数学杂志  2018, Vol. 38 Issue (4): 675-681   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZHU Hong-bao
CHEN Song-lin
THE SHOCK SOLUTION FOR A CLASS OF NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM
ZHU Hong-bao, CHEN Song-lin    
School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China
Abstract: In this paper, the shock solution for a class of nonlinear singularly perturbed differential equation is considered. Using the method of matched asymptotic expansions, the asymptotic expression of problem is constructed and the uniform validity of asymptotic solution is also proved by the theory of differential inequalities.
Key words: nonlinear problem     shock wave     boundary layer     matching    
一类非线性奇摄动边值问题的激波解
朱红宝, 陈松林    
安徽工业大学数理科学与工程学院, 安徽 马鞍山 243002
摘要:本文研究了一类非线性奇摄动微分方程的激波解.利用匹配渐近展开法,构造了问题的解的渐近展开式,并利用微分不等式理论,证明了解的一致有效性.
关键词非线性    激波    边值    匹配    
1 Introduction

Singular perturbation theory is a vast and rich ongoing area of exploration for mathematicians, physicists, and other researchers. There are various methods which are used to tackle problems in this field. The more basics of these include the boundary layer method, the methods of matched asymptotic expansion, the method of averaging and multiple scales. During the past decade, many scholars such as O'Malley [1] and Bohé [2], Nayfeh [3] and Howes [4] did a great deal of work. Some domestic scholars such as Jiang [5], Mo [6-11], Ni [12], Tang [13], Han [14], Chen [15] etc. also studied a class of nonlinear boundary value problems for the reaction diffusion equations, a class of activator inhibitor system, the shock wave, the soliton, the laser pulse and the problems of atmospheric physics and so on. The shock wave is an important behavior of solution to singularly perturbed problems. The shock wave of solution implies that the function produces a rapid change and comes into being the shock layer, as an independent variable near the boundary or some interior points of the interval. And the location of shock layer has strong sensitivity with the domain of boundary value. In quantum mechanics, hydrodynamics and electro magnetics, there are many models whose solutions possess the shock behavior. In this paper, we construct asymptotic solution for nonlinear singular perturbed boundary value problems and obtain some expressions of shock solutions, and prove it's uniformly valid.

We consider the following nonlinear singular perturbed boundary value problems

$ \varepsilon y''+yy'=f(x, \varepsilon y'), \quad x\in(0, 1) $ (1)
$ y(0)=\alpha, $ (2)
$ y(1)=\beta, $ (3)

where $\varepsilon$ are positive constants and $0<\varepsilon\ll 1$, $\alpha<0<\beta$.We need the following hypotheses

[H1] $f(x, y)>0$ is sufficiently smooth with respect to their arguments in corresponding domains and $ f_{y}(x, y)<-\delta<0$, where $\delta$ is a positive constant;

[H2] $0<\beta^{2}-\alpha^{2}<2\displaystyle\int^{1}_{0}f(x, 0)dx.$

2 The Outer and Inner Solutions

The reduced equation of $(1)$ is

$ yy'=f(x, 0) $ (4)

from the hypotheses, there exists a unique solution to $(4)$,

$ y^{l}_{0}(x)=-\sqrt{2\displaystyle\int^{x}_{0}f(t, 0)dt+\alpha^{2}} $ (5)

or

$ y^{r}_{0}(x)=\sqrt{2\displaystyle\int^{1}_{x}f(t, 0)dt+\beta^{2}}, $ (6)

where $y^{l}_{0}(x)$ and $y^{r}_{0}(x)$, respectively, satisfy the left and the right boundary value conditions (2), (3). And clearly, because $y^{l}_{0}(x) \neq y^{r}_{0}(x)$, there may exist a shock solution in interior point of the interval $(0, 1)$.

