omega d\mu)}+C_8 \displaystyle\int_{{\Omega}}{\it\Phi}(M(|f|))\omega d\mu, \end{equation} $ (1.9)

where $C_7$ and $C_8$ are constants independent of $f=(f_n)$ and $\|f\|_{L^1(\omega d\mu)}\leq1.$

Theorem 1.6 Let $(\Omega, \mathcal {F}, \omega)$ be non-atomic and $\omega\in A_1.$ Suppose that $(1.9)$ is valid. Then $(1.8)$ holds.

We easily obtain Corollary 1.7 by Theorems 1.5. In addition, following the proof of Theorem 1.6, we have Corollary 1.8.

Corollary 1.7 Let $\omega\in B_1\cap R.$ Suppose that $(1.8)$ is valid. Then $f\in L^{\it{\Psi}}(\omega d\mu)$ for all $f$ satisfying $Mf\in L^{\it{\Phi}}(\omega d\mu).$

Corollary 1.8 Let $(\Omega, \mathcal {F}, \omega)$ be non-atomic and $\omega\in A_1.$ Suppose that $Mf\in L^{\it{\Phi}}(\omega d\mu)$ implies $f\in L^{\it{\Psi}}(\omega d\mu).$ Then $(1.8)$ holds.

2 Proofs of Theorems

First, we give some lemmas which will be used in our proofs several times.

Lemma 2.1 Suppose that $\nu$ is an finite measure on $({\Omega}, \mathcal {F}), $ then for each function $f\in L^1(d\nu), $ we have

$ \begin{equation} \label{3a1}\displaystyle\int_{\{|f|>t\}}|f|d\nu=t\cdot\nu\{|f|>t\}+\displaystyle\int^\infty_t\nu\{|f|>s\}ds, ~t>0. \end{equation} $ (2.1)

Proof The proof follows in the same way as the proof of [9, Lemma 3.1].

Lemma 2.2 Let $\omega\in A_1$. Then there exists a positive constant $C_0$ such that

$ \begin{equation}\omega\{Mf>\lambda\} \leq\frac{C_0}{\lambda}\displaystyle\int_{\{|f|>\frac{\lambda}{2}\}}|f|\omega d\mu \end{equation} $ (2.2)

for all $\lambda>0$ and $f\in L^1(\omega d\mu).$

Proof By the assumption that $\omega\in A_1, $ there exists a positive constant $C$ such that

$ \omega\{Mg>\lambda\} \leq\frac{C}{\lambda}\|g\|_{L^1(\omega)}, ~~g\in L^1(\omega) $

in view of [13, Theorem 6.6.2]. For $\lambda>0, $ we set $f_\lambda=f\cdot\chi_{\{|f|\leq\frac{\lambda}{2}\}}$ and $f^\lambda=f-f_\lambda.$ Then $f^\lambda\in L^1(\omega)$ and $ Mf_\lambda=\sup\limits_{n\geq0}|E_n(f_\lambda)| \leq\sup\limits_{n\geq0}E_n(|f_\lambda|) \leq\frac{\lambda}{2}.$ It follows that

$ \omega\{Mf>\lambda\} \leq\omega\{Mf_\lambda>\frac{\lambda}{2}\}+ \omega\{Mf^\lambda>\frac{\lambda}{2}\} \leq\frac{C_0}{\lambda}\displaystyle\int_{\{|f|>\frac{\lambda}{2}\}}|f|\omega d\mu, $

where $C_0=2C.$

Lemma 2.3 Let $\omega\in A_1$. Then there exists a positive constant $C$ such that

$ \begin{equation}\label{add3d1}\omega\{Mf>t\} \leq\frac{C}{t}\displaystyle\int_{\frac{t}{2}}^\infty\omega\{|f|>s\} ds \end{equation} $ (2.3)

for all $t>0$ and $f\in L^{\it{\Psi}}(\omega).$

Proof Fix $f\in L^{\it{\Psi}}(\omega d\mu).$ For $t>0, $ set $ f_t=(|f|\wedge\frac{t}{2})\cdot\mathop{\hbox{sign}}f$ and $f^t=f-f_t.$ Trivially, we have $f^t\in L^1(\omega).$ By Lemma $2.2, $ we also have

