Branciari[1]首次引入了矩形度量空间的概念, 并给出了此空间中的Banach压缩映象定理.此后, 很多学者在此空间中研究了其他不同压缩条件下的不动点问题[2-11], 同时也给出了Banach压缩定理和Kannan型不动点定理在矩形$b$ -度量空间中的一些应用.本文受到上述结论的启发, 将在矩形$b$ -度量空间中讨论耦合重合点和公共耦合不动点的存在性和唯一性问题, 得到了一类新的公共耦合不动点定理, 在很大程度上推广了相关文献[12]的一些结果.
在介绍主要结果之前, 先介绍一些基本概念和已知结果.
定义 1.1 [1]设$X$是非空集, $d: X\times X\rightarrow [0, +\infty)$, 且$\forall x, y \in X$, 满足
(Rb1) $d(x, y)=0$当且仅当$x=y$;
(Rb2) $d(x, y)=d(y, x);$
(Rb3) $d(x, y)\leq s[d(x, u)+d(u, v)+d(v, y)]$, 其中$u, v\in X \setminus \{x, y\}$, 同时$u\neq v.$则称$(X, d)$为矩形$b$ -度量空间, 且$s\geq 1$为矩形$b$ -度量空间$(X, d)$的系数.
注 1.1 [13]每个度量空间都是矩形$b$ -度量空间, 每个矩形度量空间也为矩形$b$ -度量空间(这时$s=1$).反之不一定成立.
定义 1.2 [13]设$\{x_{n}\}$是矩形$b$ -度量空间$(X, d)$中的序列. $\{x_{n}\}$称为$X$中的Cauchy列, 如果$\lim\limits_{n, m\rightarrow\infty}d(x_{n}, x_{m})=0.$
定义 1.3 [13]设$\{x_{n}\}$是矩形$b$ -度量空间$(X, d)$中的序列. $\{x_{n}\}$称为$X$中的收敛列, 如果$\lim\limits_{n\rightarrow\infty}d(x_{n}, x)=0$
定义 1.4 [13]矩形$b$ -度量空间$(X, d)$称为完备的, 如果$X$中的每一Cauchy列都收敛于$X$中的某个点.
注 1.2 [13]矩形$b$ -度量空间$(X, d)$中的数列的极限点不一定唯一, 且收敛列不一定是Cauchy列.
定义 1.5 [14]称$(x, y)\in X \times X$是映象$F:X\times X\rightarrow X$的耦合不动点, 如果$F(x, y)=x, F(y, x)=y.$
定义 1.6 [15]称$(gx, gy)\in X \times X$是映象对$F:X\times X\rightarrow X$和$g:X\rightarrow X$的重合耦合点, 如果$F(x, y)=gx, F(y, x)=gy.$这时, 称$(x, y)\in X \times X$是映象对$F:X\times X\rightarrow X$和$g:X\rightarrow X$的耦合重合点.
定义 1.7 [15]称$(x, y)\in X \times X$是映象对$F:X\times X\rightarrow X$和$g:X\rightarrow X$的公共耦合不动点, 如果$F(x, y)=gx=x, F(y, x)=gy=y.$
定义 1.8 [16]设$X$为一非空集.映象对$F:X\times X\rightarrow X$和$g:X\rightarrow X$称为$\omega$ -相容的, 如果当$F(x, y)=gx$且$F(y, x)=gy$, 总有$gF(x, y)=F(gx, gy).$
定义 1.9 [17]设$X$是一非空集, $\preceq$是定义在$X$中的一偏序关系, 函数$T:X\times X\rightarrow X, g:X\rightarrow X$. $T$称为具有混合$g$ -单调性质, 如果$T(x, y)$关于$x$是$g$ -单调不减的, 关于$y$是$g$ -单调不增的, 即对任意的$x, y\in X$, 有
为方便起见, 下文中出现的函数$\psi$和$\phi$均指满足以下条件的函数[19]:
(1) $\psi :[0, \infty)\rightarrow[0, \infty)$满足: 1) $\psi$是非减的且关于每个变元是连续的; 2) $\psi(t)=0$当且仅当$t=0.$
(2) $\phi :[0, \infty)\rightarrow [0, \infty)$满足: 1) $\phi$是下半连续的; 2) $\phi(t)=0\Leftrightarrow t=0.$
定理 2.1设$(X, d)$是一个矩形$b$-度量空间, 其系数$s> 1$, $ \preceq $是定义在$X$上的一偏序. $g:X\rightarrow X$为$X$上的自映象.映象$T:X\times X\rightarrow X$具有混合$g$ -单调性.且满足以下条件
(1) $T(X\times X)\subseteq g(X);$
(2) $\exists (x_{0}, y_{0})\in X\times X$使得$gx_{0}\preceq T(x_{0}, y_{0}), gy_{0}\succeq T(y_{0}, x_{0});$
(3) $\forall x, y, u, v \in X$, 如果$gx\preceq gu, gy\succeq gv$或者$gx\succeq gu, gy\preceq gv$, 则有
如果$g(X)$是$(X, d)$的完备子集, 则$g$和$T$在$X$中有重合耦合点.
