数学杂志  2018, Vol. 38 Issue (3): 502-510   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
刘蕾
唐黎明
Heisenberg李(超)代数的自同构群
刘蕾, 唐黎明    
哈尔滨师范大学数学科学学院, 黑龙江 哈尔滨 150025
摘要:本文研究了Heisenberg李(超)代数的自同构群.利用Heisenberg李(超)代数与线性李(超)代数之间的同构,获得了Heisenberg李(超)代数的自同构群的子群,包括内自同构群、中心自同构群、对合自同构群.
关键词Heisenberg李代数    Heisenberg李超代数    自同构群    
THE AUTOMORPHISM GROUPS OF HEISENBERG LIE (SUPER) ALGBRAS
LIU Lei, TANG Li-ming    
School of Mathematical Sciences, Harbin Normal University, Harbin 150025, China
Abstract: In this paper, we study the automorphism groups of Heisenberg Lie (super) algebras. By using the isomorphisms between Heisenberg Lie (super)algebras and linear Lie (super)algebras, subgroups of automorphism groups of Heisenberg Lie (super)algebras are obtained, including inner automorphism groups, central automorphism groups, involutionary automorphism groups.
Key words: Heisenberg Lie algebras     Heisenberg Lie superalgebras     automorphism groups    
1 引言

近年来, Heisenberg李(超)代数的结构和表示一直是非常重要的研究课题, 许多学者对此有着广泛研究.例如, 文[1]研究了特征0代数闭域上$2m+n+1$维Heisenberg李超代数的表示; 文[2]研究了复数域上无限维Heisenberg代数的全形和全形的导子代数, 证明了其全形的导子代数是一个完备李代数; 文[3]研究了特征$2$域上$2n+1$维Heisenberg李代数的同调; 文[4]研究了向量超空间上有限维Heisenberg李超代数不变的超对称和超正交双线性型; 文[5]研究了特征0代数闭域上两种类型Heisenberg李超代数的极小忠实表示.

本文约定在交换环上讨论Heisenberg李代数的自同构群, 在特征0代数闭域上讨论Heisenberg李超代数的自同构群.仿照文[6]中交换环上严格上三角矩阵李代数的自同构和文[7]中复向量空间上Heisenberg李代数的自同构的刻画, 参照文[3, 7]中Heisenberg李代数的定义, 利用文[7]中Heisenberg李代数与线性李代数之间的同构, 本文研究了交换环上Heisenberg李代数的自同构, 包括内自同构、中心自同构、对合自同构, 进而得到其自同构群的子群, 包括内自同构群、中心自同构群、对合自同构群.利用文[5]中有限维Heisenberg李超代数的定义, 本文建立了Heisenberg李超代数与线性李超代数之间的同构, 从而研究了特征0代数闭域上Heisenberg李超代数的自同构, 包括内自同构、中心自同构、对合自同构, 进而得到其自同构群的子群, 包括内自同构群、中心自同构群、对合自同构群.

2 基本概念和引理

$R$是具有单位元的交换环并且$M_{n}(R)$$R$上所有$n\times n$矩阵构成的集合, 其中$n$是正整数.令$e_{ij}$表示第$i$行第$j$列元素为$1$, 而其余元素为0的矩阵, 其中$i, j$是正整数.

定义2.1[7]$H=\Bigg\{\begin{pmatrix} 0&x&z \\ 0&0&y \\ 0&0&0 \end{pmatrix} \Bigg| x \in R^{1\times n} , z\in R, y\in R^{n\times1}\Bigg\}$, 则$H$关于李运算

$ \begin{eqnarray*} [h_{1}, h_{2}]=h_{1}h_{2}-h_{2}h_{1}, \quad \forall h_{1}, h_{2}\in H \end{eqnarray*} $

作成一个李代数, 称$H$为Heisenberg李代数.

$\mathbb{F}$是特征0代数闭域并且$M_{n}(\mathbb{F})$$\mathbb{F}$上所有$n\times n$矩阵构成的集合, 其中$n$是正整数.

定义2.2[5] $\mathbb{F}$上具有一维中心的二步幂零李超代数称为Heisenberg李超代数, 并且Heisenberg李超代数分为以下两种类型.

(1) 令$\mathfrak{H}_{m, n}=(\mathfrak{H}_{m, n})_{\overline{0}}\oplus(\mathfrak{H}_{m, n})_{\overline{1}}$是具有偶中心的Heisenberg李超代数, 设

$ \{u_{1}, \cdots, u_{m}, v_{1}, \cdots, v_{m}, z\mid w_{1}, \cdots, w_{n}\} $

为它的一个基, 并且李超运算由以下给出$ [u_{i}, v_{i}]=-[v_{i}, u_{i}]=z=[w_{j}, w_{j}], $ $\forall i=1, \cdots, m, $ $j=1, \cdots, n, $其余基元素之间的李超运算均为0.

(2) 令$\mathfrak{H}_{n}=(\mathfrak{H}_{n})_{\overline{0}}\oplus(\mathfrak{H}_{n})_{\overline{1}}$是具有奇中心的Heisenberg李超代数, 设

$ \{v_{1}, \cdots, v_{n}\mid z, w_{1}, \cdots, w_{n}\} $

为它的一个基, 并且李超运算由以下给出$ [v_{i}, w_{i}]=z=-[w_{i}, v_{i}], ~ \forall i=1, \cdots, n, $其余基元素之间的李超运算均为0.