$ \begin{equation}\label{3e1}\omega\{Mf^t>\lambda\} \leq\frac{C_0}{\lambda}\displaystyle\int_{\{|f^t|>\frac{\lambda}{2}\}}|f^t|\omega d\mu. \end{equation} $ (2.4)

Let $\lambda=\frac{t}{2}$ in $(2.4).$ It follows that

$ \begin{equation}\label{3f1}\omega\{Mf^t>\frac{t}{2}\} \leq\frac{2C_0}{t}\displaystyle\int_{{\Omega}}|f^t|\omega d\mu. \end{equation} $ (2.5)

Hence,

$ \omega\{Mf>t\} \leq \omega\{Mf^t>\frac{t}{2}\}+\omega\{Mf_t>\frac{t}{2}\} =\omega\{Mf^t>\frac{t}{2}\}\\ \leq \frac{2C_0}{t}\displaystyle\int_{{\Omega}}|f^t|\omega d\mu =\frac{2C_0}{t}\displaystyle\int_{\{|f|>\frac{t}{2}\}} |f-\frac{t}{2}\cdot\mathop{\hbox{sign}}f|\omega d\mu\\ = \frac{2C_0}{t}\displaystyle\int_{\{|f|>\frac{t}{2}\}} \Big||f|-\frac{t}{2}\Big|\omega d\mu =\frac{2C_0}{t}\displaystyle\int_{\{|f|>\frac{t}{2}\}} (|f|-\frac{t}{2})\omega d\mu. $

Combining with (2.1), we have (2.3) is valid with $C=2C_0.$

Proof of Theorem 1.1 For $C_3>0$ (which will be determined later), fix $f\in L^{\it{\Psi}}(\omega d\mu)$ such that $\displaystyle\int_{{\Omega}}{\it\Psi}(C_3|f|)\omega d\mu <\infty.$ With the constant $C$ in Lemma $2.3, $ it follows from (1.2), (1.3) and (1.6) that

$ \displaystyle\int_{{\Omega}}\it{\Phi}(Mf)\omega d\mu = \displaystyle\int_0^\infty\omega\{Mf>t\}a(t)dt\\ \leq C\displaystyle\int_0^\infty\frac{a(t)}{t} \big(\displaystyle\int_{\frac{t}{2}}^\infty\omega\{|f|>s\} ds\big) dt\\ = C\displaystyle\int_0^\infty\omega\{|f|>s\} \big(\displaystyle\int_0^{2s}\frac{a(t)}{t}dt\big)ds\\ = C\displaystyle\int_0^\infty\omega\{|f|>s\} \big(\displaystyle\int_0^{1}\frac{a(t)}{t}dt+\displaystyle\int_1^{2s}\frac{a(t)}{t}dt\big)ds\\ \leq KC\|f\|_{L^1(\omega d\mu)}+CC_1\displaystyle\int_0^\infty\omega\{|f|>s\} b(2C_1s)ds\\ = KC\|f\|_{L^1(\omega d\mu)}+ \frac{C}{2}\displaystyle\int_{{\Omega}}{\it\Psi}(2C_1|f|)\omega d\mu. $

Let $C_2=(KC)\vee\frac{C}{2}$ and $C_3=2C_1.$ The we have (1.7).

In order to give the proof of Theorem $1.2, $ we need the following lemmas.

Lemma 2.4 Let $\hat{E}_n(\cdot)$ be the conditional expectation with respect to $(\Omega, \mathcal ({\mathcal {F}}_n)_{n\geq0}, $ $\mathcal {F}, \omega d\mu)$ and $\hat{M}(\cdot)=\sup\limits_{n\geq0}\hat{E}_n(\cdot).$ Suppose $\omega\in R.$ Then

$ \begin{equation}\label{3j1}\displaystyle\int_{\{|f|>\lambda\}}|f|\omega d\mu\leq d\lambda\cdot\omega\{\hat{M}(|f|)>\lambda\}, ~f\in L^1(\omega d\mu), ~ \lambda\geq\|f\|_{L^1(\omega d\mu)}. \end{equation} $ (2.6)