Let the stretched variable

$ \xi=\frac{x-x^{\ast}}{\varepsilon^{\nu}}, $ (7)

where $x^{\ast}$ is the shock location, and $\nu$ is a positive constant which will be determined below. Substituting $(7)$ into $(1)$, we have

$\frac{d^{2}y}{d\xi^{2}}+\varepsilon^{\nu-1}y\frac{dy}{d\xi}-\varepsilon^{2\nu-1}f\big(\varepsilon^{\nu}\xi+x^{\ast}, \varepsilon^{1-\nu}\frac{dy}{d\xi}\big)=0, $

noting that the special limit can be obtained as $\nu=1$, for inner solution is $Y$ and we have

$ \frac{d^{2}Y}{d\xi^{2}}+ Y\frac{dY}{d\xi}-\varepsilon f\big(\varepsilon\xi+x^{\ast}, \frac{dY}{d\xi}\big)=0, $ (8)

we assume the inner solution has the form $Y=\sum\limits^{\infty}_{j=0}Y_{j}(\xi)\varepsilon^{j}$, so we have the equation satisfied by the first order approximation $Y_{0}$,

$ \frac{d^{2}Y_{0}}{d\xi^{2}}+ Y_{0}\frac{dY_{0}}{d\xi}=0, $ (9)

which upon integration gives

$ \frac{dY_{0}}{d\xi}=\frac{1}{2}(c_{1}-Y_{0}^{2}), $ (10)

where $c_{1}$ is a constant of integration. It must be positive, otherwise $\lim\limits_{\xi\rightarrow\pm\infty}Y_{0}=\mp\infty$ making unmatchable with outer expansions of the solution. Then, separating variables and integrating (10) gives two branches of the first order inner solution $Y_{0}$,

$ Y_{0}=k\tanh\bigg(\frac{1}{2}k(\xi+c_{2})\bigg), ~~Y_{0}^{2}\leq k^{2} $ (11)

and

$ Y_{0}=k\coth\bigg(\frac{1}{2}k(\xi+c_{2})\bigg), ~~Y_{0}^{2}\geq k^{2}, $ (12)

where $c_{1}$ is replaced with $k^{2}$, $c_{2}$ the constant of integration. We note that $k$ maybe taken to be positive because $\tanh$ and $\coth$ are odd. The constants $k$ and $c_{2}$ in either form of the inner expansion need to be determined.

3 Matching the Inner and Outer Solutions

By the matching principle, we can determine $k$ and $c_{2}$ from matching the inner and outer solutions. For the shock location $x^{\ast}$ in the interval $(0, 1)$, combining (5) with (6), we can obtain the zero-th order outer solution to problem (1) with (2), (3)

$ y_{0}(x)=\left\{ \begin{array}{cc} y_{0}^{l},&0 \leq x\leq x^{\ast}, \\ y_{0} ^{r},&x^{\ast}\leq x\leq 1. \end{array} \right. $ (13)

Since the outer solutions must increases from $y^{l}_{0}(x^{\ast})$ to $y^{r}_{0}(x^{\ast})$, thus from (11) and (12) we can obtain the interior solution must be (11), matching it with the zero-th order outer solution (13). For the left zero-th order outer solution and the interior solution, note that as $\varepsilon\rightarrow 0$, $\xi=\frac{x-x^{\ast}}{\varepsilon}\rightarrow-\infty$. Clearly, the outer limit for left side of the interior solution is

$ (y_{0}^{l})^{i}=\lim\limits_{x\rightarrow x^{\ast}}\bigg(-\sqrt{2\displaystyle\int^{x}_{0}f(t, 0)dt+\alpha^{2}}\bigg)=-\sqrt{2\displaystyle\int^{x^{\ast}}_{0}f(t, 0)dt+\alpha^{2}}, $

the interior limit for the outer solution is

$ (Y_{0})^{o}=\lim\limits_{\xi\rightarrow-\infty}Y_{0}=\lim\limits_{\xi\rightarrow-\infty}k\tanh\bigg(\frac{1}{2}k(\xi+c_{2})\bigg)=-k. $

From matching principle, we have

$ k=\sqrt{2\displaystyle\int^{x^{\ast}}_{0}f(t, 0)dt+\alpha^{2}}. $ (14)

Similarly, for the right zero-th order outer solution and the interior solution. Note that as $\varepsilon\rightarrow 0$, $\xi=\frac{x-x^{\ast}}{\varepsilon}\rightarrow+\infty$, the outer limit for right side of the interior solution is

$ (y_{0}^{r})^{i}=\lim\limits_{x\rightarrow x^{\ast}}\bigg(\sqrt{2\displaystyle\int^{1}_{x}f(t, 0)dt+\beta^{2}}\bigg)=\sqrt{2\displaystyle\int^{1}_{x^{\ast}}f(t, 0)dt+\beta^{2}}, $

the interior limit for the outer solution is

$ (Y_{0})^{o}=\lim\limits_{\xi\rightarrow+\infty}Y_{0}=\lim\limits_{\xi\rightarrow+\infty}k\tanh\bigg(\frac{1}{2}k(\xi+c_{2})\bigg)=k. $