证 根据条件(2)可得, 存在$ (x_{0}, y_{0})\in X\times X$, 使得$gx_{0}\preceq T(x_{0}, y_{0}), gy_{0}\succeq T(y_{0}, x_{0}), $由于$T(X\times X)\subseteq g(X), $所以存在$x_{1}, y_{1} \in X$, 使得$gx_{1}=T(x_{0}, y_{0})$, $gy_{1}=T(y_{0}, x_{0})$.类似的, 存在$x_{2}, y_{2} \in X$, 使得$gx_{2}=T(x_{1}, y_{1})$, $gy_{2}=T(y_{1}, x_{1})$.由于$gx_{0}\preceq T(x_{0}, y_{0}), gy_{0}\succeq T(y_{0}, x_{0})$, 可得到$gx_{0}\preceq gx_{1}, gy_{0}\succeq gy_{1}$.由于映象$T$具有混合$g$-单调性, 所以有
依此类推, 就可得到$X$中的两个序列$\{x_{n}\}$和$\{y_{n}\}$, 使得$gx_{n}=T(x_{n}, y_{n}), $ $gy_{n}=T(y_{n}, x_{n}), $并且$\{gx_{n}\}$和$\{gy_{n}\}$还满足
在式(2.1)中, 取$(x, y)=(x_{n}, y_{n})$和$(u, v)=(x_{n+1}, y_{n+1})$, 并使用式(2.2)可得
即
同理可得
令
由于$\max\{\psi(a), \psi(b)\}=\psi(\max\{a, b\}), \forall a, b\in[0, +\infty), $进而有
再根据(2.3), (2.4), (2.5)式和上式可得
又由函数$\phi :[0, \infty)\rightarrow [0, \infty)$, 因此由上式可得
由$\psi$是非减的, 可得
从而可知$\{d_{n}\}$单调递减的非负实数列, 因此存在$ r\in [0, \infty)$, 使得$\lim\limits_{n\rightarrow\infty}d_{n}=r.$式(2.6)两边令$n\rightarrow\infty$时, 取极限得$ \psi(sr)\leq\psi(r)-\phi(r)\leq \psi(r). $由$\psi$是非减的, 可得$sr\leq r$.又由$s> 1$, 所有当$r> 0$时, 出现矛盾, 进而可得$r=0.$于是有$\lim\limits_{n\rightarrow\infty}d_{n}=0.$由式(2.5)可知
令$k=\frac{1}{s}$, 那么$0< k < 1$, 于是式(2.7)可化为$d_{n+1}\leq k d_{n}$, 进而可以得到
根据式(2.2), 在式(2.1)中取$(x, y)=(x_{n}, y_{n})$和$(u, v)=(x_{n+2}, y_{n+2})$, 可得
再根据(2.11), (2.12)和(2.13)式可得$\psi(sd^{*}_{n+1})\leq \psi(d^{*}_{n})-\phi(d^{*}_{n})\leq \psi(d^{*}_{n}).$又由$\psi$是非减的可知$sd^{*}_{n+1}\leq d^{*}_{n}, n=0, 1, 2, \cdots. $又由$k=\frac{1}{s}$, 可知$d^{*}_{n+1}\leq k d^{*}_{n}$, 依次类推可得到
接下来, 将证明$\{gx_{n}\}$和$\{gy_{n}\}$都是$gX$中的Cauchy列.
