数学杂志  2018, Vol. 38 Issue (2): 269-284   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WEI Li
ZHENG Ya-qin
A NEW PATH THEOREM AND A NEW ITERATIVE SCHEME FOR INFINITE M-ACCRETIVE OPERATORS AND COMPUTATIONAL EXPERIMENT
WEI Li1, ZHENG Ya-qin2    
1. School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061, China;
2. College of Science, Agricultural University of Hebei, Baoding 071001, China
Abstract: In this paper, we study the iterative construction of the common zero of infinite m-accretive operators. By using the technique of Banach limit and a new path convergence theorem, the iterative sequence is newly constructed proved to be strongly convergent to the common zero of infinite m-accretive operators, which is also the solution of one kind variational inequalities. The computational experiment is conducted by using codes of Visual Basic six to demonstrate the feasibility of the iterative scheme. The restrictions on the iterative parameters are weaker and some new techniques can be found, which extends and complements the corresponding work.
Key words: Banach limit     accretive operator     retraction     strongly positive operator     Visual Basic six    
新路径定理和无穷个m增生算子的新迭代设计及计算试验
魏利1, 郑雅琴2    
1. 河北经贸大学数学与统计学学院, 河北 石家庄 050061;
2. 河北农业大学理学院, 河北 保定 071001
摘要:本文研究了无穷个m增生算子公共零点的迭代构造问题.利用Banach极限的技巧和新路径收敛定理,证明了新构造的迭代序列强收敛到无穷个m增生算子的公共零点的结论,同时证明了这个公共零点还是一类变分不等式的解.利用Visual Basic 6编程,进行了计算试验用以验证迭代构造的合理性.迭代参数的限定条件更弱且采用了新的证明技巧,推广和补充了以往的相关研究成果.
关键词Banach极限    增生算子    保核收缩映射    强正算子    Visual Basic 6    
1 Introduction

In this paper, assume that $E$ is a real Banach space with $E^*$ being its dual space. "$\rightarrow$" denotes strong convergence and $\langle x, f \rangle$ denotes the value of $f \in E^*$ at $x \in E.$

The normalized duality mapping $J: E \rightarrow 2^{E^*}$ is defined by

$ Jx : = \{f \in E^*: \langle x, f\rangle = \|x\|^2, ~ \|f\| = \|x\|\}, \quad\quad x \in E. $

If $E$ is uniformly smooth, then $J$ is norm-to-norm uniformly continuous on each bounded subset in $E$[1].

For a mapping $A: D(A) \sqsubseteq E \rightarrow E, $ we use Fix(A) and $A^{-1}0$ to denote its fixed point set and the zero point set. That is, ${\rm{Fix}}(A) : = \{x\in D(A): Ax = x\}$ and $A^{-1}0: = \{x \in D(A): Ax = 0\}.$ The mapping $A : D(A) \sqsubseteq E \rightarrow E$ is said to be

(1) nonexpansive if

$ \|Ax - Ay\| \leq \|x-y\|,\;\;\forall x, y \in D(A); $

(2) contraction with coefficient $k$ if there exists $0 < k < 1$ such that

$ \|Ax - Ay\| \leq k \|x - y\|, \;\; \forall x, y \in D(A); $

(3) accretive if for all $x, y \in D(A), $ there exists $j(x-y) \in J(x-y)$ such that

$ \langle Ax - Ay, j(x-y)\rangle \geq 0; $

(4) $m$-accretive if A is accretive and $R(I+\lambda A) = E$, $\forall \lambda > 0;$

(5) strongly positive operator with coefficient $\overline{\gamma} > 0$ [2] if $D(A) = E$ where $E$ is a real smooth Banach space and

$ \langle Ax,Jx\rangle \ge \bar \gamma {\left\| x \right\|^2},\;\;\forall x \in E. $

In this case,

$ \left\| {aI - bA} \right\| = \mathop {{\rm{sup}}}\limits_{\left\| x \right\| \le 1} \left| {\langle (aI - bA)x,Jx\rangle } \right|, $

where $I$ is the identity mapping, $a \in [0, 1]$ and $b \in [-1, 1]$;

(6) demiclosed at $p$ if whenever $\{x_n\}$ is a sequence in $D(A)$ such that $x_n \rightharpoonup x \in D(A)$ and $Ax_n \rightarrow p$ then $Ax =p$. Here '$\rightharpoonup$' denotes weak convergence in $E$.

If $A$ is accretive, then we can define, for each $r>0, $ a single-valued mapping $J_r^A : R(I+rA)\rightarrow D(A)$ by $J_r^A : = (I+rA)^{-1}, $ which is called the resolvent of $A$ [1]. It is well known $J^A_r$ is non-expansive and $A^{-1}0 = {\rm{Fix}}(J_r^A).$

Let $C$ be a nonempty, closed and convex subset of $E$ and $Q$ be a mapping of $E$ onto $C$. Then $Q$ is said to be sunny [3] if $Q(Q(x)+t(x-Q(x))) = Q(x), $ for all $x \in E$ and $t \geq 0.$

A mapping $Q$ of $E$ into $E$ is said to be a retraction[3] if $Q^2 = Q.$ If a mapping $Q$ is a retraction, then $Q(z) = z$ for every $z \in R(Q), $ where $R(Q)$ is the range of $Q.$

A subset $C$ of $E$ is said to be a sunny nonexpansive retract of $E$ [3] if there exists a sunny nonexpansive retraction of $E$ onto $C$ and it is called a nonexpansive retract of $E$ if there exists a nonexpansive retraction of $E$ onto $C.$

Finding the solution of the problem $0 \in A_ix$ $(i \in N^+)$ is one of hot topics in applied mathematics, where $A_i$ is accretive, since the solutions correspond to the equilibrium points of some evolution systems. Based on this reason, we shall first prove a new path convergence theorem and then present a new semi-implicit iterative scheme for approximating the common zero of infinite m-accretive operators. Some new ideas and proof techniques can be found based on weaker restrictions than the recent works in [4-7].