根据定义2.2证得以下两个引理.

引理2.3  令$\mathbb{F}$$\mathscr{A}=\mathscr{A}_{\overline{0}}\oplus\mathscr{A}_{\overline{1}}$是一个线性李超代数, 其中

$ \begin{eqnarray*}&&\mathscr{A}_{\overline{0}}={\rm{span_{\mathbb{F}}}}\{e_{12}, \cdots, e_{1, m+1}, e_{2, m+2}, \cdots, e_{m+1, m+2}, e_{1, m+2}\}, \\ &&\mathscr{A}_{\overline{1}}={\rm{span_{\mathbb{F}}}}\{\frac{1}{2}e_{1, m+3}+e_{m+3, m+2}, \cdots, \frac{1}{2}e_{1, m+n+2}+e_{m+n+2, m+2}\}.\end{eqnarray*} $

设线性映射$f$

$ \begin{aligned} f: \mathfrak{H}_{m, n}&\rightarrow \mathscr{A}, \\ h&\mapsto f(h), \quad \forall h\in \mathfrak{H}_{m, n}, \end{aligned} $

其中

$ \begin{aligned} &f(u_{i})=e_{1, i+1}\in \mathscr{A}_{\overline{0}}, ~f(v_{i})=e_{i+1, m+2}\in \mathscr{A}_{\overline{0}}, ~f(z)=e_{1, m+2}\in \mathscr{A}_{\overline{0}}, \\ &f(w_{j})=\frac{1}{2}e_{1, m+2+j}+e_{m+2+j, m+2}\in \mathscr{A}_{\overline{1}}, \quad\forall i=1, \cdots, m, j=1, \cdots, n, \end{aligned} $

$f$是一个李超代数同构.

引理2.4  令$\mathbb{F}$$\mathscr{B}=\mathscr{B}_{\overline{0}}\oplus\mathscr{B}_{\overline{1}}$是一个线性李超代数, 其中

$ \mathscr{B}_{\overline{0}}={\rm{span_{\mathbb{F}}}}\{e_{12}, \cdots, e_{1, n+1}\}, ~~ \mathscr{B}_{\overline{1}}={\rm{span_{\mathbb{F}}}}\{e_{1, n+2}, e_{2, n+2}, \cdots, e_{n+1, n+2}\}. $

设线性映射$g$

$ \begin{aligned} g: \mathfrak{H}_{n}&\rightarrow \mathscr{B}, \\ h&\mapsto g(h), \quad \forall h\in \mathfrak{H}_{n}, \end{aligned} $

其中$\begin{aligned} g(v_{i})=e_{1, i+1}\in \mathscr{B}_{\overline{0}}, ~ g(z)=e_{1, n+2}\in \mathscr{B}_{\overline{1}}, ~ g(w_{i})=e_{i+1, n+2}\in \mathscr{B}_{\overline{1}}, ~~ \forall i=1, \cdots, n, \end{aligned}$$g$是一个李超代数同构.

3 主要结果及证明

${\rm{Aut}}(H)$为Heisenberg李代数$H$的自同构群.

定理3.1  设$d\in M_{n+2}(R)$为可逆的对角矩阵, $x\in H$.令$\alpha=d+x$, 则$\alpha$可逆.设映射

$ \begin{aligned} \sigma_{\alpha}: H&\rightarrow H, \\ h&\mapsto\sigma_{\alpha}(h), \quad\forall h\in H, \end{aligned} $

其中$\begin{aligned} \sigma_{\alpha}(h)=\alpha h\alpha^{-1}, \end{aligned}$$\sigma_{\alpha}$$H$的一个自同构, 称为$H$的内自同构.令$G$$H$的所有内自同构构成的集合, 则$G$${\rm{Aut}} (H)$的子群, 称为$H$的内自同构群.

  易知$\sigma_{\alpha}$是双射且是线性变换.由已知得$\alpha^{-1}\alpha=e$, 其中$e$是单位矩阵. $\forall h_{1}, h_{2}\in H$, 可得

$ \begin{aligned} &\sigma_{\alpha}([h_{1}, h_{2}])=\sigma_{\alpha}(h_{1}h_{2}-h_{2}h_{1})=\alpha(h_{1}h_{2})\alpha^{-1}-\alpha(h_{2}h_{1})\alpha^{-1}, \\ &[\sigma_{\alpha}(h_{1}), \sigma_{\alpha}(h_{2})]=\sigma_{\alpha}(h_{1})\sigma_{\alpha}(h_{2})-\sigma_{\alpha}(h_{2})\sigma_{\alpha}(h_{1})=\alpha(h_{1}h_{2})\alpha^{-1}-\alpha(h_{2}h_{1})\alpha^{-1}, \end{aligned} $

因此$\sigma_{\alpha}([h_{1}, h_{2}])=[\sigma_{\alpha}(h_{1}), \sigma_{\alpha}(h_{2})].$$\sigma_{\alpha}$$H$的一个自同构. $\forall \sigma_{\alpha}, \sigma_{\beta}\in G$, $h\in H$, 可得

$ \begin{aligned} \sigma_{\alpha}\sigma_{\beta}(h)=(\alpha\beta)h(\alpha\beta)^{-1}=\sigma_{\alpha\beta}(h), \end{aligned} $

因此$\begin{aligned} \sigma_{\alpha}\sigma_{\beta}=\sigma_{\alpha\beta}\in G. \end{aligned}$ $\forall\sigma_{\alpha}\in G$, $h\in H$, 可得

$ \begin{aligned} \sigma_{\alpha}\sigma_{\alpha^{-1}}=\alpha\alpha^{-1}h(\alpha^{-1})^{-1}\alpha^{-1}=h, \end{aligned} $

因此$\begin{aligned} \sigma_{\alpha^{-1}}=\sigma_{\alpha}^{-1}\in G. \end{aligned}$$G$${\rm{Aut}}(H)$的子群.