Proof For $f\in L^1(\omega d\mu), $ the sequence $\big(\hat{E}_n(|f|)\big)_{n\geq0}$ is a uniformly integral martingale with respect to $(\Omega, \mathcal ({\mathcal {F}}_n)_{n\geq0}, \mathcal {F}, \omega d\mu)$. In view of [13, Theorem 1.3.2.9], we have $\lim\limits_{n\rightarrow\infty}\hat{E}_n(|f|)=|f|~~{\rm a.e.}.$ Then it follows that $|f|\leq \hat{M}(|f|).$

Because of $\omega\in R, $ we have

$ \begin{equation*}\displaystyle\int_{\{\hat{M}f >\lambda\}}|f|\omega d\mu\leq d\lambda\cdot\omega\{\hat{M}f>\lambda\}, ~f\in L^1(\omega d\mu), ~ \lambda\geq\|f\|_{L^1(\omega d\mu)}, \end{equation*} $

where we use [13, Theorem 7.1.2]. Combining this with $|f|\leq \hat{M}(|f|), $ we have

$ \begin{equation*}\displaystyle\int_{\{|f|>\lambda\}}|f|\omega d\mu \leq\displaystyle\int_{\{\hat{M}f >\lambda\}}|f|\omega d\mu\leq d\lambda\cdot\omega\{\hat{M}(|f|)>\lambda\}, ~f\in L^1(\omega d\mu), ~ \lambda\geq\|f\|_{L^1(\omega d\mu)}. \end{equation*} $

Lemma 2.5 Let $\omega$ be a weight. Then

$ \hat{E}(f\cdot\omega^{-1}|\mathcal{F}_n)\cdot E(\omega|\mathcal{F}_n)=E(f|\mathcal{F}_n), ~f\in L^1(d\mu). $

Proof For all $ A\in \mathcal{F}_n$, we have

$ \displaystyle\int_Afd\mu = \displaystyle\int_Af\cdot\omega^{-1}\omega d\mu =\displaystyle\int_A\hat{E}(f\cdot\omega^{-1}| \mathcal{F}_n)\cdot\omega d\mu\\ = \displaystyle\int_A\hat{E}(f\cdot\omega^{-1}| \mathcal{F}_n)\cdot{E}(\omega| \mathcal{F}_n)d\mu. $

It follows that $\hat{E}(f\cdot\omega^{-1}|\mathcal{F}_n)\cdot E(\omega|\mathcal{F}_n)=E(f|\mathcal{F}_n)$.

Reforming Lemma $2.5, $ we have

$ \begin{equation}\label{lemma1}\hat{E}(g|\mathcal{F}_n)\cdot E(\omega|\mathcal{F}_n)=E(g\omega|\mathcal{F}_n), ~g\in L^1(\omega d\mu). \end{equation} $ (2.7)

Lemma 2.6 Suppose $\omega \in B_1\cap R.$ Then there exist constants $C_4$ and $C_5$ such that

$ \begin{equation}\label{3k1}\displaystyle\int_{\{|f|>C_4\lambda\}}|f|\omega d\mu\leq C_5\lambda\cdot\omega\{M(|f|)>\lambda\}, ~~f\in L^1(\omega d\mu), ~\lambda\geq\frac{1}{C}\|f\|_{L^1(\omega d\mu)}, \end{equation} $ (2.8)

where the constant $C$ is the one in the definition of $B_1.$

Proof Fix $f\in L^1(\omega d\mu)$ and $\lambda\geq \frac{1}{C}\|f\|_{L^1(\omega d\mu)}.$ Since $\omega\in B_1, $ there exists a constant $C\geq1$ such that $C\cdot\omega_n\geq\omega.$ Combining this with $(2.7), $ we have

$ \hat{E}_n(|f|)=\omega_n^{-1}{E}_n(|f|\omega)={E}_n(|f|\omega_n^{-1}\omega) \leq{E}_n(|f|\omega_n^{-1}\omega)\leq C{E}_n(|f|). $

Thus

$ \begin{equation}\label{add4}\hat{M}(|f|)\leq CM(|f|).\end{equation} $ (2.9)