Lemma 1.1[8] Assume $F$ is a strongly positive bounded operator with coefficient $\overline{\gamma} > 0$ on a real smooth Banach space $E$ and $0 < \rho \leq \|F\|^{-1}.$ Then $\|I-\rho F \| \leq 1- \rho \overline{\gamma}.$

Lemma 1.2[1] Let $E$ be a Banach space and $C$ be a nonempty closed and convex subset of $E$. Let $f: C \rightarrow C$ be a contraction. Then $f$ has a unique fixed point $u \in C$.

Lemma 1.3[9] Let $E$ be a real uniformly convex Banach space, $C$ be a nonempty closed and convex subset of $E$ and $B: C \rightarrow E$ be a nonexpansive mapping such that ${\rm{Fix}}(B) \neq \emptyset, $ then $I-B$ is demiclosed at zero.

Lemma 1.4[10] Let $E$ be a real strictly convex Banach space and $C$ be its nonempty closed and convex subset. Let $B_m: C \rightarrow C$ be a nonexpansive mapping for each $m \geq 1.$ Let $\{a_m\}$ be a real number sequence in (0, 1) such that $\sum\limits_{m = 1}^{\infty}a_m = 1.$ Suppose that $\bigcap\limits_{m=1}^{\infty}{\rm{Fix}}(B_m) \neq \emptyset.$ Then $\sum\limits_{m = 1}^{\infty}a_m B_m$ is nonexpansive with

$ {\rm{Fix}}(\sum\limits_{m = 1}^{\infty}a_mB_m) = \bigcap\limits_{m = 1}^{\infty}{\rm{Fix}}(B_m). $

Lemma 1.5[11] In a real Banach space $E, $ the following inequality holds

$\|x+y\|^2 \leq \|x\|^2 + 2\langle y, j(x+y)\rangle, ~~\forall x, y \in E, j(x+y) \in J(x+y). $

Lemma 1.6[6] Let $r, t >0.$ If $E$ is uniformly convex, then there exists a continuous strictly increasing and convex function $\varphi: R^+ \rightarrow R^+$ with $\varphi(0) = 0$ so that

$ \|J_r^A x - J_r^A y \|^2 \leq \|x - y\|^2 - \varphi(\|(I-J_r^A)x - (I-J_r^A)y\|) $

for all $x, y \in R(I+rA)$ with ${\rm{max}}\{\|x\|, \|y\|\}\leq t$, where $A: E \rightarrow E$ is m-accretive.

Lemma 1.7[12] Let $\{s_n\}$ be a real sequence that does not decrease at infinity, in the sense that there exists a subsequence $\{s_{n_k}\}$ so that $s_{n_k}\leq s_{n_k+1}, $ for all $k \geq 0.$ For every $n > n_0, $ define an integer sequence $\{\tau(n)\}$ as

$ \tau(n) = {\rm{max}}\{n_0 \leq k \leq n : s_k < s_{k+1}\}. $

Then $\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$ and for all $n > n_0, $ ${\rm{max}}\{s_{\tau(n)}, s_n\} \leq s_{\tau(n)+1}.$

2 A New Path Theorem and A New Strong Convergence Theorem

Theorem 2.1  Suppose $E$ is a real uniformly smooth and uniformly convex Banach space, $C$ is a nonempty, closed and convex sunny nonexpansive retract of $E, $ and $Q_C$ is the sunny nonexpansive retraction of $E$ onto $C.$ Let $f_i : E \rightarrow E$ be a contractive mapping with coefficient $k \in (0, 1)$ and $F_i: E \rightarrow E$ be a strongly positive linear bounded operator with coefficient $\overline{\gamma}, $ where $i \in N^+.$ Let $B : C \rightarrow C$ be a nonexpansive mapping. Suppose $\{a_n\}$ and $\{b_n\}$ are real number sequences in (0, 1) with $\sum\limits_{i = 1}^{\infty}a_i = 1$ and $\sum\limits_{i = 1}^{\infty}b_i = 1$, $\sum\limits_{i = 1}^{\infty}\|f_i\| <+\infty$, $\sum\limits_{i = 1}^{\infty}b_i\|F_i\| <+\infty$, $0 < \eta < \frac{\overline{\gamma}}{2k}$ and ${\rm{Fix}}(B) \neq \emptyset.$ If for $\forall t \in (0, 1), $ define $W_t : E \rightarrow E$ by

$ W_t x : = t \eta \sum\limits_{i = 1}^{\infty}a_i f_i(x) + (I-t \sum\limits_{i = 1}^{\infty}b_i F_i)BQ_Cx, $ (2.1)

then $W_t$ has a fixed point $x_t, $ for each $0 < t \leq (\sum\limits_{i = 1}^{\infty}b_i\|F_i\|)^{-1}, $ which is convergent strongly to the fixed point of $B$, as $t \rightarrow 0.$ That is, $\mathop {{\rm{lim}}}\limits_{t \to 0} {x_t} = {p_0} \in {\rm{Fix}}(B).$ Moreover, $p_0$ is the unique solution of the following variational inequality: for $\forall z \in {\rm{Fix}}(B), $

$\langle (\sum\limits_{i = 1}^{\infty}b_i F_i - \eta \sum\limits_{i = 1}^{\infty}a_i f_i)p_0, J(p_0-z)\rangle \leq 0. $ (2.2)

Proof Step 1 $\sum\limits_{i = 1}^{\infty}b_i F_i : E \rightarrow E$ is a strongly positive linear bounded operator with coefficient $\overline{\gamma}.$

It is easy to check $\sum\limits_{i = 1}^{\infty}b_i F_i : E \rightarrow E$ is linear bounded, so we are left to show that $\sum\limits_{i = 1}^{\infty}b_i F_i : E \rightarrow E$ is strongly positive with coefficient $\overline{\gamma}.$

It follows from the property of $F_i$ that

$ \langle \sum\limits_{i = 1}^{\infty}b_i F_ix, Jx\rangle = \sum\limits_{i = 1}^{\infty}b_i \langle F_ix, Jx\rangle \geq \sum\limits_{i = 1}^{\infty}b_i\overline{\gamma}\|x\|^2= \overline{\gamma}\|x\|^2. $

Thus $\sum\limits_{i = 1}^{\infty}b_i F_i : E \rightarrow E$ is a strongly positive operator with coefficient $\overline{\gamma}$.