定理3.2  令$F=\{f\in {\rm{Hom}}_{R}(H, R)\mid f(y)=0, \forall y\in \delta^{[1]}(H)\}$, 其中$\delta^{[1]}(H)=[H, H]$. $\forall f\in F$, 设映射

$ \begin{aligned} \psi_{f}: H&\rightarrow H, \\ h&\mapsto\psi_{f}(h), \quad\forall h\in H, \end{aligned} $

其中$\begin{aligned} \psi_{f}(h)=h+f(h)e_{1, n+2}, \end{aligned}$$\psi_{f}$$H$的一个自同构, 称为$H$的中心自同构.令$S$$H$的所有中心自同构构成的集合, 则$S$${\rm{Aut}}(H)$的子群, 称为$H$的中心自同构群.

  易知$\psi_{f}$是双射且是线性变换. $\forall h_{1}, h_{2}\in H$, 可得

$ \begin{aligned} \psi_{f}([h_{1}, h_{2}])=&[h_{1}, h_{2}]+f([h_{1}, h_{2}])e_{1, n+2}=[h_{1}, h_{2}], \\ [\psi_{f}(h_{1}), \psi_{f}(h_{2})]=&[h_{1}, h_{2}]+[h_{1}, f(h_{2})e_{1, n+2}]+[f(h_{1})e_{1, n+2}, h_{2}]\\ &+[f(h_{1})e_{1, n+2}, f(h_{2})e_{1, n+2}] =[h_{1}, h_{2}], \end{aligned} $

因此$\begin{aligned} \psi_{f}([h_{1}, h_{2}])=[\psi_{f}(h_{1}), \psi_{f}(h_{2})], \end{aligned}$$\psi_{f}$$H$的一个自同构. $\forall \psi_{f}, \psi_{g}\in S$, $h\in H$, 可得

$ \begin{aligned} \psi_{f}\psi_{g}(h)=h+(g(h)+f(h))e_{1, n+2}=\psi_{f+g}(h), \end{aligned} $

因此$\begin{aligned} \psi_{f}\psi_{g}=\psi_{f+g}\in S. \end{aligned}$ $\forall \psi_{f}\in S$, $h\in H$, 可得$\begin{aligned} \psi_{f}\psi_{-f}(h)=(h-f(h)e_{1, n+2})+f(h)e_{1, n+2}=h, \end{aligned}$因此$\begin{aligned} \psi_{-f}=\psi_{f}^{-1}\in S. \end{aligned}$$S$${\rm{Aut}}(H)$的子群.

定理3.3  令$\gamma=e_{1, n+2}+e_{2, n+1}+\cdots+e_{n+2, 1}$.设映射

$ \begin{aligned} w_{0}: H&\rightarrow H, \\ h&\mapsto w_{0}(h), \quad\forall h\in H, \end{aligned} $

其中$\begin{aligned} w_{0}(h)=-\gamma h^{{\rm{T}}}\gamma, \end{aligned}$$w_{0}$$H$的一个自同构, 称为$H$的对合自同构.令$W=\{\iota, w_{0}\}$, 其中$\iota$是恒等变换, 则$W$${\rm{Aut}} (H)$的子群, 称为$H$的对合自同构群.

  易知$w_{0}$是双射且是线性变换.由已知得$\gamma^{2}=e$, $\gamma^{{\rm{T}}}=\gamma$, 其中$e$是单位矩阵. $\forall h_{1}, h_{2}\in H$, 可得

$ \begin{aligned} &w_{0}([h_{1}, h_{2}])=w_{0}(h_{1}h_{2}-h_{2}h_{1})=-\gamma h_{2}^{{\rm{T}}}h_{1}^{{\rm{T}}}\gamma-(-\gamma h_{1}^{{\rm{T}}}h_{2}^{{\rm{T}}}\gamma), \\ &[w_{0}(h_{1}), w_{0}(h_{2})]=[-\gamma h_{1}^{{\rm{T}}}\gamma, -\gamma h_{2}^{{\rm{T}}}\gamma]=\gamma h_{1}^{{\rm{T}}}h_{2}^{{\rm{T}}}\gamma-\gamma h_{2}^{{\rm{T}}}h_{1}^{{\rm{T}}}\gamma, \end{aligned} $

因此$\begin{aligned} w_{0}([h_{1}, h_{2}])=[w_{0}(h_{1}), w_{0}(h_{2})]. \end{aligned}$$w_{0}$$H$的一个自同构. $\forall w_{0}\in W$, $h\in H$, 可得$\begin{aligned} w_{0}w_{0}(h)=-\gamma(-\gamma h^{{\rm{T}}}\gamma)^{{\rm{T}}}\gamma=h, \end{aligned}$因此$\begin{aligned} w_{0}^{2}=\iota\in W. \end{aligned}$$W$${\rm{Aut}}(H)$的子群.

${\rm{Aut}}(\mathfrak{H}_{m, n})$, ${\rm{Aut}}(\mathfrak{H}_{n})$分别为Heisenberg李超代数$\mathfrak{H}_{m, n}$, $\mathfrak{H}_{n}$的自同构群.