Since $C\lambda\geq\|f\|_{L^1(\omega d\mu)}, $ we have

$ \begin{equation}\label{3k2}\displaystyle\int_{\{|f|>C\lambda\}}|f|\omega d\mu\leq C d\cdot\lambda\cdot\omega\{CM(|f|)>C\lambda\} \end{equation} $ (2.10)

in view of Lemma $2.4.$ Thus, $(2.8)$ is valid with $C_4=C$ and $C_5=Cd.$

Proof of Theorem 1.2 Assume for contradiction that $(1.6)$ does not hold. Then there exists a sequence of positive numbers $s_k\geq1$ such that

$ \begin{equation}\label{3l2}\displaystyle\int_1^{s_k}\frac{a(t)}{t}dt> 2^kb(2^ks_k), ~k\geq1. \end{equation} $ (2.11)

Set $\alpha_k=\frac{1}{\alpha2^k{\it\Psi}(2^ks_k)}.$ It is clear that we can choose $\alpha$ big enough to make $\sum\limits_{k=1}\limits^{\infty}\alpha_k\leq1$ and $\frac{1}{\alpha}\leq{\it\Psi}(1).$ By the assumption that $(\Omega, \mathcal {F}, \omega)$ is non-atomic, we have a family of measurable sets $Q_k\in\mathcal {F}$ such that

$ \begin{equation}\label{3m1} \omega(Q_k)=\alpha_k~\hbox{and}~ Q_{k_1}\cap Q_{k_2}=\emptyset, ~k_1\neq k_2. \end{equation} $ (2.12)

Set $f=\sum\limits_{k=1}\limits^{\infty}2^ks_k\cdot\chi_{Q_k}, $ then

$ \displaystyle\int_{{\Omega}}{\it\Psi}(|f|)\omega d\mu = \sum\limits_{k=1}\limits^{\infty} \displaystyle\int_{Q_k}{\it\Psi}(|f|)\omega d\mu\\ = \sum\limits_{k=1}\limits^{\infty} {\it\Psi}(2^ks_k)\omega(Q_k)\\ = \sum\limits_{k=1}\limits^{\infty} {\it\Psi}(2^ks_k)\frac{1}{\alpha2^k{\it\Psi}(2^ks_k)}\\ = \frac{1}{\alpha}\leq{\it\Psi}(1). $

Thus $f\in L^{\it{\Psi}}(\omega d\mu).$ By Jensen's inequality, we have $f\in L^1(\omega d\mu) \hbox{~and~} \|f\|_{L^1(\omega d\mu)}\leq1.$

On the other side, we claim that the function $Mf$ is not in $L^{\it{\Phi}}(\omega d\mu).$ Then we get a contradiction. To show the claim in the following way: fix a constant $\varepsilon\in(0, 1]$ for $\varepsilon f, $ with $C, ~C_4 \hbox{ and }C_5$ in Lemma 2.6, we have

$ \begin{equation}\label{3n1}\frac{\varepsilon}{\lambda} \displaystyle\int_{\{\varepsilon f>C_4\lambda\}}f\omega d\mu\leq C_5\cdot\omega\{\varepsilon Mf>\lambda\}, ~\lambda\geq\frac{\varepsilon}{C}\|f\|_{L^1(\omega d\mu)}. \end{equation} $ (2.13)

Note that $1\geq\frac{\varepsilon}{C}\|f\|_{L^1(\omega d\mu)}, $ we have

$ \displaystyle\int_{\Omega}\it{\Phi}(\varepsilon\cdot Mf)\omega d\mu = \displaystyle\int_0^\infty\omega\{\varepsilon\cdot Mf>\lambda\} a(\lambda)d\lambda\\ \geq \displaystyle\int_1^\infty\omega\{\varepsilon\cdot Mf>\lambda\} a(\lambda)d\lambda \\ \geq \displaystyle\int_1^\infty\Big(\frac{\varepsilon}{C_5\lambda} \displaystyle\int_{\{\varepsilon\cdot |f|>C_4\lambda\}}|f|\omega d\mu \Big)a(\lambda)d\lambda\\ = \frac{\varepsilon}{C_5}\displaystyle\int_\Omega|f| \Big(\displaystyle\int_1^{\frac{\varepsilon\cdot |f|}{C_4}}\frac{a(\lambda)}{\lambda}d\lambda\Big)\omega d\mu\\ \geq \frac{\varepsilon}{C_5}\sum\limits_{k=1}\limits^{\infty}\displaystyle\int_{Q_k}2^ks_k \Big(\displaystyle\int_1^{\frac{\varepsilon\cdot 2^ks_k}{C_4}} \frac{a(\lambda)}{\lambda}d\lambda\Big)\omega d\mu $