Step 2 $W_t$ is a contraction, for $0 < t < (\sum\limits_{i = 1}^{\infty}b_i\|F_i\|)^{-1}$.

In fact, noticing lemma 1.1, $\sum\limits_{i = 1}^{\infty}a_i = 1$ and $\sum\limits_{i = 1}^{\infty}b_i = 1$, we have

$ \|W_tx - W_ty\|\leq t\eta \sum\limits_{i = 1}^{\infty}a_i \|f_i(x) - f_i(y)\| + \|(I-t \sum\limits_{i = 1}^{\infty}b_i F_i)(BQ_Cx-BQ_Cy)\| \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\leq kt\eta \|x - y\| + (1-t\overline{\gamma})\|x-y\| = [1-t(\overline{\gamma}-k\eta)]\|x - y\|, $

which implies that $W_t$ is a contraction since $0 < \eta < \frac{\overline{\gamma}}{2k}$. Then lemma 1.2 implies that $W_t$ has a unique fixed point, denoted by $x_t, $ which uniquely solves the fixed point equation $x_t = t\eta \sum\limits_{i = 1}^{\infty}a_i f_i(x_t) + (I-t \sum\limits_{i = 1}^{\infty}b_i F_i)BQ_Cx_t.$

Step 3 $\{x_t\}$ is bounded, for $t \in (0, (\sum\limits_{i = 1}^{\infty}b_i\|F_i\|)^{-1}).$ For $p \in {\rm{Fix}}(B)\subset C, $ we have $p = BQ_Cp, $ then

$ \|x_t - p\| = \|(I-t \sum\limits_{i = 1}^{\infty}b_i F_i)(BQ_Cx_t-p) + t(\eta \sum\limits_{i = 1}^{\infty}a_i f_i(x_t) - \sum\limits_{i = 1}^{\infty}b_i F_ip)\|\\ \leq (1-t\overline{\gamma})\|x_t-p\| + t\|\eta \sum\limits_{i = 1}^{\infty}a_i(f_i(x_t)-f_i(p))\|+t\|\eta\sum\limits_{i = 1}^{\infty}a_if_i(p)-\sum\limits_{i = 1}^{\infty}b_iF_ip\|\\ \leq [1-t(\overline{\gamma}-k\eta)]\|x_t-p\|+t\|\eta\sum\limits_{i = 1}^{\infty}a_if_i(p)-\sum\limits_{i = 1}^{\infty}b_iF_ip\|. $

This ensures that

$ \|x_t - p\|\leq \frac{(\eta\sum\limits_{i = 1}^{\infty}\|f_i\|+\sum\limits_{i = 1}^{\infty}\|F_i\|)\|p\|}{\overline{\gamma}-k\eta}. $

Thus $\{x_t\}$ is bounded, and then both $\{\sum\limits_{i = 1}^{\infty}a_if_i(x_t)\}$ and $\{\sum\limits_{i = 1}^{\infty}b_iF_iBQ_Cx_t\}$ are bounded.

Step 4 $x_t - BQ_Cx_t \rightarrow 0, $ as $t \rightarrow 0.$ From step 3, we have

$ \|x_t - BQ_Cx_t\| = t \|\eta \sum\limits_{i = 1}^{\infty}a_if_i(x_t)- \sum\limits_{i = 1}^{\infty}b_i F_iBQ_Cx_t\| \rightarrow 0, $

as $t \rightarrow 0$.

Step 5 If variational inequality (2.2) has solutions, the solution must be unique.

Suppose both $u_0\in {\rm{Fix}}(B)$ and $v_0 \in {\rm{Fix}}(B)$ are the solutions of the variational inequality(2.2). Then we have

$ \langle (\sum\limits_{i = 1}^{\infty}b_i F_i - \eta \sum\limits_{i = 1}^{\infty}a_i f_i)v_0, J(v_0-u_0)\rangle \leq 0 $ (2.3)

and

$ \langle (\sum\limits_{i = 1}^{\infty}b_i F_i - \eta \sum\limits_{i = 1}^{\infty}a_i f_i)u_0, J(u_0-v_0)\rangle \leq 0. $ (2.4)

Adding up (2.3) and (2.4), we obtain that

$ \langle(\sum\limits_{i = 1}^{\infty}b_iF_i- \eta\sum\limits_{i = 1}^{\infty}a_i f_i)u_0 - (\sum\limits_{i = 1}^{\infty}b_iF_i- \eta\sum\limits_{i = 1}^{\infty}a_i f_i)v_0, J(u_0-v_0)\rangle \leq 0. $ (2.5)

Since

$ \langle(\sum\limits_{i = 1}^{\infty}b_iF_i- \eta\sum\limits_{i = 1}^{\infty}a_i f_i)u_0 - (\sum\limits_{i = 1}^{\infty}b_iF_i- \eta\sum\limits_{i = 1}^{\infty}a_i f_i)v_0, J(u_0-v_0)\rangle\\ = \sum\limits_{i = 1}^{\infty}b_i\langle F_iu_0 - F_iv_0, J(u_0-v_0)\rangle - \eta \sum\limits_{i = 1}^{\infty}a_i\langle f_i(u_0) - f_i(v_0), J(u_0-v_0)\rangle\\ \geq \overline{\gamma}\|u_0-v_0\|^2 - k\eta \|u_0-v_0\|^2 = (\overline{\gamma}- k \eta)\|u_0-v_0\|^2, $

then (2.5) implies that $u_0 = v_0.$

Step 6 $x_t \rightarrow p_0 \in {\rm{Fix}}(B), $ as $t \rightarrow 0, $ which satisfies the variational inequality (2.2).

