数学杂志  2018, Vol. 38 Issue (2): 317-324   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
沈春芳
杨刘
解大鹏
具变号非线性项三阶多点边值问题的正解与多个正解
沈春芳, 杨刘, 解大鹏    
合肥师范学院数学系, 安徽 合肥 230601
摘要:本文研究了一类非线性项变号的三阶常微分方程多点边值问题正解存在性问题.利用Banach空间锥上不动点定理及非线性泛函分析方法,获得了该问题正解的存在性结论.推广了已有文献的结果.
关键词三阶多点边值问题    正解        不动点    
EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR THIRD-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM WITH SIGN CHANGING NONLINEARITY
SHEN Chun-fang, YANG Liu, XIE Da-peng    
Department of Mathematics, Hefei Normal University, Hefei 230601, China
Abstract: In this paper, existence of positive solution of a kind of boundary value problem of third order differential equation with changing sign nonlinearity is considered. By using the fixed point theorem and nonlinear functional analysis method, the existence of positive solution is established, which generalizes the existing literature.
Key words: third-order multi-point boundary value problem     positive solution     cone     fixed point    
1 引言

本文研究如下三阶常微分方程$m$点边值问题

$ \begin{eqnarray} \left \{ \begin{array}{l} x'''(t)=f(t, \ x(t)), \ t\in [0, 1], \\ x''(1)=0, \ x'(0)=0, \ x(1)=\mathop \sum \limits_{i = 1}^{m - 2}\beta_{i}x(\xi_{i}), \end{array} \right. \end{eqnarray} $ (1.1)

其中$0<\xi_{1}<\xi_{2}< \cdots< \xi_{m-2}<1, \ 0<\beta_{i}< 1, \ i=1, 2, \cdots, m-2, \ \sum\limits^{m-2}_{i=1}\beta_{i}<1$, $f$满足条件

(H) $f\in C([0, 1]\times [0, +\infty), \ (-\infty, +\infty)), \ f(t, 0)\geq 0, \ t\in [0, \ 1]$且不恒为0.

三阶常微分方程边值问题广泛出现在流体力学、天文学、弹性振动等问题中[1], 对相关问题正解的研究近年来受到人们广泛的关注.利用非线性泛函分析方法, 对三阶微分方程边值问题正解与多个正解的存在性的研究取得了丰富的结果, 可参考文献[2-12]. Anderson [2]研究如下三阶三点边值问题

$ \left \{ \begin{array}{l} -x'''(t)+f(x(t))=0, \ t\in (0, 1), \\ x(0)=x'(t_{2})=x''(1)=0, \ \ t_{2} \in (0, 1), \end{array} \right. $

其中$f:R\rightarrow [0, +\infty)$连续, $1/2\leq t_{2}<1$, 文中建立了问题至少三个正解的存在性结果. Palamides [3]利用范数形式的锥拉伸锥压缩不动点定理, 证明了三阶三点边值问题

$ \left \{ \begin{array}{l} x'''(t)=a(t)f(t, x(t)), \ t\in (0, 1), \\ x''(\eta)=0, \ x(0)=x(1)=0, \ \eta \in (0, 1) \end{array} \right. $

多个正解的存在性. Guo [5]利用锥上不动点定理证明了三阶三点边值问题

$ \left \{ \begin{array}{l} x'''(t)=a(t)f(x(t)), \ t\in (0, 1), \\ x(0)=x'(0)=0, \ x'(1)=x'(\eta), \ \eta \in (0, 1) \end{array} \right. $

正解的存在性, 其中$f$非负且满足超线性或次线性条件.但在这些文献中, 均要求问题中非线性项非负, 非线性项变号时, 所得结论不再适用.目前, 对具变号非线性项的三阶常微分方程多点边值问题正解的讨论比较少见.本文首先建立与问题(1.1)等价的算子方程, 利用锥上不动点定理, 给出了问题(1.1)正解与多个正解的存在性结论.文中允许非线性项变号, 因此所得结果不同于已有文献.最后, 文中给出了具体的例子解释了结论的应用性.