For the above $\varepsilon, $ we can choose $k(\varepsilon)$ such that $\frac{\varepsilon\cdot 2^k}{C_4}>1, ~k\geq k(\varepsilon).$ Put

$ L=\frac{\varepsilon}{C_5}\sum\limits_{k=1}\limits^{k(\varepsilon)-1}\displaystyle\int_{Q_k}2^ks_k \Big(\displaystyle\int_1^{\frac{\varepsilon\cdot 2^ks_k}{C_4}} \frac{a(\lambda)}{\lambda}d\lambda\Big)\omega d\mu , $

then $L$ is a real number. Therefore, it follows from $(2.11)\hbox{ and }(2.12)$ that

$ \displaystyle\int_{\Omega}{\it\Phi}(\varepsilon\cdot Mf)\omega d\mu \geq L+\frac{\varepsilon}{C_5}\sum\limits_{k=k(\varepsilon)}\limits^{\infty} \displaystyle\int_{Q_k}2^ks_k \Big(\displaystyle\int_1^{\frac{\varepsilon\cdot 2^ks_k}{C_4}}\frac{a(\lambda)}{\lambda}d\lambda\Big)\omega d\mu\\ \geq L+\frac{\varepsilon}{C_5}\sum\limits_{k=k(\varepsilon)}\limits^{\infty} \displaystyle\int_{Q_k}2^ks_k \Big(\displaystyle\int_1^{s_k}\frac{a(\lambda)}{\lambda}d\lambda\Big)\omega d\mu \geq L+\frac{\varepsilon}{C_5}\sum\limits_{k=k(\varepsilon)}\limits^{\infty} \displaystyle\int_{Q_k}2^ks_k \big(2^kb(2^ks_k)\big)\omega d\mu\\ = L+\frac{\varepsilon}{C_5}\sum\limits_{k=k(\varepsilon)} \limits^{\infty}2^k2^ks_kb(2^ks_k)\omega(Q_k) =L+\frac{\varepsilon}{C_5}\sum\limits_{k=k(\varepsilon)} \limits^{\infty}2^k 2^ks_kb(2^ks_k)\frac{1}{\alpha2^k{\it\Psi}(2^ks_k)}\\ \geq L+\frac{\varepsilon}{C_5}\sum\limits_{k=k(\varepsilon)} \limits^{\infty}2^k2^ks_k b(2^ks_k)\frac{1}{\alpha2^k(2^ks_k)b(2^ks_k)} =L+\frac{\varepsilon}{C_5}\sum\limits_{k=k(\varepsilon)} \limits^{\infty}\frac{1}{\alpha}=\infty. $

The claim is proved and the proof is finished.

Proof of Theorem 1.5 For $C_7=\frac{C_6}{C}, $ fix $f\in L^{\it{\Phi}}(\omega d\mu)$ such that $\displaystyle\int_{{\Omega}}{\it\Phi}(M(|f|))\omega d\mu <\infty$ and $\|f\|_{L^1(\omega d\mu)}\leq1, $ where the constant $C$ is the one in the definition of $B_1.$ Then

$ \displaystyle\int_{{\Omega}}{\it\Psi}(\frac{C_6}{C}|f|)\omega d\mu = \frac{C_6}{C}\displaystyle\int_0^\infty\omega\{|f|>t\}b(\frac{C_6}{C}t)dt\\ = C_6\displaystyle\int_0^\infty\omega\{|\frac{f}{C}|>t\}b(C_6t)dt\\ = C_6\displaystyle\int_0^{s_0}\omega\{|\frac{f}{C}|>t\}b(C_6t)dt +C_6\displaystyle\int_{s_0}^\infty\omega\{|\frac{f}{C}|>t\}b(C_6t)dt. $

Denote

$ I_0=C_6\displaystyle\int_0^{s_0}\omega\{|\frac{f}{C}|>t\}b(C_6t)dt ~\hbox{and}~I_1=C_6\displaystyle\int_{s_0}^\infty\omega\{\frac{f}{C}|>t\}b(C_6t)dt. $