Assume $t_n \rightarrow 0.$ Set $x_n : = x_{t_n}$ and defined $\mu : E \rightarrow \mathbb{R}$ by $\mu(x) = LIM \|x_n - x\|^2, ~~x \in E, $ where LIM is the Banach limit on $\textit{l}^{\infty}$. Let

$ K = \{ x \in E:\mu (x) = \mathop {{\rm{min}}}\limits_{x \in E} LIM{\left\| {{x_n} - x} \right\|^2}\} . $

It is easily seen that $K$ is a nonempty closed convex bounded subset of $E$. Since $x_n - BQ_Cx_n \rightarrow 0, $ then for $x \in K, $

$ \mu(BQ_Cx) = LIM \|x_n - BQ_Cx\|^2\leq LIM \|x_n - x\|^2 = \mu(x), $

it follows that $BQ_C(K) \subset K; $ that is, $K$ is invariant under $BQ_C$. Since a uniformly smooth Banach space has the fixed point property for nonexpansive mappings, $BQ_C$ has a fixed point, say $p_0, $ in $K$. That is, $BQ_C p_0 = p_0 \in C$ which ensures that $p_0 = Bp_0$ from the definition of $B$ and then $p_0 \in {\rm{Fix}}(B).$ Since $p_0$ is also a minimizer of $\mu$ over $E$, it follows that, for $t \in (0, 1)$

$ 0 \leq \frac{\mu(p_0+\eta t \sum\limits_{i = 1}^{\infty}a_if_i(p_0)-t\sum\limits_{i = 1}^{\infty}b_iF_ip_0)-\mu(p_0)}{t} \\ = LIM\frac{\|x_n-p_0-\eta t \sum\limits_{i = 1}^{\infty}a_if_i(p_0)+t\sum\limits_{i = 1}^{\infty}b_iF_ip_0\|^2-\|x_n - p_0\|^2}{t} \\ = LIM \frac{ \langle x_n-p_0-\eta t \sum\limits_{i = 1}^{\infty}a_if_i(p_0) +t \sum\limits_{i = 1}^{\infty}b_iF_ip_0, J(x_n-p_0-\eta t \sum\limits_{i = 1}^{\infty}a_if_i(p_0) +t \sum\limits_{i = 1}^{\infty}b_iF_ip_0)\rangle -\|x_n - p_0\|^2}{t}\\ = LIM \{\frac{ \langle x_n-p_0, J(x_n-p_0-\eta t \sum\limits_{i = 1}^{\infty}a_if_i(p_0) +t\sum\limits_{i = 1}^{\infty}b_i F_ip_0)\rangle - \|x_n - p_0\|^2} {t}\\+\frac{t\langle \sum\limits_{i = 1}^{\infty}b_iF_ip_0-\eta \sum\limits_{i = 1}^{\infty}a_if_i(p_0), J(x_n-p_0-\eta t \sum\limits_{i = 1}^{\infty}a_if_i(p_0) +t \sum\limits_{i = 1}^{\infty}b_iF_ip_0)\rangle }{t}\}. $

Since $E$ is uniformly smooth, then by letting $t \rightarrow 0, $ we find the two limits above can be interchanged and obtain

$ LIM \langle \eta \sum\limits_{i = 1}^{\infty}a_if_i(p_0)-\sum\limits_{i = 1}^{\infty}b_iF_ip_0, J(x_n - p_0)\rangle \leq 0. $ (2.6)

Since $x_t - p_0 = t(\eta \sum\limits_{i = 1}^{\infty}a_if_i(x_t)-\sum\limits_{i = 1}^{\infty}b_iF_ip_0)+(I-t\sum\limits_{i = 1}^{\infty}b_iF_i)(BQ_Cx_t - p_0), $ then

$ \|x_{t} - p_0\|^2 \\= t \langle \eta \sum\limits_{i = 1}^{\infty}a_if_i(x_t) - \sum\limits_{i = 1}^{\infty}b_iF_ip_0, J(x_t-p_0)\rangle \\+ \langle (I-t\sum\limits_{i = 1}^{\infty}b_iF_i)(BQ_Cx_t-p_0), J(x_t-p_0)\rangle \\ \leq t \eta \langle \sum\limits_{i = 1}^{\infty}a_if_i(x_t) - \sum\limits_{i = 1}^{\infty}a_if_i(p_0), J(x_t-p_0)\rangle \\+t \langle \eta \sum\limits_{i = 1}^{\infty}a_if_i(p_0) - \sum\limits_{i = 1}^{\infty}b_iF_ip_0, J(x_t-p_0)\rangle \\+\| I -t\sum\limits_{i = 1}^{\infty}b_iF_i\|\|x_t -p_0\|^2\\ \leq [1-t(\overline{\gamma}-\eta k)]\|x_t -p_0\|^2\\+t \langle \eta \sum\limits_{i = 1}^{\infty}a_if_i(p_0) - \sum\limits_{i = 1}^{\infty}b_iF_ip_0, J(x_t-p_0)\rangle. $

Therefore

$ \|x_{t} - p_0\|^2 \leq \frac{1}{\overline{\gamma}-\eta k}\langle \eta \sum\limits_{i = 1}^{\infty}a_if_i(p_0) - \sum\limits_{i = 1}^{\infty}b_iF_ip_0, J(x_t-p_0)\rangle. $

Hence by (2.6)

$ LIM \|x_{n} - p_0\|^2 \leq \frac{1}{\overline{\gamma}-\eta k}LIM \langle \eta \sum\limits_{i = 1}^{\infty}a_if_i(p_0) - \sum\limits_{i = 1}^{\infty}b_iF_ip_0, J(x_n-p_0)\rangle \leq 0, $

which implies that $LIM \|x_{n} - p_0\|^2=0, $ and then there exists a subsequence which is still denoted by $\{x_n\}$ such that $x_n \rightarrow p_0.$

Next, we shall show that $p_0$ solves the variational inequality (2.2).