定理3.4  设$d=\sum\limits_{k=1}^{m+n+2}a_{kk}e_{kk}\in M_{m+n+2}(\mathbb{F})$为可逆的矩阵, 并且满足

$ a_{11}a_{m+2, m+2}=(a_{m+2+j, m+2+j})^{2}, \forall j=1, \cdots, n, x\in (\mathfrak{H}_{m, n})_{\overline{0}}. $

$\alpha=d+x$, 则$\alpha$可逆.设映射

$ \begin{aligned} \sigma_{\alpha}: \mathfrak{H}_{m, n}&\rightarrow \mathfrak{H}_{m, n}, \\ h&\mapsto\sigma_{\alpha}(h), \quad\forall h\in \mathfrak{H}_{m, n}, \end{aligned} $

其中$\begin{aligned} \sigma_{\alpha}(h)=\alpha h\alpha^{-1}, \end{aligned}$$\sigma_{\alpha}$$\mathfrak{H}_{m, n}$的一个自同构, 称为$\mathfrak{H}_{m, n}$的内自同构.令$G_{1}$$\mathfrak{H}_{m, n}$所有内自同构构成的集合, 则$G_{1}$${\rm{Aut}}(\mathfrak{H}_{m, n})$的子群, 称为$\mathfrak{H}_{m, n}$的内自同构群.

  易知$\sigma_{\alpha}$是双射且是线性变换.由已知设

$ \begin{aligned} \alpha=&\sum\limits_{k=1}^{m+n+2}a_{kk}e_{kk}+\sum\limits_{i=1}^{m}(x_{i}e_{1, i+1}+y_{i}e_{i+1, m+2})+pe_{1, m+2}, \quad a_{kk}\neq0, x_{i}, y_{i}, p\in\mathbb{F}, \end{aligned} $

则有

$ \begin{aligned} \alpha^{-1}=&\sum\limits_{k=1}^{m+n+2}a_{kk}^{-1}e_{kk}-a_{11}^{-1}\sum\limits_{i=1}^{m}a_{i+1, i+1}^{-1}x_{i}e_{1, i+1}-a_{m+2, m+2}^{-1}\sum\limits_{i=1}^{m}a_{i+1, i+1}^{-1}y_{i}e_{i+1, m+2}\\ &-a_{11}^{-1}a_{m+2, m+2}^{-1}\bigg(p-\sum\limits_{i=1}^{m}a_{i+1, i+1}^{-1}x_{i}y_{i}\bigg)e_{1, m+2}, \quad a_{kk}^{-1}\neq0, x_{i}, y_{i}, p\in\mathbb{F}, \end{aligned} $

其中$a_{kk}a_{kk}^{-1}=1$.由引理2.3, 设

$ \begin{align} h_{\overline{0}}=\sum\limits_{i=1}^{m}(x_{i}e_{1, i+1}+y_{i}e_{i+1, m+2})+pe_{1, m+2}\in(\mathfrak{H}_{m, n})_{\overline{0}}, \quad x_{i}, y_{i}, p\in\mathbb{F}, \end{align} $ (3.1)
$ \begin{align} h_{\overline{1}}=\sum\limits_{j=1}^{n}\gamma_{j}\Big(\frac{1}{2}e_{1, m+2+j}+e_{m+2+j, m+2}\Big)\in(\mathfrak{H}_{m, n})_{\overline{1}}, \quad \gamma_{j}\in\mathbb{F}, \end{align} $ (3.2)

则有

$ \begin{aligned} \sigma_{\alpha}(h_{\overline{0}})=&a_{11}\sum\limits_{i=1}^{m}a_{i+1, i+1}^{-1}x_{i}e_{1, i+1}+a_{m+2, m+2}^{-1}\sum\limits_{i=1}^{m}a_{i+1, i+1}y_{i}e_{i+1, m+2}\\ &+a_{m+2, m+2}^{-1}\bigg(a_{11}p-a_{11}\sum\limits_{i=1}^{m}a_{i+1, i+1}^{-1}x_{i}y_{i}+\sum\limits_{i=1}^{m}x_{i}y_{i}\bigg)e_{1, m+2}\in(\mathfrak{H}_{m, n})_{\overline{0}}, \\ \sigma_{\alpha}(h_{\overline{1}})=&\sum\limits_{j=1}^{n}\gamma_{j}\Big(\frac{1}{2}a_{11}a_{m+2+j, m+2+j}^{-1}e_{1, m+2+j}+a_{m+2, m+2}^{-1}a_{m+2+j, m+2+j}e_{m+2+j, m+2}\Big)\\ &\in(\mathfrak{H}_{m, n})_{\overline{1}}, \end{aligned} $

$\sigma_{\alpha}$是偶的线性变换.由引理2.3, 设

$ \begin{aligned} &h_{1}=\sum\limits_{i=1}^{m}(x'_{i}e_{1, i+1}+y'_{i}e_{i+1, m+2})+\sum\limits_{j=1}^{n}\gamma'_{j}\Big(\frac{1}{2}e_{1, m+2+j}+e_{m+2+j, m+2}\Big)+ce_{1, m+2}, \\ &h_{2}=\sum\limits_{i=1}^{m}(x''_{i}e_{1, i+1}+y''_{i}e_{i+1, m+2})+\sum\limits_{j=1}^{n}\gamma''_{j}\Big(\frac{1}{2}e_{1, m+2+j}+e_{m+2+j, m+2}\Big)+qe_{1, m+2}, \\ & x'_{i}, x''_{i}, y'_{i}, y''_{i}, \gamma'_{j}, \gamma''_{j}, c, q\in\mathbb{F}, \nonumber \end{aligned} $