Then, for $I_0, $ we have

$ I_0 \leq C_6b(C_6s_0)\displaystyle\int_0^{s_0}\omega\{|\frac{f}{C}|>t\}dt \leq C_6b(C_6s_0)\displaystyle\int_0^\infty\omega\{|\frac{f}{C}|>t\}dt\\ = \frac{1}{C}\cdot C_6b(C_6s_0)\|f\|_{L^1(\omega d\mu)}. $

It follows from $(1.8)$ that

$ I_1 \leq \displaystyle\int_{s_0}^\infty\omega\{|\frac{f}{C}|>t\} \Big(\displaystyle\int_1^t\frac{a(s)}{s} ds\Big) dt \leq\displaystyle\int_1^\infty\omega\{|\frac{f}{C}|>t\}\Big(\displaystyle\int_1^t\frac{a(s)}{s} ds\Big) dt \\ = \displaystyle\int_1^\infty\frac{a(s)}{s}\Big(\displaystyle\int_s^\infty\omega\{|\frac{f}{C}|>t\}dt\Big)ds. $

It follows from (2.1), (2.6) and (2.9) that

$ I_1 \leq \displaystyle\int_1^\infty\frac{a(s)}{s} \Big(\displaystyle\int_{\{|\frac{f}{C}|>s\}}|\frac{f}{C}|\omega d\mu\Big)ds \leq\displaystyle\int_1^\infty\frac{a(s)}{s} \Big(d\cdot s\cdot\omega\{\hat{M}(|\frac{f}{C}|)>s\}\Big)ds\\ = d\cdot\displaystyle\int_1^\infty a(s) \cdot\omega\{\hat{M}(|\frac{f}{C}|)>s\}ds \leq d\cdot\displaystyle\int_1^\infty a(s) \cdot\omega\{C\cdot M(\frac{|f|}{C})>s\}ds\\ \leq d\cdot\displaystyle\int_\Omega{\it\Phi}(M(|f|)) \omega d\mu, $

where we have used $\|\frac{f}{C}\|_{L^1(\omega d\mu)}\leq\|f\|_{L^1(\omega d\mu)}\leq1.$ Therefore, $(1.9)$ is valid with $C_7=\frac{C_6}{C}$ and $C_8=\frac{C_6b(C_6s_0)}{C}\vee d.$

Proof of Theorem 1.6 We proceed by contradiction and assume that $(1.8)$ dose not hold. Then we get a sequence $s_k>1$ satisfying

$ \frac{4}{3} <s_1 <s_2 <\cdot\cdot\cdot <s_k <s_{k+1} <\cdot\cdot\cdot ~\hbox{and}~\lim\limits_{k\rightarrow\infty}s_k=\infty; $ (2.14)
$ \displaystyle\int_1^{s_k}\frac{a(t)}{t}dt < \frac{1}{2^k}b(\frac{1}{2^k}s_k), ~k\geq1; $ (2.15)
$ s_{k+1}>4s_k, ~k\geq1; $ (2.16)
$ b(\frac{s_k}{2^k})\geq k2^k, ~k\geq1. $ (2.17)

Let $\alpha_k=\frac{1}{\frac{s_k}{2^k}b(\frac{s_k}{2^k})}, $ then

$ \sum\limits_{k=1}\limits^{\infty}\alpha_k =\sum\limits_{k=1}\limits^{\infty} \frac{1}{\frac{s_k}{2^k}b(\frac{s_k}{2^k})} \leq\sum\limits_{k=1}\limits^{\infty} \frac{1}{\frac{s_k}{2^k}k2^k} =\sum\limits_{k=1}\limits^{\infty} \frac{1}{ks_k}\leq\sum\limits_{k=1}\limits^{\infty} \frac{1}{s_k} \leq \frac{1}{s_1}\sum\limits_{k=1}\limits^{\infty} \frac{1}{4^{k-1}}\leq1. $

By the assumption that $(\Omega, \mathcal {F}, \omega)$ is non-atomic, we have a family of measurable sets $Q_k\in\mathcal {F}$ such that

$ \begin{equation}\label{extra7} \omega(Q_k)=\alpha_k~\hbox{and}~ Q_{k_1}\cap Q_{k_2}=\emptyset, ~k_1\neq k_2. \end{equation} $ (2.18)