From matching principle, we have

$ k=\sqrt{2\displaystyle\int^{1}_{x^{\ast}}f(t, 0)dt+\beta^{2}}. $ (15)

Comparing with (14), (15), we have

$ \displaystyle\int^{x^{\ast}}_{0}f(t, 0)dt+\displaystyle\int^{x^{\ast}}_{1}f(t, 0)dt=\frac{\beta^{2}-\alpha^{2}}{2}. $ (16)

Using the zero theorem and monotonicity, we can prove that (16) has a uniqueness solution $x^{\ast}$, where the shock location $x^{\ast}$ can be determined from (16). From the character of the shock location $x^{\ast}$, it is not difficult to see that $c_{2}=0$ and

$ k=\sqrt{2\displaystyle\int^{x^{\ast}}_{0}f(t, 0)dt+\alpha^{2}}>0. $

So the zero-th order interior solution is $Y_{0}=k\tanh(\frac{k}{2}\xi)$. Then the boundary value problem (1) with (2), (3), exists a solution, and the solution can be asymptotically expanded as

$ y(x)=y_{0}^{l}(x)+k\Big(\tanh\Big(\frac{k}{2}\big(\frac{x-x^{\ast}}{\varepsilon}\big)\Big)+1\Big)+\cdots, 0<\varepsilon\ll1, x\in[0, x^{\ast}], $ (17)
$ y(x)=y_{0}^{r}(x)+k\Big(\tanh\Big(\frac{k}{2}\big(\frac{x-x^{\ast}}{\varepsilon}\big)\Big)-1\Big)+\cdots, 0<\varepsilon\ll1, x\in[x^{\ast}, 1]. $ (18)
4 Uniform Validity of the Asymptotic Solution

We have the following theorem.

Theorem Under hypotheses [H1]-[H2], there exists a solution $y$ of the nonlinear singular perturbed boundary value problems (1)-(3), and the solution $y$ can be expanded into the uniformly valid asymptotic expansion

$ y(x)=y_{0}(x)+Y_{0}-(Y_{0})^{o}+O(\varepsilon), 0<\varepsilon\ll1, x\in[0, x^{\ast}]\cup(x^{\ast}, 1], $

where

$y_{0}(x)=\left\{ \begin{array}{cc} y_{0}^{l},&0 \leq x\leq x^{\ast}, \\ y_{0} ^{r},& x^{\ast}\leq x\leq 1, \end{array} \right.\\ Y_{0}=k\tanh\Big(\frac{k}{2}\big(\frac{x-x^{\ast}}{\varepsilon}\big)\Big), ~~ (Y_{0})^{o}=\left\{ \begin{array}{cc} -k,& 0 \leq x\leq x^{\ast}, \\ k,& x^{\ast}\leq x\leq 1. \end{array} \right. $

Proof The theorem includes two estimates

$ y(x)=y_{0}^{l}(x)+k\Big(\tanh\Big(\frac{k}{2}\big(\frac{x-x^{\ast}}{\varepsilon}\big)\Big)+1\Big)+O(\varepsilon), 0<\varepsilon\ll1, x\in[0, x^{\ast}], $ (19)
$ y(x)=y_{0}^{r}(x)+k\Big(\tanh\Big(\frac{k}{2}\big(\frac{x-x^{\ast}}{\varepsilon}\big)\Big)-1\Big)+O(\varepsilon), 0<\varepsilon\ll1, x\in[x^{\ast}, 1]. $ (20)

Now we prove estimate $(19)$. Similarly, we can prove (20). We use the theory of differential inequalities, first we construct the auxiliary functions $\underline{y}(x, \varepsilon)$ and $\overline{y}(x, \varepsilon)$,