2 预备知识

定义 2.1$E$为实Banach空间.非空闭凸集$P\subset E$称为$E$上的锥, 如果满足

(1) $au\in P$, 对$u\in P, \ a\geq 0$;

(2) $u, -u\in P$, $u=0.$

定义 2.2 函数$x$称为[0, 1]上的凸泛函, 如果

$x(\lambda t_{1}+(1-\lambda)t_{2})\geq \lambda x(t_{1})+(1-\lambda)x(t_{2}), \lambda, \ t_{1}, \ t_{2}\in [0, \ 1].$

引理 2.1 (见文献[14])设$K$是Banach空间$X$上的锥, $D$$X$上有界开子集, 满足$D_{K}=D\cap K\neq \emptyset $.设$A: \overline{D_{K}}\rightarrow K$全连续且$x\neq Ax$$x\in \partial D_{K}$, 有

(1) 如果$\|Ax\|\leq \|x\|, \ x\in \partial D_{K}$, 则$i_{K}(A, \ D_{K})=1$.

(2) 若存在$e\in K\backslash \{0\}$使得$x\neq Ax+\lambda e, \ x\in \partial D_{K}, \ \lambda>0$, 则$i_{K}(A, \ D_{K})=0$.

(3) 设$U$$X$中有界开集, $\overline{U} \subset D_{K}$.如果$i_{K}(A, \ D_{K})=1, \ i_{K}(A, \ U_{K})=0$$i_{K}(A, \ D_{K})=0, \ i_{K}(A, \ U_{K})=1$, 则$A$$D_{K}\backslash \overline{U_{K}}$中至少有一不动点.

3 主要结果与证明

首先考虑三阶微分方程边值问题

$ \begin{eqnarray} &&x'''(t)=y(t), t\in [0, 1], \end{eqnarray} $ (3.1)
$\begin{eqnarray} &&x''(1)=0, \ x'(0)=0, \ x(1)=\sum^{m-2}_{i=1}\beta_{i}x(\xi_{i}), \end{eqnarray} $ (3.2)

其中$0<\xi_{1}<\xi_{2}< \cdots< \xi_{m-2}<1, \ 0<\beta_{i}< 1, \ i=1, 2, \cdots, m-2, \mathop \sum \limits_{i = 1}^{m - 2} \beta_{i}<1$.

引理 3.1$\xi_{0}=0, \ \xi_{m-1}=1, \ \beta_{0}=\beta_{m-1}=0, \ y(t)\in C[0, 1]$, 问题(3.1), (3.2)等价于

$x(t)=\int^{1}_{0}G(t, s)\int^{1}_{s}y(\tau)d\tau ds, $

其中

$ \begin{eqnarray*} G(t, s)=\frac{1}{1-\mathop \sum \limits_{i = 0}^{m - 1}\beta_{i}}\left \{ \begin{array}{ll} (1-s)+\mathop \sum \limits_{k=i}^{m - 1}\beta_{k}(s-\xi_{k}), \\{t\leq s, \ \xi_{i-1}<s<\xi_{i}, \ i=1, \ 2, \ \cdots, \ m-1}, \\ (1-t)+\mathop \sum \limits_{k=0}^{i-1}\beta_{k}(t-s)+\mathop \sum \limits_{k=i}^{m - 1}\beta_{k}(t-\xi_{k}), \\{t\geq s, \ \xi_{i-1}<s<\xi_{i}, \ i=1, \ 2, \ \cdots, \ m-1 }.\\ \end{array} \right. \end{eqnarray*} $

(3.1)式两侧积分并考虑条件$x''(1)=0$, 有

$ \begin{eqnarray}-x''(t)=\int^{1}_{t}y(s)ds.\end{eqnarray} $ (3.3)

$G(t, s)$是边值问题

$ \begin{eqnarray}&&-x''(t)=0, \end{eqnarray} $ (3.4)
$\begin{eqnarray} &&x'(0)=0, \ x(1)=\mathop \sum \limits_{i = 0}^{m - 1}\beta_{i}x(\xi_{i})\end{eqnarray} $ (3.5)