Set $f=\sum\limits_{k=1}\limits^{\infty}\frac{ks_k}{2^k}\cdot\chi_{Q_k}, $ then

$ \displaystyle\int_{{\Omega}}|f|\omega d\mu =\sum\limits_{k=1}\limits^{\infty} \displaystyle\int_{Q_k}|f|\omega d\mu =\sum\limits_{k=1}\limits^{\infty} \frac{ks_k}{2^k}\omega(Q_k) =\sum\limits_{k=1}\limits^{\infty} \frac{ks_k}{2^k}\frac{1}{\frac{s_k}{2^k}b(\frac{s_k}{2^k})} \leq\sum\limits_{k=1}\limits^{\infty}\frac{1}{2^k}=1. $

Thus $f\in L^1(\omega d\mu)$ and $\|f\|_{L^1(\omega d\mu)}\leq1.$ Moreover, we also have $\displaystyle\int_{\Omega}\it{\Phi}(Mf)\omega d\mu <\infty.$ In fact, for the sequence $s_k, $ we have

$ \frac{(k+1)s_{k+1}}{2^{k+1}} \geq\frac{(k+1)4s_k}{2^{k+1}} >\frac{4ks_k}{2^{k+1}}\geq2\frac{ks_k}{2^k} >\frac{ks_k}{2^k}, ~k\geq1. $

It is clear that $\frac{s_{k+1}}{2^{k+1}}>\frac{s_k}{2^k}, $ thus

$ \omega(Q_{k+1}) =\frac{1}{\frac{s_{k+1}}{2^{k+1}}b(\frac{s_{k+1}}{2^{k+1}})} \leq\frac{1}{\frac{4s_k}{2^{k+1}}b(\frac{s_k}{2^k})} \leq\frac{1}{\frac{2s_k}{2^k}b(\frac{s_k}{2^k})}=\frac{1}{2}\omega(Q_k), ~k\geq1. $

Let $\beta_k=\frac{ks_k}{2^k}, ~k\geq1$ and $\beta_0=0.$ Obviously, $\beta_k\uparrow\infty.$ For $k\geq1, $ when $s\in[\beta_{k-1}, \beta_k), $ we have

$ \omega\{|f|>s\}=\sum\limits_{i=0}\limits^{\infty}\omega(Q_{k+i}) \leq\omega(Q_k)\sum\limits_{i=0} \limits^{\infty}\frac{1}{2^i}=2\omega(Q_k) $

and

$ \displaystyle\int_1^{2s}\frac{a(t)}{t}dt\leq0\leq\frac{1}{2^k}b(\frac{s_k}{2^k}), ~\hbox{if }2s\leq1;\\ \displaystyle\int_1^{2s}\frac{a(t)}{t}dt \leq\displaystyle\int_1^{2\beta_k}\frac{a(t)}{t}dt \leq\displaystyle\int_1^{s_k}\frac{a(t)}{t}dt <\frac{1}{2^k}b(\frac{s_k}{2^k}), ~\hbox{if }2s>1. $

Combining (2.3), (1.2) and (1.3), we have

$ \displaystyle\int_{\Omega}\it{\Phi}(Mf)\omega d\mu =\displaystyle\int_0^\infty\omega\{Mf>t\} a(t)dt\\ \leq \displaystyle\int_0^\infty\Big(\frac{C}{t} \displaystyle\int_{\frac{t}{2}}^\infty \omega\{|f|>s\} ds \Big)a(t)dt \\ = C\displaystyle\int_0^\infty \omega\{|f|>s\}\Big( \displaystyle\int_{0}^{2s}\frac{a(t)}{t} dt \Big) ds\\ = C\displaystyle\int_0^\infty \omega\{|f|>s\}\Big( \displaystyle\int_{0}^{1}\frac{a(t)}{t} dt +\displaystyle\int_{1}^{2s}\frac{a(t)}{t} dt \Big) ds\\ = KC+C\sum\limits_{k=1}^\infty\displaystyle\int_{\beta_{k-1}}^{\beta_k} \omega\{|f|>s\}\Big( \displaystyle\int_{1}^{2s}\frac{a(t)}{t} dt \Big) ds\\ \leq KC+2C\sum\limits_{k=1}^\infty \omega(Q_k)\Big(\frac{1}{2^k}b(\frac{s_k}{2^k}) \Big)\beta_k \\ = KC+2C\sum\limits_{k=1}^\infty \frac{1}{\frac{s_k}{2^k}b(\frac{s_k}{2^k})} \Big(\frac{1}{2^k}b(\frac{s_k}{2^k}) \Big)\frac{ks_k}{2^k}\\ = KC+2C\sum\limits_{k=1}^\infty\frac{k}{2^k} <\infty. $