则有

$ \begin{array}{l} {\sigma _\alpha }([{h_1},{h_2}]) = {\sigma _\alpha }(\sum\limits_{i = 1}^m {({{x'}_i}{{y''}_i} - {{y'}_i}{{x''}_i})} {e_{1,m + 2}} + \sum\limits_{j = 1}^n {{{\gamma '}_j}} {{\gamma ''}_j}{e_{1,m + 2}})\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \alpha (\sum\limits_{i = 1}^m {{{x'}_i}} {{y''}_i}{e_{1,m + 2}}){\alpha ^{ - 1}} - \alpha (\sum\limits_{i = 1}^m {{{y'}_i}} {{x''}_i}{e_{1,m + 2}}){\alpha ^{ - 1}} + \alpha (\sum\limits_{j = 1}^n {{{\gamma '}_j}} {{\gamma ''}_j}{e_{1,m + 2}}){\alpha ^{ - 1}},\\ [{\sigma _\alpha }({h_1}),{\sigma _\alpha }({h_2})] = [\alpha (\sum\limits_{i = 1}^m {{{x'}_i}} {e_{1,i + 1}}){\alpha ^{ - 1}},\alpha (\sum\limits_{i = 1}^m {{{y''}_i}} {e_{i + 1,m + 2}}){\alpha ^{ - 1}}] + [\alpha (\sum\limits_{i = 1}^m {{{y'}_i}} {e_{i + 1,m + 2}}){\alpha ^{ - 1}},\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\alpha (\sum\limits_{i = 1}^m {{{x''}_i}} {e_{1,i + 1}}){\alpha ^{ - 1}}] + [\alpha (\sum\limits_{j = 1}^n {{{\gamma '}_j}} (\frac{1}{2}{e_{1,m + 2 + j}} + {e_{m + 2 + j,m + 2}})){\alpha ^{ - 1}},\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\alpha (\sum\limits_{j = 1}^n {{{\gamma ''}_j}} (\frac{1}{2}{e_{1,m + 2 + j}} + {e_{m + 2 + j,m + 2}})){\alpha ^{ - 1}}]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \alpha (\sum\limits_{i = 1}^m {{{x'}_i}} {{y''}_i}{e_{1,m + 2}}){\alpha ^{ - 1}} - \alpha (\sum\limits_{i = 1}^m {{{y'}_i}} {{x''}_i}{e_{1,m + 2}}){\alpha ^{ - 1}} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\alpha (\sum\limits_{j = 1}^n {{{\gamma '}_j}} {{\gamma ''}_j}{e_{1,m + 2}}){\alpha ^{ - 1}}, \end{array} $

因此$\begin{aligned} \sigma_{\alpha}([h_{1}, h_{2}])=[\sigma_{\alpha}(h_{1}), \sigma_{\alpha}(h_{2})]. \end{aligned}$$\sigma_{\alpha}$$\mathfrak{H}_{m, n}$的一个自同构.由定理3.1的类似证明可得$G_{1}$${\rm{Aut}}(\mathfrak{H}_{m, n})$的子群.

定理3.5  令$a=(a_{1}, b_{1}, \cdots, a_{m}, b_{m})\in \mathbb{F}^{2m}$.设映射

$ \begin{aligned} \psi_{a}: \mathfrak{H}_{m, n}&\rightarrow \mathfrak{H}_{m, n}, \\ h&\mapsto\psi_{a}(h), \quad\forall h\in \mathfrak{H}_{m, n}, \end{aligned} $

其中$\begin{aligned} \psi_{a}(h)=h+\sum_{i=1}^{m}(a_{i}x_{i}+b_{i}y_{i})e_{1, m+2}, \end{aligned}$这里

$ h=\sum\limits_{i=1}^{m}(x_{i}e_{1, i+1}+y_{i}e_{i+1, m+2})+\sum\limits_{j=1}^{n}\gamma_{j}\Big(\frac{1}{2}e_{1, m+2+j}+e_{m+2+j, m+2}\Big)+pe_{1, m+2}, ~~ x_{i}, y_{i}, \gamma_{j}, \\ p\in \mathbb{F}, $

$\psi_{f}$$\mathfrak{H}_{m, n}$的一个自同构, 称为$\mathfrak{H}_{m, n}$的中心自同构.令$S_{1}$$\mathfrak{H}_{m, n}$所有中心自同构构成的集合, 则$S_{1}$${\rm{Aut}}(\mathfrak{H}_{m, n})$的子群, 称为$\mathfrak{H}_{m, n}$的中心自同构群.