Since $x_t = t\eta \sum\limits_{i = 1}^{\infty}a_if_i(x_t)+(I-t\sum\limits_{i = 1}^{\infty}b_i F_i)BQ_Cx_t, $ then

$ (\sum\limits_{i = 1}^{\infty}b_i F_i - \eta \sum\limits_{i = 1}^{\infty}a_i f_i)x_t = -\frac{1}{t}(I-t\sum\limits_{i = 1}^{\infty}b_i F_i)(I-BQ_C)x_t. $

$\forall z \in {\rm{Fix}}(B), $ we have

$ \langle (\sum\limits_{i = 1}^{\infty}b_i F_i - \eta \sum\limits_{i = 1}^{\infty}a_i f_i)x_t, J(x_t - z)\rangle\\ = -\frac{1}{t}\langle (I-t\sum\limits_{i = 1}^{\infty}b_i F_i)(I-BQ_C)x_t, J(x_t-z)\rangle\\ = -\frac{1}{t} \langle (I-BQ_C)x_t-(I-BQ_C)z, J(x_t-z)\rangle \\+ \langle \sum\limits_{i = 1}^{\infty}b_i F_i(I-BQ_C)x_t, J(x_t-z)\rangle \\ = -\frac{1}{t}[\|x_t-z\|^2-\langle BQ_Cx_t-BQ_Cz, J(x_t-z)\rangle]\\+\langle \sum\limits_{i = 1}^{\infty}b_i F_i(I-BQ_C)x_t, J(x_t-z)\rangle\\ \leq \langle \sum\limits_{i = 1}^{\infty}b_i F_i(I-BQ_C)x_t, J(x_t-z)\rangle. $

Taking the limits on both sides of the above inequality,

$ \langle (\sum\limits_{i = 1}^{\infty}b_i F_i - \eta \sum\limits_{i = 1}^{\infty}a_i f_i)p_0, J(p_0-z)\rangle \leq 0 $

since $x_n \rightarrow p_0$ and $J$ is uniformly continuous on each bounded subsets of $E.$

Thus $p_0$ satisfies the variational inequality (2.2).

Now assume there exists another subsequence $\{x_m\}$ of $\{x_t\}$ satisfying $x_m \rightarrow q_0.$ Then Step 4 implies that $BQ_Cx_m \rightarrow q_0.$ From Lemma 1.3, we know that $I-BQ_C$ is demiclosed at zero, then $q_0 = BQ_Cq_0$ which ensures that $ q_0\in {\rm{Fix}}(B).$ Repeating the above proof, we can also know that $q_0$ solves variational inequality (2.2). Thus $p_0 = q_0$ in view of Step 5.

Hence $x_t \rightarrow p_0, $ as $t \rightarrow 0, $ which is the unique solution of the variational inequality (2.2).

This completes the proof.

Theorem 2.2 Let $E, C, Q_C, f_i, F_i, k$ and $\overline{\gamma}$ be the same as those in theorem 2.1, and let $A_i: C \rightarrow C$ be m-accretive operator, for $i\in N^+.$ Let $\{\alpha_n\}, $ $\{\delta_n\}, $ $\{\beta_n\}, $ $\{\zeta_n\}, $ $\{\gamma_n\}$, $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be real number sequences in (0, 1) with $\sum\limits_{i = 1}^{\infty}a_i=\sum\limits_{i = 1}^{\infty}b_i=\sum\limits_{i = 1}^{\infty}c_i = 1.$ Let $\{r_{n, i}\}\subset (0, +\infty)$ for $i \in N^+$, $\{\varepsilon'_n\}\subset E$ and $\{\varepsilon"_n\}\subset C$. Suppose

$ D : = \bigcap\limits_{i = 1}^{\infty}A_i^{-1}0\neq \emptyset,\;\; \sum\limits_{i = 1}^{\infty}\|f_i\| <+\infty, \;\;\sum\limits_{i = 1}^{\infty}b_i\|F_i\| <+\infty $

and $0 < \eta < \frac{\overline{\gamma}}{2k}$.

Let $\{x_n\}$ be generated by the following iterative scheme

$ \left\{ \begin{array}{l} {x_0} \in E,\\ {y_n} = {Q_C}[(1 - {\alpha _n})({x_n} + {{\varepsilon '}_n})],\\ {z_n} = {\beta _n}{y_n} + {\gamma _n}\sum\limits_{i = 1}^\infty {{c_i}} J_{{r_{n,i}}}^{{A_i}}(\frac{{{y_n} + {z_n}}}{2}) + {\delta _n}\varepsilon{{\rm{"}}_n},\\ {x_{n + 1}} = {\zeta _n}\eta \sum\limits_{i = 1}^\infty {{a_i}} {f_i}({x_n}) + (I - {\zeta _n}\sum\limits_{i = 1}^\infty {{b_i}} {F_i})\sum\limits_{i = 1}^\infty {{c_i}} J_{{r_{n,i}}}^{{A_i}}{z_n},\quad n \ge 0. \end{array} \right. $ (A)

Then $\{x_n\}$ converges strongly to the unique element $p_0 \in D, $ which satisfies the following variational inequality: for $\forall z \in D, $

$ \langle (\sum\limits_{i = 1}^{\infty}b_i F_i - \eta \sum\limits_{i = 1}^{\infty}a_i f_i)p_0, J(p_0-z)\rangle \leq 0, $ (2.7)

under the assumptions that

(ⅰ) $\sum\limits_{n=0}^{\infty} \alpha_n <+\infty, $ $\sum\limits_{n=0}^{\infty} \delta_n <+\infty, $ $\sum\limits_{n=0}^{\infty}\|\varepsilon'_n\| < +\infty, $ $\sum\limits_{n=0}^{\infty}\|\varepsilon"_n\| < +\infty$;

$(ⅱ)$ $\sum\limits_{n=0}^{\infty}\zeta_n = +\infty$ and $\zeta_n \rightarrow 0$ as $n \rightarrow \infty$;

$(ⅲ)$ $\frac{\alpha_n}{\zeta_n}\rightarrow 0, $ $\frac{\delta_n}{\zeta_n}\rightarrow 0, $$\frac{\|\varepsilon'_n\|}{\zeta_n}\rightarrow 0$;

$(ⅳ)$ $\delta_n + \beta_n + \gamma_n \equiv 1, $ for $n \geq 0.$

Proof We shall split the proof into five steps.