的Green函数, 由(3.4)式, 可设

$ G(t, s)=\left \{ \begin{array}{cc} A+Bt, &{t\leq s, \ \xi_{i-1}<s<\xi_{i}, }\\ C+Dt,&{t\geq s, \ \xi_{i-1}<s<\xi_{i}.} \end{array} \right. $

由Green函数定义及性质, 结合边值条件(3.5), 有

$ \left \{ \begin{array}{l} A+Bs=C+Ds, \\ B-D=1, \\ B=0, \\ C+D=\mathop \sum \limits_{k = 0}^{i - 1}\beta_{k}(A+B\xi_{k})+\mathop \sum \limits_{k = i}^{m - 1}\beta_{k}(C+D\xi_{k}), \end{array} \right. $

这样

$ \begin{eqnarray*}&&A=(1-s+\mathop \sum \limits_{k = i}^{m - 1}\beta_{k}(s-\xi_{k}))/(1-\mathop \sum \limits_{i = 0}^{m - 1}\beta_{i}), \ C=(1-\mathop \sum \limits_{k = 0}^{i - 1}\beta_{k}s-\mathop \sum \limits_{k = i}^{m - 1}\beta_{k}\xi_{k})/(1-\mathop \sum \limits_{i = 0}^{m - 1}\beta_{i}), \\ &&B=0, \ \ D=-1.\\ &&G(t, s)=\frac{1}{1-\mathop \sum \limits_{i = 0}^{m - 1}\beta_{i}}\left \{ \begin{array}{ll} (1-s)+\mathop \sum \limits_{k = i}^{m - 1}\beta_{k}(s-\xi_{k}), \\ {t\leq s, \ \xi_{i-1}<s<\xi_{i}, \ i=1, \ 2, \ \cdots, \ m-1}, \\ (1-t)+\mathop \sum \limits_{k = 0}^{i - 1}\beta_{k}(t-s)+\mathop \sum \limits_{k = i}^{m - 1}\beta_{k}(t-\xi_{k}), \\ {t\geq s, \ \xi_{i-1}<s<\xi_{i}, \ i=1, \ 2, \ \cdots, \ m-1}.\\ \end{array} \right. \end{eqnarray*} $

考虑(3.3)式, 问题(3.1), (3.2)等价于

$x(t)=\int^{1}_{0}G(t, s)\int^{1}_{s}y(\tau)d\tau ds.$

引理 3.2 函数$G(t, \ s)$满足$G(t, s)\geq 0, \ t, \ s\in [0, 1]$.

$\xi_{i-1}\leq s\leq \xi_{i}, \ i=1, \ 2, \ \cdots, \ m-1, \ t\leq s$,

$(1-s)+\mathop \sum \limits_{k = i}^{m - 1}\beta_{k}(s-\xi_{k}) \geq \mathop \sum \limits_{k = i}^{m - 1}\beta_{k}(1-\xi_{k})\geq 0.$

$\xi_{i-1}\leq s\leq \xi_{i}, \ i=1, \ 2, \ \cdots, \ m-1, \ t\geq s$,

$(1-t)+\mathop \sum \limits_{k = 0}^{i - 1}\beta_{k}(t-s)+\mathop \sum \limits_{k = i}^{m - 1}\beta_{k}(t-\xi_{k}) \geq \mathop \sum \limits_{k = 0}^{i - 1}\beta_{k}(1-s)+\mathop \sum \limits_{k = i}^{m - 1}\beta_{k}(1-\xi_{k}) \geq 0.$

综上, $G(t, s)\geq 0, \ t, \ s\in [0, 1]$.