a) 当$p$是奇数时, 设$p=2m+1.$
事实上, 由性质(Rb3)可得
上式即
同样道理可知
结合(2.9), (2.15)和(2.16)式, 又由$k=\frac{1}{s}$可得
b) 当$p$是偶数时, 设$p=2m.$使用性质(Rb3)可得
结合式(2.9), (2.14), (2.18)和(2.19)式, 又由$k=\frac{1}{s}$可得
进而可知
由(2.17)和(2.20)式可得
从(2.21)式可知$\{gx_{n}\}$和$\{gy_{n}\}$是$g(X)$中的Cauchy列.
又因为$g(X)$在是矩形$b$ -度量空间$(X, d)$的完备子集, 所以存在$x, y \in X$, 使得
又由(2.1)式可得
使用三角不等式
在(2.24)式中, 令$n\rightarrow\infty$取极限,
使用(2.22)和(2.25)式, 在(2.23)式两边令$n\rightarrow\infty$取极限, 可得
即$d(T(x, y), gx)=0$, 进而可知$T(x, y)=gx$.同理可得$T(y, x)=gy$.从而有$(gx, gy)$是$g$和$T$的重合耦合点, 证毕.
定理 2.2 设$(X, d)$是矩形$b$ -度量空间, 其系数$s> 1$, $ \preceq $是定义在$X$上的一个偏序. $g:X\rightarrow X$为$X$上的自映象.映象$T:X\times X\rightarrow X$具有混合$g$ -单调性.且满足以下条件
(3) $\forall x, y, u, v, a\in X$, 如果$gx\preceq gu, gy\succeq gv$或者$gx\succeq gu, gy\preceq gv$, 那么有
如果$g(X)$是$(X, d)$中的完备集, 则$g$和$T$在$X$中有重合耦合点.
证 与定理 2.1证明方法相同, 略去.
注 2.1 令定理 2.1中的自映象$g$为恒等映象$I$, 即有下面推论.
推论 2.1 设$(X, d)$是矩形$b$ -度量空间, 其系数$s> 1$, $ \preceq $是定义在$X$上的一个偏序.映象$T : X\times X \rightarrow X$.如果满足以下条件
(1) $\exists (x_{0}, y_{0})\in X\times X$使得$x_{0}\preceq T(x_{0}, y_{0}), y_{0}\succeq T(y_{0}, x_{0});$
(2) $\forall x, y, u, v \in X$, 如果$x\preceq u, y\succeq v$或者$x\succeq u, y\preceq v$, 那么有
则$T$在$X$中有耦合不动点.
注 2.2 $\forall a, b, c\in [0, +\infty)$, 有
证 显然当$k=1, 2$时结论成立, 假设当$k=m$时结论成立, 即
现证当$k=m+1$时结论也成立.事实上, 有
从而结论对一切自然数$k$成立.
例 2.1 设$X=\mathbb{R}$, $\forall x, y\in X$, 定义$d(x, y)=(x-y)^{2}$, 则$(X, d)$是一个系数$s=3$的矩形$b$ -度量空间.设$X$上的偏序关系$\preceq $定义如下: $x\preceq y\Leftrightarrow x\leq y.$定义函数$T:X \times X\rightarrow \mathbb{R}^{+}$和$g:X\rightarrow \mathbb{R}^{+}$分别如下
易得$T(X\times X)\subseteq g(X)$, 且$T$具有$g$ -混合单调性.当
即$F$和$g$是$\omega$ -相容的.令$(x, y)=(0, 0)$时, 这时有$g0\preceq T(0, 0), g0\succeq T(0, 0)$.