  易知$\psi_{a}$是双射且是线性变换.由(3.1)和(3.2)式可得

$ \begin{aligned} &\psi_{a}(h_{\overline{0}})=h_{\overline{0}}+\sum\limits_{i=1}^{m}(a_{i}x_{i}+b_{i}y_{i})e_{1, m+2}\in(\mathfrak{H}_{m, n})_{\overline{0}}, \\ &\psi_{a}(h_{\overline{1}})=h_{\overline{1}}\in(\mathfrak{H}_{m, n})_{\overline{1}}, \end{aligned} $

$\psi_{a}$是偶的线性变换.由定义2.2和引理2.3可得$\begin{aligned} \psi_{a}(e_{1, m+2})=e_{1, m+2}. \end{aligned}$ $\forall h_{1}, h_{2}\in\mathfrak{H}_{m, n}$, 可得$\psi_{a}([h_{1}, h_{2}])=[h_{1}, h_{2}], $

$ \begin{align*} [\psi_{a}(h_{1}), \psi_{a}(h_{2})]=&[h_{1}, h_{2}]+[h_{1}, \sum\limits_{i=1}^{m}(a_{i}x''_{i}+b_{i}y''_{i})e_{1, m+2}]+[\sum\limits_{i=1}^{m}(a_{i}x'_{i}+b_{i}y'_{i})e_{1, m+2}, h_{2}]\\ &+[\sum\limits_{i=1}^{m}(a_{i}x'_{i}+b_{i}y'_{i})e_{1, m+2}, \sum\limits_{i=1}^{m}(a_{i}x''_{i}+b_{i}y''_{i})e_{1, m+2}] =[h_{1}, h_{2}], \end{align*} $

因此$\begin{aligned} \psi_{a}([h_{1}, h_{2}])=[\psi_{a}(h_{1}), \psi_{a}(h_{2})]. \end{aligned}$$\psi_{a}$$\mathfrak{H}_{m, n}$的一个自同构.由定理3.2的类似证明可得$S_{1}$${\rm{Aut}}(\mathfrak{H}_{m, n})$的子群.

定理3.6  令$\gamma=e_{11}-\sum\limits_{i=1}^{m}e_{i+1, i+1}+\sum\limits_{j=1}^{n}e_{m+2+j, m+2+j}+e_{m+2, m+2}$.设映射

$ \begin{aligned} w_{0}: \mathfrak{H}_{m, n}&\rightarrow \mathfrak{H}_{m, n}, \\ h&\mapsto w_{0}(h), \quad\forall h\in \mathfrak{H}_{m, n}, \end{aligned} $

其中$\begin{aligned} w_{0}(h)=\gamma h\gamma, \end{aligned}$$w_{0}$$\mathfrak{H}_{m, n}$的一个自同构, 称为$\mathfrak{H}_{m, n}$的对合自同构.令$W_{1}=\{\iota, w_{0}\}$, 其中$\iota$是恒等变换, 则$W_{1}$${\rm{Aut}}(\mathfrak{H}_{m, n})$的子群, 称为$\mathfrak{H}_{m, n}$的对合自同构群.

  事实上$w_{0}\in G_{1}$, $\{\iota, w_{0}\}$构成$G_{1}$的子群.

定理3.7  设$d\in M_{n+2}(\mathbb{F})$为可逆的对角矩阵, $x\in (\mathfrak{H}_{n})_{\overline{0}}$.令$\alpha=d+x$, 则$\alpha$可逆.设映射

$ \begin{aligned} \sigma_{\alpha}: \mathfrak{H}_{n}&\rightarrow \mathfrak{H}_{n}, \\ h&\mapsto\sigma_{\alpha}(h), \quad\forall h\in \mathfrak{H}_{n}, \end{aligned} $

其中$\begin{aligned} \sigma_{\alpha}(h)=\alpha h\alpha^{-1}, \end{aligned}$$\sigma_{\alpha}$$\mathfrak{H}_{n}$的一个自同构, 称为$\mathfrak{H}_{n}$的内自同构.令$G_{2}$$\mathfrak{H}_{n}$所有内自同构构成的集合, 则$G_{2}$${\rm{Aut}}(\mathfrak{H}_{n})$的子群, 称为$\mathfrak{H}_{n}$的内自同构群.

  易知$\sigma_{\alpha}$是双射且是线性变换.由已知设

$ \begin{aligned} \alpha=&\sum\limits_{k=1}^{n+2}a_{kk}e_{kk}+\sum\limits_{i=1}^{n}x_{i}e_{1, i+1}, \quad a_{kk}\neq0, x_{i}\in\mathbb{F}, \end{aligned} $

则有

$ \begin{aligned} \alpha^{-1}=&\sum\limits_{k=1}^{n+2}a_{kk}^{-1}e_{kk}-a_{11}^{-1}\sum\limits_{i=1}^{n}a_{i+1, i+1}^{-1}x_{i}e_{1, i+1}, \quad a_{kk}^{-1}\neq0, x_{i}\in\mathbb{F}, \end{aligned} $

其中$a_{kk}a_{kk}^{-1}=1$.由引理2.4设

$ \begin{align} h_{\overline{0}} =\sum\limits_{i=1}^{n}x_{i}e_{1, i+1}\in(\mathfrak{H}_{n})_{\overline{0}}, \quad x_{i}\in\mathbb{F}, \end{align} $ (3.3)
$ \begin{align} h_{\overline{1}} =\sum\limits_{i=1}^{n}y_{i}e_{i+1, n+2}+pe_{1, n+2}\in(\mathfrak{H}_{n})_{\overline{1}}, \quad y_{i}, p\in\mathbb{F}, \end{align} $ (3.4)