引理 3.3$y(t)\geq 0, t\in [0, 1]$, $x(t)$是边值问题(3.1), (3.2)的解, 则有

$\min\limits_{0\leq t\leq 1}|x(t)|\geq \delta\max\limits_{0\leq t\leq 1}|x(t)|, $

其中

$\delta=(\mathop \sum \limits_{i = 1}^{m - 2}\beta_{i}(1-\xi_{i}))/(1-\mathop \sum \limits_{i = 1}^{m - 2}\beta_{i}\xi_{i})>0.$

$x'''(t)=y(t)\geq 0, \ t\in [0, 1]$$x''(t)$在[0, 1]上单调递增.考虑到$x''(1)=0$, 有$x''(t)\leq 0, \ t\in (0, 1)$.结合$x'(0)=0$, 必有

$\max\limits_{0\leq t\leq 1}x(t)=x(0), \min\limits_{0\leq t\leq 1}x(t)=x(1).$

$x(t)$的凸性,

$\xi_{i}(x(1)-x(0))\leq x(\xi_{i})-x(0).$

上式两端乘以$\beta_{i}, \ i=1, \ 2, \ \cdots, \ m-1$, 结合边值条件, 有

$(1-\mathop \sum \limits_{i = 1}^{m - 2}\beta_{i}\xi_{i})x(1)\geq \mathop \sum \limits_{i = 1}^{m - 2}\beta_{i}(1-\xi_{i})x(0).$

设Banach空间$E=C[0, \ 1]$及范数$\|x\|=\max\limits_{0\leq t\leq 1}|x(t)|, \ x\in E.$定义$E$中锥$K$,

$ \begin{eqnarray*}&&K=\{x\in E\ |\ x(t)\geq 0, \ x''(1)=0, \ x'(0)=0, \\ &&x(1)=\mathop \sum \limits_{i = 1}^{m - 2}\beta_{i}x(\xi_{i}), \ x''(t)\leq 0, \ t\in [0, \ 1]\}.\end{eqnarray*} $

定义

$ \begin{eqnarray*} &&\phi(t)=\min\{t, \ 1-t\}, \ t\in (0, 1), \\ &&K_{\rho}=\{x\in K:\|x\|<\rho\}, \ K^{\ast}_{\rho}=\{x\in K:\rho \phi(t)<x(t)<\ \rho\}, \\ &&\Omega_{\rho}=\{x\in K: x(t)\geq 0, x''(t)\leq 0, \ t\in [0, 1], \ \min\limits_{0\leq t\leq 1}x(t)<\delta\rho\}.\end{eqnarray*} $

引理 3.4 $\Omega_{\rho}$具有如下性质:

(1) $\Omega_{\rho}\subset K_{\rho}$$K_{\rho}$中开集.

(2) 设$x\in \partial \Omega_{\rho}$, 则$\delta \rho\leq x(t)\leq \rho, \ t\in [0, \ 1]$.

$ \begin{eqnarray*} &&f^{\rho}_{\delta \rho}=\min\{\frac{f(t, \ x)}{\rho}:\ t\in [0, \ 1], \ x\in [\delta \rho, \ \rho] \}, \\ &&f^{\rho}_{\phi(t) \rho}=\max\{\frac{f(t, \ x)}{\rho}:\ t\in [0, \ 1], \ x\in [\rho \phi(t), \ \rho] \}, \\ &&f^{\rho}_{0}=\max\{\frac{f(t, \ x)}{\rho}:\ t\in [0, \ 1], \ x\in [0, \ \rho] \}, \\ &&m=\frac{1}{\max\limits_{0\leq t\leq 1}\int^{1}_{0}(1-s)G(t, \ s)ds}, \ M=\frac{1}{\delta \min\limits_{0\leq t\leq 1}\int^{1}_{0}(1-s)G(t, s)ds}.\end{eqnarray*} $

定理 3.1 假定条件(H)成立.此外, 若条件(H1)成立:

(H1)存在正常数$\rho_{1}, \ \rho_{2}, \ \rho_{3}\in (0, \ \infty)$满足$\rho_{1}<\delta \rho_{2}<\rho_{2}<\rho_{3}$使得

(1) $ f(t, \ u)>0, \ t\in [0, \ 1], u\in [\rho_{1} \phi(t), \ \infty), $

(2) $f^{\rho_{1}}_{\rho_{1}\phi(t)}<m, f^{\rho_{2}}_{\delta \rho_{2}}>M, \ f^{\rho_{3}}_{\rho_{3}\phi(t)}\leq m, $

则问题(1.1)在$K$中至少有三个解.假定条件(H)成立.此外, 若条件(H2)成立:

(H2)存在正常数$\rho_{1}, \ \rho_{2}, \ \rho_{3}\in (0, \ \infty)$满足$\rho_{1}<\rho_{2}< \rho_{3}$使得

(3) $f(t, \ u)>0, \ t\in [0, \ 1], u\in [\min\{\rho_{1}, \ \rho_{2}\phi(t)\}, \ \infty), $

(4) $ f^{\rho_{1}}_{\delta\rho_{1}}>M, \ f^{\rho_{2}}_{\rho_{2}\phi(t)}<m, \ f^{\rho_{3}}_{\delta\rho_{3}}\geq M, $

则问题(1.1)在$K$中至少有两个解.

首先设条件(H1)成立.定义辅助函数$f^{\ast}(t, \ x)\in C([0, \ 1]\times [0, \infty), \ [0, \infty)):$

$ f^{\ast}(t, \ x)=\left \{ \begin{array}{ll} f(t, \ x),&x\geq \rho_{1}\phi(t), \\ f(t, \ \rho_{1}\phi(t)),&0\leq x<\rho_{1}\phi(t)).\\ \end{array} \right. $

考虑如下辅助边值问题

$ (\ast)\left \{ \begin{array}{l} x'''(t)=f^{\ast}(t, \ x(t)), \ t\in [0, 1], \\ x''(1)=0, \ x'(0)=0, \ x(1)=\mathop \sum \limits_{i = 1}^{m - 2}\beta_{i}x(\xi_{i}). \end{array} \right. $

定义算子

$(Tx)(t)=\int^{1}_{0}G(t, s)\int^{1}_{s}f^{\ast}(\tau, \ x(\tau))d\tau ds, $

显然$T:K\rightarrow K$是全连续的.由条件(H1), 有

$f^{\ast \rho_{1}}_{\rho_{1}\phi(t)}<m, f^{\ast \rho_{2}}_{\delta \rho_{2}}>M, \ f^{\ast \rho_{3}}_{\rho_{3}\phi(t)}\leq m.$

则对$x\in \partial K^{\ast}_{\rho_{1}}, $

$ \begin{eqnarray*} \|(Tx)(t)\|&=&\max\limits_{0\leq t\leq 1}|\int^{1}_{0}G(t, s)\int^{1}_{s}f^{\ast}(\tau, \ x(\tau))d\tau ds|\\ &\leq&\max\limits_{0\leq t\leq 1} \int^{1}_{0}G(t, s)\int^{1}_{s}|f^{\ast}(\tau, \ x(\tau))|d\tau ds\\ &<&m\rho_{1}\int^{1}_{0}(1-s)G(t, s)ds\leq \rho_{1}, \end{eqnarray*} $

这表明$\|Tx\|\leq \|x\|, \ x\in \partial K^{\ast}_{\rho_{1}}$, 即$i_{K}(T, \ K^{\ast}_{\rho_{1}})=1$.设$e(t)\equiv 1, \ t\in [0, \ 1]$, 则$e\in \partial K_{1}$.此时必有$x\neq Tx+\lambda e, \ x\in \partial \Omega_{\rho_{2}}, \ \lambda \geq 0.$否则, 必存在$x_{0}\in \partial \Omega_{\rho_{2}}, \ \lambda_{0}\geq 0$使得$x_{0}=Tx_{0}+\lambda_{0} e.$但是

$ \begin{eqnarray*} x_{0}(t)&=&(Tx_{0})(t)+\lambda_{0} e(t)\geq \delta \|Tx_{0}\|+\lambda_{0}\\ &=&\delta \max\limits_{0\leq t\leq 1}|\int^{1}_{0}G(t, s)\int^{1}_{s}f^{\ast}(\tau, \ x(\tau))d\tau ds|+\lambda_{0}\\ &\geq& \delta\rho_{2} M\int^{1}_{0}(1-s)G(t, \ s)ds+\lambda_{0}\geq \rho_{2}+\lambda_{0}.\end{eqnarray*} $