$ \underline{y}(x, \varepsilon)=y_{0}^{l}(x)+Y_{0}-(Y_{0})^{o}-\gamma\varepsilon, $ (21)
$\overline{y}(x, \varepsilon)=y_{0}^{l}(x)+Y_{0}-(Y_{0})^{o}+\gamma\varepsilon, $ (22)

where $x\in[0, x^{\ast}]$,

$ \begin{eqnarray*}&&y^{l}_{0}(x)=-\sqrt{2\displaystyle\int^{x}_{0}f(t, 0)dt+\alpha^{2}}, \\ &&Y_{0}=k\tanh\Big(\frac{k}{2}\big(\frac{x-x^{\ast}}{\varepsilon}\big)\Big), (Y_{0})^{o}=-k, \end{eqnarray*} $

$\gamma$ is a large enough positive constant to be chosen below. Obviously, we have

$ \underline{y}(x, \varepsilon)\leq\overline{y}(x, \varepsilon) $ (23)

and

$ \underline{y}(0, \varepsilon)\leq\alpha\leq\overline{y}(0, \varepsilon), \underline{y}(x^{\ast}, \varepsilon)\leq0\leq\overline{y}(x^{\ast}, \varepsilon). $ (24)

Now we prove that

$ \varepsilon\underline{y}''+\underline{y}\ \underline{y}'-f(x, \varepsilon\underline{y}')\geq0, x\in[0, x^{\ast}], $ (25)
$ \varepsilon\overline{y}''+\overline{y}\ \overline{y}'-f(x, \varepsilon\overline{y}')\leq0, x\in[0, x^{\ast}]. $ (26)

From hypotheses [H1], [H2], and considering the character of the tanh, there exists a positive constant $M$, such that

$ \begin{eqnarray*} &&\varepsilon\overline{y}''+\overline{y}\ \overline{y}'-f(x, \varepsilon\overline{y}')\\ &=&\varepsilon\frac{d^{2}}{dx^{2}}\big(y_{0}^{l}(x)+Y_{0}-(Y_{0})^{o}+\gamma\varepsilon\big)+ \big(y_{0}^{l}(x)+Y_{0}-(Y_{0})^{o}+\gamma\varepsilon\big)\frac{d}{dx}\big(y_{0}^{l}(x)+Y_{0}-(Y_{0})^{o}+\gamma\varepsilon\big)\\ &&-f\Big(x, \varepsilon\frac{d}{dx}\big(y_{0}^{l}(x)+Y_{0}-(Y_{0})^{o}+\gamma\varepsilon\big)\Big)\\ &=&M\varepsilon+\frac{1}{\varepsilon}\Big(\frac{d^{2}Y_{0}}{d\xi^{2}}+ Y_{0}\frac{dY_{0}}{d\xi}\Big) +\Big(y_{0}^{l}(x)\frac{d(y_{0}^{l}(x))}{dx}-f(x, 0)\Big)+\big(Y_{0}-(Y_{0})^{o}+\gamma\varepsilon\big)\frac{d(y_{0}^{l}(x))}{dx}\\ &&+\frac{1}{\varepsilon}\big(y_{0}^{l}(x)-(Y_{0})^{o}+\gamma\varepsilon\big)\frac{dY_{0}}{d\xi} -\Big(f\big(x, \varepsilon\frac{d\big(y_{0}^{l}(x)+Y_{0}-(Y_{0})^{o}+\gamma\varepsilon\big)}{dx}\big)-f(x, 0)\Big)\\ &=&M\varepsilon+\big(Y_{0}-(Y_{0})^{o}+\gamma\varepsilon\big)\frac{d(y_{0}^{l}(x))}{dx}-f_{y}'(x, \zeta)\Big(\varepsilon\frac{d(y_{0}^{l}(x))}{dx}+\varepsilon\frac{dY_{0}}{dx}\Big)\\ &&+\frac{1}{\varepsilon}\big(y_{0}^{l}(x)-(Y_{0})^{o}+\gamma\varepsilon\big)\frac{dY_{0}}{d\xi}\\ &=&M\varepsilon+\big(Y_{0}-(Y_{0})^{o}+\gamma\varepsilon -\varepsilon f_{y}'(x, \zeta)\big)\frac{d(y_{0}^{l}(x))}{dx}\\ &&+\frac{1}{\varepsilon}\big(y_{0}^{l}(x)-(Y_{0})^{o}+\gamma\varepsilon-\varepsilon f_{y}'(x, \zeta)\big)\frac{dY_{0}}{d\xi}, \end{eqnarray*} $

where constant

$ \zeta\in\bigg(0, \varepsilon\frac{d\big(y_{0}^{l}(x)\big)}{dx}+\varepsilon\frac{dY_{0}}{dx}\bigg) $

from hypothesis [H1], $f_{y}'(x, y)<-\delta<0$ and

$ y^{l}_{0}(x)=-\sqrt{2\displaystyle\int^{x}_{0}f(t, 0)dt+\alpha^{2}}, Y_{0}=k\tanh\Big(\frac{k}{2}\big(\frac{x-x^{\ast}}{\varepsilon}\big)\Big). $