则有

$ \begin{aligned} \sigma_{\alpha}(h_{\overline{0}})&=a_{11}\sum\limits_{i=1}^{n}a_{i+1, i+1}^{-1}x_{i}e_{1, i+1}\in(\mathfrak{H}_{n})_{\overline{0}}, \\ \sigma_{\alpha}(h_{\overline{1}})&=a_{n+2, n+2}^{-1}\bigg(\sum\limits_{i=1}^{n}a_{i+1, i+1}y_{i}e_{i+1, n+2}+\sum\limits_{i=1}^{n}x_{i}y_{i}e_{1, n+2}+a_{11}pe_{1, n+2}\bigg)\in(\mathfrak{H}_{n})_{\overline{1}}, \end{aligned} $

$\sigma_{\alpha}$是偶的线性变换.由引理2.4设

$ \begin{align} h_{1}=\sum\limits_{i=1}^{n}(x'_{i}e_{1, i+1}+y'_{i}e_{i+1, n+2})+ce_{1, n+2}, \end{align} $ (3.5)
$ \begin{align} h_{2}=\sum\limits_{i=1}^{n}(x''_{i}e_{1, i+1}+y''_{i}e_{i+1, n+2})+qe_{1, n+2}, \quad x'_{i}, x''_{i}, y'_{i}, y''_{i}, c, q\in\mathbb{F}, \end{align} $ (3.6)

则有

$ \begin{aligned} \sigma_{\alpha}([h_{1}, h_{2}])=&\sigma_{\alpha}\bigg(\sum\limits_{i=1}^{n}(x'_{i}y''_{i}-y'_{i}x''_{i})e_{1, n+2}\bigg)\\ =&\alpha\bigg(\sum\limits_{i=1}^{n}x'_{i}y''_{i}e_{1, n+2}\bigg)\alpha^{-1}-\alpha\bigg(\sum\limits_{i=1}^{n}y'_{i}x''_{i}e_{1, n+2}\bigg)\alpha^{-1}, \\ [\sigma_{\alpha}(h_{1}), \sigma_{\alpha}(h_{2})]=&\bigg[\alpha\bigg(\sum\limits_{i=1}^{n}x'_{i}e_{1, i+1}\bigg)\alpha^{-1}, \alpha\bigg(\sum\limits_{i=1}^{n}y''_{i}e_{i+1, n+2}\bigg)\alpha^{-1}\bigg]+\\ &\bigg[\alpha\bigg(\sum\limits_{i=1}^{n}y'_{i}e_{i+1, n+2}\bigg)\alpha^{-1}, \\ &\alpha\bigg(\sum\limits_{i=1}^{n}x''_{i}e_{1, i+1}\bigg)\alpha^{-1}\bigg]\\ =&\alpha\bigg(\sum\limits_{i=1}^{n}x'_{i}y''_{i}e_{1, n+2}\bigg)\alpha^{-1}-\alpha\bigg(\sum\limits_{i=1}^{n}y'_{i}x''_{i}e_{1, n+2}\bigg)\alpha^{-1}, \end{aligned} $

因此$\begin{aligned} \sigma_{\alpha}([h_{1}, h_{2}])=[\sigma_{\alpha}(h_{1}), \sigma_{\alpha}(h_{2})]. \end{aligned}$$\sigma_{\alpha}$$\mathfrak{H}_{n}$的一个自同构.由定理3.1的类似证明可得$G_{2}$${\rm{Aut}}(\mathfrak{H}_{n})$的子群.

定理3.8  令$b=(b_{1}, \cdots, b_{n})\in\mathbb{F}^{n}$.设映射

$ \begin{aligned} \psi_{b}: \mathfrak{H}_{n}&\rightarrow \mathfrak{H}_{n}, \\ h&\mapsto\psi_{b}(h), \quad\forall h\in \mathfrak{H}_{n}, \end{aligned} $

其中$\begin{aligned} \psi_{b}(h)=h+\sum_{i=1}^{n}b_{i}y_{i}e_{1, n+2}, \end{aligned}$这里$\begin{aligned} h=\sum_{i=1}^{n}(x_{i}e_{1, i+1}+y_{i}e_{i+1, n+2})+pe_{1, n+2}, ~ x_{i}, y_{i}, p\in\mathbb{F}, \end{aligned}$$\psi_{b}$$\mathfrak{H}_{n}$的一个自同构, 称为$\mathfrak{H}_{n}$的中心自同构.令$S_{2}$$\mathfrak{H}_{n}$所有中心自同构构成的集合, 则$S_{2}$${\rm{Aut}}(\mathfrak{H}_{n})$的子群, 称为$\mathfrak{H}_{n}$的中心自同构群.

  易知$\psi_{b}$是双射且是线性变换.由(3.3)和(3.4)式可得

$ \begin{aligned} \psi_{b}(h_{\overline{0}})=h_{\overline{0}}\in(\mathfrak{H}_{n})_{\overline{0}}, ~~ \psi_{b}(h_{\overline{1}})=h_{\overline{1}}+\sum\limits_{i=1}^{n}b_{i}y_{i}e_{1, n+2}\in(\mathfrak{H}_{n})_{\overline{1}}, \end{aligned} $

$\psi_{b}$是偶的线性变换.由定义2.2和引理2.4可得$\begin{aligned} \psi_{b}(e_{1, n+2})=e_{1, n+2}. \end{aligned}$ $\forall h_{1}, h_{2}\in\mathfrak{H}_{n}$, 可得

$ \begin{aligned} \psi_{b}([h_{1}, h_{2}])=&[h_{1}, h_{2}], \\ [\psi_{b}(h_{1}), \psi_{b}(h_{2})]=&[h_{1}, h_{2}]+[h_{1}, \sum\limits_{i=1}^{n}b_{i}y''_{i}e_{1, n+2}]+[\sum\limits_{i=1}^{n}b_{i}y'_{i}e_{1, n+2}, h_{2}]\\ &+[\sum\limits_{i=1}^{n}b_{i}y'_{i}e_{1, n+2}, \sum\limits_{i=1}^{n}b_{i}y''_{i}e_{1, n+2}] =[h_{1}, h_{2}], \end{aligned} $

因此$\begin{aligned} \psi_{b}([h_{1}, h_{2}])=[\psi_{b}(h_{1}), \psi_{b}(h_{2})]. \end{aligned}$$\psi_{b}$$\mathfrak{H}_{n}$的一个自同构.由定理3.2的类似证明可得$S_{2}$${\rm{Aut}}(\mathfrak{H}_{n})$的子群.