Step 1 $\{x_n\}$ is well-defined.

In fact, it suffices to show that $\{z_n\}$ is well-defined.

For $t, s\in (0, 1)$, define $U_{t, s}: C \rightarrow C$ by $U_{t, s} x: = tu + sB(\frac{u+x}{2})+(1-t-s)v, $ where $B: C \rightarrow C$ is nonexpansive and $x, u, v \in C$. Then

$ \|U_{t, s} x - U_{t, s}y\|\leq s\|\frac{u+x}{2}-\frac{u+y}{2}\| \leq \frac{s}{2} \|x-y\|. $

Thus $U_{t, s}$ is a contraction, which ensures from Lemma 1.2 that there exists $x_{t, s}\in C$ such that $U_{t, s} x_{t, s} = x_{t, s}.$ That is, $x_{t, s} = tu + sB(\frac{u+x_{t, s}}{2})+(1-t-s)v$.

Since $J_{r_{n, i}}^{A_i}$ is nonexpansive and $\sum\limits_{i = 1}^{\infty}c_i = 1$, then $\sum\limits_{i = 1}^{\infty}c_iJ_{r_{n, i}}^{A_i}$ is nonexpansive, which implies that $\{z_n\}$ is well-defined, and then $\{x_n\}$ is well-defined.

Step 2 $\{x_n\}, $ $\{y_n\}$ and $\{z_n\}$ are all bounded.

$\forall p \in D, $ we see that for $n \geq 0, $

$ \|y_{n} - p\|\leq (1-\alpha_n)\|x_n-p\|+(1-\alpha_n)\|\varepsilon'_n\|+\alpha_n \|p\|. $ (2.8)

Therefore, for $p \in D$ and $n \geq 0, $ we have

$ \|z_{n} - p\|\leq \beta_{n}\|y_n-p\|+\gamma_n\|\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}(\frac{y_n+z_n}{2})-p\|+\delta_n\|\varepsilon"_n-p\|\\ \;\;\;\;\;\;\;\;\;\;\;\;\leq (\beta_n+\frac{\gamma_{n}}{2})\|y_n-p\|+\frac{\gamma_n}{2}\|z_n-p\|+\delta_n\|\varepsilon"_n-p\|\\\;\;\;\;\;\;\;\;\;\;\;\; \leq (1-\frac{\gamma_{n}}{2})\|y_n-p\|+\frac{\gamma_n}{2}\|z_n-p\|+\delta_n\|\varepsilon"_n-p\|, $

which implies that

$ \|z_n - p\| \leq \|y_n-p\|+\frac{2\delta_n}{2-\gamma_n}\|\varepsilon"_n-p\|\leq \|y_n - p\| +2\|\varepsilon"_n\|+\frac{2\delta_n}{2-\gamma_n}\|p\|. $ (2.9)

Using Lemma 1.1, (2.8) and (2.9), we have: for $n \geq 0, $

$ \|x_{n+1} - p\| \\ \leq \zeta_n \eta \sum\limits_{i=1}^{\infty}a_i\|f_i(x_n)-f_i(p)\|+ \zeta_n \|\eta\sum\limits_{i=1}^{\infty}a_if_i(p)-\sum\limits_{i=1}^{\infty}b_iF_i(p)\|\\ +\|I-\zeta_n\sum\limits_{i=1}^{\infty}b_iF_i\|\|z_n - p\|\\ \leq \zeta_n \eta k\|x_n-p\|+ \zeta_n\|\eta\sum\limits_{i=1}^{\infty}a_if_i(p)-\sum\limits_{i=1}^{\infty}b_iF_i(p)\| +(1-\zeta_n \overline{\gamma})\|z_n - p\|\\ \leq [1-\zeta_n(\overline{\gamma}-k \eta)]\|x_n-p\|+ \zeta_n \|\eta\sum\limits_{i=1}^{\infty}a_if_i(p)-\sum\limits_{i=1}^{\infty}b_iF_i(p)\|\\ +\|\varepsilon'_n\|+2\|\varepsilon"_n\|+\|p\|(\alpha_n+\frac{2\delta_n}{2-\gamma_n}).\\ $ (2.10)

By using the inductive method, we can easily get the following result from (2.10)

$\|x_{n+1}-p\| \leq {\rm{max}}\{\|x_0 - p\|, \frac{\|\eta\sum\limits_{i=1}^{\infty}a_if_i(p) -\sum\limits_{i=1}^{\infty}b_iF_i(p)\|}{\overline{\gamma}-k \eta}\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+ \sum\limits_{k=0}^{n}\|\varepsilon'_k\|+2 \sum\limits_{k=0}^{n}\|\varepsilon"_k\|+\|p\|(\sum\limits_{k=0}^{n}\alpha_k+\sum\limits_{k=0}^{n}\frac{2\delta_k}{2-\gamma_k}). $

Therefore, from assumptions $(i)$, we know that $\{x_n\}$ is bounded. Set $M = {\rm{sup}}\{ \|x_n\|, \|\varepsilon'_n\| : n \geq 0\}.$ Then $M$ is a positive constant.