取$x, y, u, v\in X$, 使得$x\preceq u$, $y\succeq v$, 即$x\leq u, y\geq v$.
定义函数$\psi, \phi: \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}$分别为$\psi(t)=\sqrt{t}, \, \, \, \phi(t)=\frac{1}{2}\sqrt{t}, \, \, t\in\mathbb{R}^{+}.$
下面分四种情况讨论.
1) 当$T(x, y)=\frac{\sqrt{3}}{9}\ln(x-y+1), T(u, v)=\frac{\sqrt{3}}{9}\ln(u-v+1)$时, 即$x> y, u> v$时, 有
2) 当$T(x, y)=\frac{\sqrt{3}}{9}\ln(x-y+1), T(u, v)=0$时, 即$x> y, u\leq v$时, 有
3) 当$T(u, v)=\frac{\sqrt{3}}{9}\ln(u-v+1), T(x, y)=0$时, 即$x\leq y, u> v$时, 同情况2)的证明类似.
4) 当$T(x, y)=0, T(u, v)=0$时, 即$x\leq y, u\leq v$时, 显然成立.
从而根据定理 2.1, 可证得$T$和$g$具有耦合重合点, 且$T(0, 0)=g0=0.$
设$X$是一个$(X, d)$矩形$b$ -度量空间, $\preceq$是$X$上的一个偏序关系, 在$X\times X$中规定一种可比较关系如下
当$(x, y)\preceq(z, t)$或者$(x, y)\succeq(z, t)$时, 称$(x, y)$和$(z, t)$互为可比较.
定理 3.1 在定理 2.1的条件下, 假设$g$和$T$是$\omega$ -相容的, 且$g$和$T$的任意两个重合耦合点$(gx^{*}, gy^{*})$和$(gz^{*}, gt^{*})$都有相应的公共可比较点$(gu^{*}, gv^{*})\in X\times X$, 这时$g$和$T$有唯一的耦合公共不动点.
证 由定理 2.1可知$g$和$T$至少存在一个重合耦合点.不妨假设$(x, y)$, $(z, t)\in X\times X$是$g$和$T$的任意两个耦合重合点, 即$T(x, y)=gx, T(y, x)=gy$和$T(z, t)=gz$, $T(t, z)=gt.$现证$(gx, gy)=(gz, gt)$.
由已知条件可知, 存在$(u, v)\in X\times X$, 使得$(gu, gv)$分别和$(gx, gy)$, $(gz, gt)$都可比较.
a) 当可比较关系为
则$\exists (u_{1}, v_{1})\in X\times X, $使得
依次类推, 会得到两个数列$\{gu_{n}\}$和$\{gv_{n}\}$分别为
同样道理, 可以得到数列$\{gx_{n}\}$, $\{gy_{n}\}$和$\{gz_{n}\}$, $\{gt_{n}\}$分别为
由于$(x, y)$是$g, T$的耦合重合点, 则有
依次类推可知$gx_{0}=gx_{1}=\cdots=gx_{n}=\cdots, gy_{0}=gy_{1}=\cdots=gy_{n}=\cdots.$即
相同道理可知
由于(3.1)和(3.2)式可得
由于$T$具有混合$g$ -单调性, 所以可得
即$(gx_{1}, gy_{1})\preceq (gu_{1}, gv_{1})$.同理可得$(gx_{2}, gy_{2})\preceq (gu_{2}, gv_{2}).$这样继续做下去, 可得
类似方法, 可得
结合(3.3)和(3.4)式可得
于是, $gx\preceq gu_{n}, gy\succeq gv_{n}, n=0, 1, 2, \cdots$, 根据定理 2.1中的(2.1)式, 可得
现令
联立(3.5), (3.6)和(3.7)式, 又由$\max\{\psi(a), \psi(b)\}=\psi(\max\{a, b\}), \forall a, b \in[0, +\infty), $可得到