There exist a positive constant $\rho$,

$\frac{d(y_{0}^{l}(x))}{dx}\leq-\rho<0, $

so selecting $\gamma\geq\frac{M}{\rho}-\delta$, $\varepsilon\overline{y}''+\overline{y}\ \overline{y}'-f(x, \varepsilon\overline{y}')\leq M\varepsilon-\rho(\gamma+\delta)\varepsilon\leq0.$

We prove inequality (26). Similarly, we can prove inequality (25) too. Thus from inequalities (23)-(26), by using the theorem of differential inequalities, there is a solution $y(x)$ of problems (1)-(3), such that

$ \underline{y}(x, \varepsilon)\leq y(x, \varepsilon)\leq\overline{y}(x, \varepsilon), ~~x\in[0, x^{\ast}], $

then we have equation (19). Similarly, we can prove (20). The proof of the theorem is completed.

References
[1] O'Malley Jr R E. Introduction to singular perturbation[M]. New York: Academic Press, 1974.
[2] Bohé A. The shock location for a class of sensitive boundary value problems[J]. J. Math. Anal. Appl., 1999, 235(1): 295–314. DOI:10.1006/jmaa.1999.6399
[3] Nayfeh A H. Introduction for perturbation techniques[M]. New York: John Wiley Sons, 1981.
[4] Chang K W, Howes F A. Nonlinear singular perturbation phenomena:theory and application[M]. New York: Springer-Verlag, 1984.
[5] De Jager E M, Jiang Furu. The theory of singular perturbation[M]. Amsterdam: North-Holland Publishing Co., 1996.
[6] Mo Jiaqi. Singular perturbation for the weakly nonlinear reaction diffusion equation with boundary perturbation[J]. Appl. Math. Mech. (Engl. ed.), 2008, 29(8): 1105–1110. DOI:10.1007/s10483-008-0814-x
[7] Mo Jiaqi. A Class of nonlocal singularly perturbed problems for nonlinear hyperbolic differential equation[J]. Acta Math. Appl. Sinica, 2001, 17(4): 469–474. DOI:10.1007/BF02669699
[8] Mo Jiaqi, Tang Rongrong. A class of functional boundary value problems for the discontinuous nonlinear differential equation[J]. Math. Appl., 2002, 15(1): 77–81.
[9] Mo Jiaqi, Xu Yuxing. The singularly perturbed boundary value problems for higher order semilinear elliptic equations[J]. Acta Math. Sci., 1997, 17(1): 44–50. DOI:10.1016/S0252-9602(17)30674-4
[10] Mo Jiaqi, Zhu Jiang, Wang Hui. Asymptotic behavior of the shock solution for a class of nonlinear equations[J]. Prog. Nat. Sci., 2003, 13(10): 768–770. DOI:10.1080/10020070312331344400
[11] Mo Jiaqi, Chen Songlin. The singularly perturbed nonlinear boundary value problem[J]. Math. Res. Exp., 2000, 20(1): 57–6l.
[12] Ni Mingkang. Periodic solution to a kind of singularly perturbed differential equations of parabolic type in chemical kinetics[J]. Appl. Math. Mech., 1991, 12(5): 461–468. DOI:10.1007/BF02019591
[13] Tang Rongrong. A class of strongly nonlinear singularly perturbed interior layer problems[J]. Ann. Diff. Equ., 2004, 20(3): 278–282.
[14] Han Xianglin. The shock solution for a class of nonlinear singularly perturbed problems[J]. Acta Math. Appl. Sinica, 2003, 26(2): 359–366.
[15] Chen Lihua, Yao Jingsun, Wen Zhaohui, Mo Jiaqi. Shock wave solution for the nonlinear reaction diffusion problems[J]. J. Math., 2013, 33(3): 383–387.