这表明$\rho_{2}\geq \rho_{2}+\lambda_{0}, $矛盾.由引理2.1, $i_{K}(T, \ \Omega_{\rho_{2}})=0$.同理可证, $i_{K}(T, \ K^{\ast}_{\rho_{3}})=1$.这样, 辅助边值问题存在三个正解$x_{1}, \ x_{2}, \ x_{3}$使得

$x_{1}\in K^{\ast}_{\rho_{1}}, \ x_{2}\in \Omega_{\rho_{2}}\backslash \overline{K^{\ast}_{\rho_{1}}}, x_{3}\in K^{\ast}_{\rho_{3}}.$

易验证辅助边值问题$(\ast)$$[\rho_{1}\phi(t), \ \infty)$中存在三个正解$x_{1}, \ x_{2}, \ x_{3}$, 这说明边值问题(1.1)存在至少三个正解.条件(H2)成立时, 正解的存在性同理可证.完全类似定理3.1, 可证得如下结论.

定理 3.2 设条件(H)成立.此外, 下列条件之一成立:

(H3)存在正常数$\rho_{1}, \ \rho_{2}\in (0, \ \infty)$满足$\rho_{1}<\delta\rho_{2}$使得

(5) $ f(t, \ x)>0, \ t\in [0, \ 1], x\in [\rho_{1} \phi(t), \ \infty), $

(6) $ f^{\rho_{1}}_{\rho_{1}\phi(t)}\leq m, f^{\rho_{2}}_{\delta \rho_{2}}\geq M;$

(H4)存在正常数$\rho_{1}, \ \rho_{2}\in (0, \ \infty)$满足$\rho_{1}<\rho_{2}$使得

(7) $ f(t, \ x)>0, \ t\in [0, \ 1], x\in [\min\{\rho_{1}, \ \rho_{2}\phi(t)\}, \ \infty), $

(8) $ f^{\rho_{1}}_{\delta\rho_{1}}\geq M, f^{\rho_{2}}_{\rho_{2}\phi(t)}\leq m, $

则边值问题(1.1)在$K$中至少有一正解.

4 例子

考虑如下三阶四点边值问题

$ \begin{eqnarray}\left \{ \begin{array}{l} x'''(t)+f(t, \ x(t))=0, \ t\in [0, 1], \\ x''(1)=0, \ x'(0)=0, \ x(1)=\frac{1}{2}x(\frac{1}{3})+\frac{1}{3}x(\frac{2}{3}), \end{array} \right. \end{eqnarray} $ (4.1)

其中

$ f(t, \ x)=\left \{ \begin{array}{ll} (x-\frac{1}{2}\phi(t))^{2}-\frac{1}{8}(\phi(t))^{2}, &{t\in [0, \ 1], x\in [0, \ \phi(t)], }\\ \frac{1}{8}(x-\phi(t))^{2}+\frac{1}{8}(\phi(t))^{2}, &{t\in [0, \ 1], \ x\in [\phi(t), \ 1]}, \\ \frac{1}{8}-\frac{1}{4}\phi(t)+\frac{1}{4}(\phi(t))^{2}+(x-1)^{2}, &{t\in [0, \ 1], \ x\in [1, \ 8]}, \\ \frac{1}{8}-\frac{1}{4}\phi(t)+\frac{1}{4}(\phi(t))^{2}+49-\sqrt{x-8}, &{t\in [0, \ 1], \ x\in [8, \ 11]}, \\ \frac{1}{8}-\frac{1}{4}\phi(t)+\frac{1}{4}(\phi(t))^{2}+49-\sqrt{3}+\sin(x-11), &{t\in [0, \ 1], \ x\in [11, \ 122]}. \end{array} \right. $

计算可得函数$G(t, s)$由下式给出

$ G(t, \ s)=\left \{ \begin{array}{ll} -s+\frac{11}{3}, &t\leq s, 0\leq s\leq \frac{1}{3}, \\ -t+\frac{11}{3}, &t\geq s, 0\leq s\leq \frac{1}{3}, \\ -4s+\frac{14}{3}, &t\leq s, \frac{1}{3}\leq s\leq \frac{2}{3}, \\ -3s-2t+\frac{14}{3}, &t\geq s, \frac{1}{3}\leq s\leq \frac{2}{3}, \\ 6-6s, &t\leq s, \frac{2}{3}\leq s\leq 1, \\ 6-t-5s, &t\geq s, \frac{2}{3}\leq s\leq 1. \end{array} \right. $