从而可得$ \gamma_{n+1}\leq \gamma_{n}$.所以可知$\{\gamma_{n}\}$单调递减的非负实数列, 存在$ r\in X$, 使得$r\geq 0$且$\lim\limits_{n\rightarrow\infty}\gamma_{n}=r$.因为$ \psi(s\gamma_{n+1})\leq \psi(\gamma_{n})-\phi(\gamma_{n}). $将上式两边令$n\rightarrow\infty$时, 取极限得$ \psi(sr)\leq \psi(r)-\phi(r). $当$r> 0$时, 出现矛盾.即$r=0.$于是有
同样道理可证得
由(3.9)和(3.10)式可得到
即$(gx, gy)=(gz, gt)$.所以$g$和$T$具有唯一的重合耦合点.又因为$g$和$T$是$\omega$-相容的, 得到
由于$\exists m, n \in X, $使得$gx=m, gy=n$, 那么(3.12)式可整理为
因此$(m, n)$也是$g$和$T$的一个耦合重合点, 由重合耦合点的唯一性知$gm=gx=m, gn=gy=n.$又由(3.12)式可得$ m=gm=T(m, n), n=gn=T(n, m). $即证得$g$和$T$有耦合公共不动点.由于$g$和$T$的重合耦合点具有唯一性, 因此$g$和$T$的耦合公共不动点也具有唯一性.
b) 当可比较关系为$(gu, gv)\preceq (gx, gy), \, \, (gt, gz)\preceq (gu, gv).$
c) 当可比较关系为$(gx, gy)\preceq (gu, gv), \, \, (gu, gv)\preceq (gt, gz).$
d) 当可比较关系为$(gu, gv)\preceq (gx, gy), \, \, (gu, gv)\preceq (gt, gz).$同a)的证明方法类似, 上述三种情况同样也能证得$g$和$T$的耦合公共不动点也具有唯一性.
假设$X=C[a, b]$是定义在$[a, b]$上的连续函数全体. $\leq $是定义在$X$上的偏序关系, 定义
定义$d:X\times X\rightarrow \mathbb{R}^{+}$为
这时易知$(X, d)$是一个完备的矩形$b$ -度量空间, 由注2.2可知, 其系数$s=3^{k-1}$.
考虑以下积分方程组问题
接下来, 假设下面几个条件成立.
(ⅰ) $S(r, t):[a, b]\times [a, b]\rightarrow\mathbb{R}^{+}$是连续函数.
(ⅱ) $f, g:[a, b]\times \mathbb{R}\rightarrow \mathbb{R}$是连续函数.
(ⅲ) $\exists (x_{0}, y_{0})\in X\times X$, 使得
(ⅳ) $\exists \mu, \nu$使得对于任意的$r\in [a, b], x, y\in \mathbb{R}$, 有
(ⅴ) $\parallel s \parallel_{\infty}=\sup\{S(r, t):r, t\in [a, b]\}$, 且$2^{k}\max\{\mu^{k}, \nu^{k}\}\parallel s\parallel_{\infty}^{k}\leq \frac{1}{3^{k}}$.
定理 4.1 由上述条件(i)-(v)成立, 则积分方程组(4.1)有唯一的解.
证 构造函数$T:X\times X\rightarrow X$和$g:X\rightarrow X$如下
则由条件(ⅲ)可知$gx_{0}\preceq T(x_{0}, y_{0}), \, \, \, \, \, gy_{0} \succeq T(y_{0}, x_{0}), $且$g$和$T$具有$\omega$ -相容性.又由条件(iv)和(v)可得
于是由条件(ⅴ), 上式可整理为
上式即为
于是
令函数$\psi, \phi: \mathbb{R}^{+}\rightarrow \mathbb{R}^{+} $分别为$\psi(t)=t, \phi(t)=\frac{t}{3}, \forall t\in \mathbb{R}^{+}$, 那么上式即为
由此易知定理3.1的所有条件被满足, 于是, 存在$ (x^{*}, y^*)\in X\times x$, 使得
即$(x^{*}, y^{*})$也为方程组(4.1)在$C[a, b]$上的唯一解.