Step 3 ${\rm{Fix}}(\sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i})= D.$

It is obvious that $A_i^{-1}0 = {\rm{Fix}}(J_{r_{n, i}}^{A_i})$ for $i \in N^+$. Lemma 1.4 implies that $\bigcap\limits_{i=1}^{\infty}{\rm{Fix}}(J_{r_{n, i}}^{A_i})= {\rm{Fix}}(\sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i}).$ Thus ${\rm{Fix}}(\sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i})= D.$

Step 4

$ \|x_{n+1} - p_0\|^2 \leq (1-\omega_n^{(1)})\|x_{n} - p_0\|^2 + \omega_n^{(1)}\omega_n^{(2)}-\omega_n^{(3)}, $ (2.11)

where $p_0$ is the unique solution of variational inequality (2.7), $ M' = 4M+2\|p_0\|$,

$ \omega_n^{(1)}= \frac{\zeta_n (\overline{\gamma}-2\eta k)}{1-\zeta_n\eta k}, $
$ \omega_n^{(2)}= \frac{1}{\zeta_n (\overline{\gamma}-2\eta k)}(\|\varepsilon_n'\|M'+\alpha_n M'\|p_0\|+\frac{2\delta_n}{2-\gamma_n}\|\varepsilon"_n - p_0\|^2)\\\;\;\;\;\;\;\;\;\;\;\;+ \frac{2\langle \eta \sum\limits_{i=1}^{\infty}a_if_i(p_0)-\sum\limits_{i=1}^{\infty}b_i F_i(p_0), J(x_{n+1}-p_0)\rangle} {\overline{\gamma}-2 \eta k}, $
$ \omega_n^{(3)} = \frac{(1-\zeta_n \overline{\gamma})^2}{1-\zeta_n \eta k}\frac{2\gamma_n}{2-\gamma_n}\sum\limits_{i=1}^{\infty}c_i \varphi(\|\frac{y_n+z_n}{2}-J^{A_i}_{r_{n, i}}(\frac{y_n+z_n}{2})\|). $

Since $\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}: C \rightarrow C$ is nonexpansive, then using Theorem 2.1, we know that there exists $z_t$ such that

$ z_t = t\eta \sum\limits_{i=1}^{\infty}a_if_i(z_t)+(I-\sum\limits_{i=1}^{\infty}b_iF_i)\sum\limits_{i=1}^{\infty}c_iJ^{A_i}_{r_{n, i}}Q_Cz_t $ (2.12)

for $t \in (0, (\sum\limits_{i=1}^{\infty}b_i\|F_i\|)^{-1}).$ Moreover, $z_t \rightarrow p_0 \in D, $ as $t \rightarrow 0, $ which is the unique solution of the variational inequality (2.7).

For this $p_0 \in D, $ using Lemma 1.5, we have

$ \|y_n - p_0\|^2 \leq \|(1-\alpha_n)(x_n+\varepsilon_n') - p_0\|^2\\ \leq (1-\alpha_n)^2 \|x_n - p_0\|^2 + 2\langle (1-\alpha_n) \varepsilon_n' - \alpha_np_0, J[(1-\alpha_n)(x_n+\varepsilon_n')-p_0]\rangle\\ \leq (1-\alpha_n)^2 \|x_n - p_0\|^2 + \|\varepsilon_n'\|M'+\alpha_n \|p_0\|M'. $ (2.13)

And, using Lemma 1.6,

$\|z_n - p_0\|^2\leq \beta_n \|y_n - p_0\|^2\\+ \gamma_n\sum\limits_{i=1}^{\infty}c_i\|J_{r_{n, i}}^{A_i}(\frac{y_{n}+z_n}{2})-p_0\|^2 + \delta_n \|\varepsilon_n"-p_0\|^2\\ \leq \beta_n \|y_n - p_0\|^2+ \gamma_n\sum\limits_{i=1}^{\infty}c_i[\|\frac{y_{n}+z_n}{2}-p_0\|^2\\-\varphi(\|(I-J^{A_i}_{r_{n, i}})(\frac{y_n+z_n}{2})\|)] + \delta_n \|\varepsilon_n"-p_0\|^2\\ \leq (\beta_n + \frac{\gamma_n}{2})\|y_n - p_0\|^2+ \delta_n \|\varepsilon_n"-p_0\|^2\\-\gamma_n \sum\limits_{i=1}^{\infty}c_i\varphi(\|(I- J^{A_i}_{r_{n, i}})(\frac{y_n+z_n}{2})\|)+ \frac{\gamma_n}{2}\|z_n - p_0\|^2, $

which implies that

$ \|z_n - p_0\|^2\leq \frac{2\beta_n + \gamma_n}{2-\gamma_n}\|y_n - p_0\|^2\\\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \frac{2\delta_n}{2-\gamma_n} \|\varepsilon_n"-p_0\|^2-\frac{2\gamma_n}{2-\gamma_n} \sum\limits_{i=1}^{\infty}c_i\varphi(\|\frac{y_n+z_n}{2}- J^{A_i}_{r_{n, i}}(\frac{y_n+z_n}{2})\|)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; \leq (1-\alpha_n)^2 \|x_n - p_0\|^2 + \|\varepsilon_n'\|M'+\alpha_n \|p_0\|M'+ \frac{2\delta_n}{2-\gamma_n} \|\varepsilon_n"-p_0\|^2\\ \;\;\;\;\;\;\;\;\;\;\; \;\;\; -\frac{2\gamma_n}{2-\gamma_n} \sum\limits_{i=1}^{\infty}c_i\varphi(\|\frac{y_n+z_n}{2}- J^{A_i}_{r_{n, i}}(\frac{y_n+z_n}{2})\|). $ (2.14)