On the other hand, we have

$ \displaystyle\int_{\Omega}{\it\Psi}(C_7\cdot |f|)\omega d\mu =\sum\limits_{k=1}\limits^{\infty}{\it\Psi} (C_7\cdot \frac{ks_k}{2^k})\omega({Q_k}) =\sum\limits_{k=1}\limits^{\infty}{\it\Psi} (C_7\cdot \frac{ks_k}{2^k})\frac{1}{\frac{s_k}{2^k}b(\frac{s_k}{2^k})}. $

For the above $C_7, $ we can choose a constant $k(C_7)>0$ such that $k\cdot C_7\geq2, ~k>k(C_7).$ Therefore,

$ \displaystyle\int_{\Omega}{\it\Psi}(C_7\cdot |f|)\omega d\mu \geq \sum\limits_{k=k(C_7)}\limits^{\infty}{\it\Psi} (C_7\cdot \frac{ks_k}{2^k})\frac{1}{\frac{s_k}{2^k}b(\frac{s_k}{2^k})}\\ \geq \sum\limits_{k=k(C_7)} \limits^{\infty}\displaystyle\int_{\frac{s_k}{2^k}}^{2\frac{s_k}{2^k}} \frac{b(t)}{\frac{s_k}{2^k}b(\frac{s_k}{2^k})}dt \geq\sum\limits_{k=k(C_7)}\limits^{\infty}1=\infty. $

The result contradicts assumption $(1.9).$ This completes the proof.

References
[1] Kokilashvili V, Krbec M. Weighted inequalities in Lorentz and Orlicz spaces[M]. Singapore: World Scientific, 1991.
[2] Grafakos L. Classical fourier analysis (3rd ed.)[M]. Graduate Texts Math., 249, New York: Springer, 2014.
[3] Kita H. On maximal functions in Orlicz spaces[J]. Proc. Amer. Math. Soc., 1996, 124(10): 3019–3025. DOI:10.1090/S0002-9939-96-03807-5
[4] Kita H. On a converse inequality for maximal functions in Orlicz spaces[J]. Studia Math., 1996, 118(1): 1–10. DOI:10.4064/sm-118-1-1-10
[5] Torchinsky A. Real-variable methods in harmonic analysis[M]. New York: Academic Press, 1985.
[6] Moscariello G. On the integrability of the Jacobian in Orlicz spaces[J]. Math. Japon., 1994, 40: 323–329.
[7] Stein E M. Note on the class L log L[J]. Studia Math., 1969, 32: 305–310. DOI:10.4064/sm-32-3-305-310
[8] Kita H. On Hardy-Littlewood maximal functions in Orlicz spaces[J]. Math. Nachr., 1997, 183: 135–155. DOI:10.1002/(ISSN)1522-2616
[9] Kita H. Inequalities with weights for maximal functions in Orlicz spaces[J]. Acta Math. Hungar., 1996, 72(4): 291–305. DOI:10.1007/BF00114542
[10] Kita H. Weighted inequalities for iterated maximal functions in Orlicz spaces[J]. Math. Nachr., 2005, 278(10): 1180–1189. DOI:10.1002/(ISSN)1522-2616
[11] Mei T, Liu P D. Double Φ-function inequality for nonnegative submartingales[J]. Chinese Ann. Math., 2000, 21(B): 211–216.
[12] Mei T, Liu P D. On the maxmal inequalities for martingales involving two functions[J]. Proc. Amer. Math. Soc., 2002, 130(3): 883–892. DOI:10.1090/S0002-9939-01-06095-6
[13] Long R L. Martingale spaces and inequalities[M]. Beijing: Peking University Press, 1993.