定理3.9  令$\gamma=e_{11}-\sum\limits_{k=1}^{n+1}e_{k+1, k+1}+\sum\limits_{i=1}^{n}e_{1, i+1}+e_{1, n+2}$.设映射

$ \begin{aligned} w_{0}: \mathfrak{H}_{n}&\rightarrow \mathfrak{H}_{n}, \\ h&\mapsto w_{0}(h), \quad\forall h\in \mathfrak{H}_{n}, \end{aligned} $

其中$\begin{aligned} w_{0}(h)=\gamma h\gamma, \end{aligned}$$w_{0}$$\mathfrak{H}_{n}$的一个自同构, 称为$\mathfrak{H}_{n}$的对合自同构.令$W_{2}=\{\iota, w_{0}\}$, 其中$\iota$是恒等变换, 则$W_{2}$${\rm{Aut}}(\mathfrak{H}_{n})$的子群, 称为$\mathfrak{H}_{n}$的对合自同构群.

  易知$w_{0}$是双射且是线性变换.由(3.3)和(3.4)式可得

$ \begin{aligned} &w_{0}(h_{\overline{0}})=-h_{\overline{0}}\in(\mathfrak{H}_{n})_{\overline{0}}, \\ &w_{0}(h_{\overline{1}})=\sum\limits_{i=1}^{n}y_{i}e_{i+1, n+2}-\sum\limits_{i=1}^{n}y_{i}e_{1, n+2}-pe_{1, n+2}\in(\mathfrak{H}_{n})_{\overline{1}}, \end{aligned} $

$w_{0}$是偶的线性变换.由已知得$\gamma^{2}=e$, 其中$e$是单位矩阵.由(3.5)和(3.6)式可得

$ \begin{aligned} w_{0}([h_{1}, h_{2}])=&w_{0}\bigg(\sum\limits_{i=1}^{n}(x'_{i}y''_{i}-y'_{i}x''_{i})e_{1, n+2}\bigg) =-\sum\limits_{i=1}^{n}(x'_{i}y''_{i}-y'_{i}x''_{i})e_{1, n+2}, \\ [w_{0}(h_{1}), w_{0}(h_{2})]=&\bigg[\gamma\bigg(\sum\limits_{i=1}^{n}x'_{i}e_{1, i+1}\bigg)\gamma, \gamma\bigg(\sum\limits_{i=1}^{n}y''_{i}e_{i+1, n+2}\bigg)\gamma\bigg]+\bigg[\gamma\bigg(\sum\limits_{i=1}^{n}y'_{i}e_{1, i+1}\bigg)\gamma, \\ &\gamma\bigg(\sum\limits_{i=1}^{n}x''_{i}e_{i+1, n+2}\bigg)\gamma\bigg] =-\sum\limits_{i=1}^{n}(x'_{i}y''_{i}-y'_{i}x''_{i})e_{1, n+2}, \end{aligned} $

因此$\begin{aligned} w_{0}([h_{1}, h_{2}])=[w_{0}(h_{1}), w_{0}(h_{2})]. \end{aligned}$$w_{0}$$\mathfrak{H}_{n}$的一个自同构.由定理3.3的类似证明可得$W_{2}$${\rm{Aut}}(\mathfrak{H}_{n})$的子群.

参考文献
[1] Hegazi A S. Representations of Heisenberg Lie superalgebras[J]. Indian J. Pure Appl. Math., 1990, 21(6): 557–566.
[2] Jang Cuibo. The holomorph and derivation algebra of infinite dimensional Heisenberg algebra[J]. J. Math., 1997, 17(3): 422–426.
[3] Sköldberg E. The homology of Heisenberg Lie algebras over fields of characteristic two[J]. Math. Proc. R. Ir. Acad., 2005, 150(2): 47–49.
[4] Rodríguez-Vallarte M C, Salgado G, Sánchez-Valenzuela O A. Heisenberg Lie superalgebras and their invariant superorthogonal and supersymplectic forms[J]. J. Alg., 2011, 332(1): 71–86. DOI:10.1016/j.jalgebra.2011.02.003
[5] Liu Wende, Chen Meiwei. The minimal dimensions of faithful representations for Heisenberg Lie superalgebras[J]. J. Geom. Phys., 2015, 89: 17–24. DOI:10.1016/j.geomphys.2014.12.003
[6] Cao Youan, Tan Zuowen. Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring[J]. Linear Alg. Appl., 2003, 360: 105–122. DOI:10.1016/S0024-3795(02)00446-9
[7] 张海山, 邵文武, 卢才辉. Heisenberg李代数的自同构群[J]. 首都师范大学学报(自然科学版), 2007, 28(1): 1–14.