$\rho_{1}=1, \rho_{2}=11, \ \rho_{3}=122$, 有$\delta=\frac{8}{11}, \ m=\frac{81}{122}, \ M=\frac{891}{652}.$易验证$f(t, \ x)$满足条件(H)和

(1) $f(t, \ x)>0, \ \ \ \ t\in [0, \ 1], \ \ \ x\in [\rho_{1} \phi(t), \ \infty); $

(2)~$f(t, \ x)<\frac{81}{122}, \ \ \ t\in [0, 1], \ \ \ x\in [\phi(t), \ 1];$

(3) $f(t, \ x)>\frac{9801}{652}, \ \ \ t\in [0, 1], \ \ \ x\in [8, \ 11];$

(4) $f(t, \ x)<81, \ \ \ t\in [0, 1], \ \ \ x\in [122\phi(t), \ 122].$

这样定理3.1的所有条件均满足, 因此, 问题(4.1)至少存在三个单调递增的凸正解.

问题(4.1)中非线性项是变号的, 已有文献中对三阶边值问题正解存在性的讨论, 就作者所知, 均无法适用此问题.

参考文献
[1] Gregus M. Third order linear differential equations[J]. Math. Appl., Reidel, Dordrecht, 1987, 11(3): 919–944.
[2] Anderson D R. Multiple positive solutions for a three-point boundary value problem[J]. Math. Comput. Model., 1998, 27(6): 49–57. DOI:10.1016/S0895-7177(98)00028-4
[3] Palamides P, George Smyrlis. Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function[J]. Nonl. Anal., 2008, 68: 2104–2118. DOI:10.1016/j.na.2007.01.045
[4] Guo D, Lakshmikantham V. Nonlinear problems in abstract cones[M]. New York: Academic Press, 1988.
[5] Guo L, Sun J, Zhao Y. Existence of positive solutions for nonlinear third-order three-point boundary value problems[J]. Nonl. Anal., 2008, 68: 3151–3158. DOI:10.1016/j.na.2007.03.008
[6] Hopkins B, Kosmatov N. Third-order boundary value problems with sign-changing solutions[J]. Nonl. Ana., 2007, 67: 126–137. DOI:10.1016/j.na.2006.05.003
[7] Chu J, Zhou Z. Positive solutions for singular non-linear third-order periodic boundary value problems[J]. Nonl. Ana., 2006, 64: 1528–1542. DOI:10.1016/j.na.2005.07.005
[8] Graef J, Kong L. Positive solutions for third order semipositone boundary value problems[J]. Appl. Math. Lett., 2009, 22: 1154–1160. DOI:10.1016/j.aml.2008.11.008
[9] Lin X, Du Z, Liu W. Uniqueness and existence results for a third-order nonlinear multi-point boundary value problem[J]. Appl. Math. Comput., 2008, 205: 187–196.
[10] Minghe P, Chang S. Existence and uniqueness of solutions for third-order nonlinear boundary value problems[J]. J. Math. Anal. Appl., 2007, 327: 23–35. DOI:10.1016/j.jmaa.2006.03.057
[11] Li S. Positive solutions of nonlinear singular third-order two-point boundary value problem[J]. J. Math. Anal. Appl., 2006, 323: 413–425. DOI:10.1016/j.jmaa.2005.10.037
[12] Yao Q. Positive solution for a semi-linear third-order two-point boundary value problem[J]. Appl. Math. Lett., 2004, 17: 1171–1175. DOI:10.1016/j.aml.2003.09.011
[13] Ji D, Feng M, Ge W. Multiple positive solutions for multipoint boundary value problems with sign changing nonlinearity[J]. Appl. Math. Comput., 2008, 196: 511–520.
[14] Lan K Q. Multiple positive solutions of semi-linear differential equations with singularities[J]. J. London Math. Soc., 2001, 63: 690–704. DOI:10.1112/jlms.2001.63.issue-3