Now, noticing Step 1 in Theorem 2.1 and using Lemma 1.5 again,

$ \|x_{n+1} - p_0\|^2 \\= \|(I - \zeta_n \sum\limits_{i=1}^{\infty}b_iF_i)\sum\limits_{i=1}^{\infty}c_iJ^{A_i}_{r_{n, i}}(z_n - p_0)+ \zeta_n(\eta \sum\limits_{i=1}^{\infty}a_if_i(x_n) -\sum\limits_{i=1}^{\infty}b_i F_ip_0)\|^2\\ \leq (1-\zeta_n \overline{\gamma})^2\|z_n - p_0\|^2+ 2\zeta_n\langle \eta \sum\limits_{i=1}^{\infty}a_if_i(x_n) -\sum\limits_{i=1}^{\infty}b_i F_ip_0, J(x_{n+1}-p_0)\rangle\\ \leq (1-\zeta_n \overline{\gamma})\|x_n - p_0\|^2+ \|\varepsilon_n'\|M'+\alpha_n \|p_0\|M'\\- (1-\zeta_n \overline{\gamma})^2\frac{2\gamma_n}{2-\gamma_n} \sum\limits_{i=1}^{\infty}c_i\varphi(\|\frac{y_n+z_n}{2}- J^{A_i}_{r_{n, i}}(\frac{y_n+z_n}{2})\|)\\+ \frac{2\delta_n}{2-\gamma_n} \|\varepsilon_n"-p_0\|^2 + 2\zeta_n\langle \eta \sum\limits_{i=1}^{\infty}a_i(f_i(x_n) -f_i(p_0)), J(x_{n+1}-p_0)\rangle\\ + 2\zeta_n \langle \eta\sum\limits_{i=1}^{\infty}a_if_i(p_0)-\sum\limits_{i=1}^{\infty}b_i F_ip_0, J(x_{n+1}-p_0)\rangle \\ \leq (1-\zeta_n \overline{\gamma})\|x_n - p_0\|^2+ \|\varepsilon_n'\|M'+\alpha_n \|p_0\|M'\\- (1-\zeta_n \overline{\gamma})^2\frac{2\gamma_n}{2-\gamma_n} \sum\limits_{i=1}^{\infty}c_i\varphi(\|\frac{y_n+z_n}{2}- J^{A_i}_{r_{n, i}}(\frac{y_n+z_n}{2})\|)\\+ \frac{2\delta_n}{2-\gamma_n} \|\varepsilon_n"-p_0\|^2 + 2\zeta_n\eta k\|x_{n}-p_0\|\|x_{n+1}-p_0\|\\+ 2\zeta_n \langle \eta\sum\limits_{i=1}^{\infty}a_if_i(p_0)-\sum\limits_{i=1}^{\infty}b_i F_ip_0, J(x_{n+1}-p_0)\rangle \\ \leq (1-\zeta_n \overline{\gamma})\|x_n - p_0\|^2+ \|\varepsilon_n'\|M'+\alpha_n \|p_0\|M'\\- (1-\zeta_n \overline{\gamma})^2\frac{2\gamma_n}{2-\gamma_n} \sum\limits_{i=1}^{\infty}c_i\varphi(\|\frac{y_n+z_n}{2}- J^{A_i}_{r_{n, i}}(\frac{y_n+z_n}{2})\|)\\+ \frac{2\delta_n}{2-\gamma_n} \|\varepsilon_n"-p_0\|^2 +\zeta_n\eta k(\|x_{n}-p_0\|^2 + \|x_{n+1}-p_0\|^2)\\+ 2\zeta_n \langle \eta\sum\limits_{i=1}^{\infty}a_if_i(p_0)-\sum\limits_{i=1}^{\infty}b_i F_ip_0, J(x_{n+1}-p_0)\rangle. \\ $

Thus

$ \|x_{n+1} - p_0\|^2\\\leq \frac{1-\zeta_n\overline{\gamma}+\zeta_n \eta k}{1-\zeta_n\eta k}\|x_n - p_0\|^2 + \frac{1}{1-\zeta_n\eta k} [\|\varepsilon_n'\|M'+\alpha_n \|p_0\|M'+\frac{2\delta_n}{2-\gamma_n}\|\varepsilon_n"-p_0\|^2]\\ +\frac{2\zeta_n}{1-\zeta_n \eta k}\langle \sum\limits_{i=1}^{\infty}a_if_i(p_0) - \sum\limits_{i=1}^{\infty}b_i F_ip_0, J(x_{n+1}-p_0)\rangle \\- \frac{(1-\zeta_n\overline{\gamma})^2}{1-\zeta_n \eta k}\frac{2\gamma_n}{2-\gamma_n} \sum\limits_{i=1}^{\infty}c_i\varphi(\|\frac{y_n+z_n}{2}- J^{A_i}_{r_{n, i}}(\frac{y_n+z_n}{2})\|)\\ = (1-\omega_n^{(1)})\|x_{n} - p_0\|^2 + \omega_n^{(1)}\omega_n^{(2)}-\omega_n^{(3)}.\\ $

It follows from the assumption(ⅱ) that $\omega_n^{(1)}\rightarrow 0, $ as $n \rightarrow +\infty$.

Step 5 $x_n \rightarrow p_0, $ as $n \rightarrow +\infty$, where $p_0$ is the same as that in Step 4.

Our next discussion will be divided into two cases:

Case 1. $\{\|x_n - p_0\|\}$ is decreasing.

If $\{\|x_n - p_0\|\}$ is decreasing, we know from the result of Step 4 that

$ 0 \leq \omega_n^{(3)}\leq \omega_n^{(1)}(\omega_n^{(2)}-\|x_n - p_0\|^2)+(\|x_n - p_0\|^2-\|x_{n+1} - p_0\|^2)\rightarrow 0, $

which ensures that

$ \sum\limits_{i=1}^{\infty}c_i \varphi(\|\frac{y_n+z_n}{2}-J_{r_{n, i}}^{A_i}( \frac{y_n+z_n}{2})\|)\rightarrow 0, $

as $n \rightarrow +\infty$. Then from the property of $\varphi$, we know that

$ \sum\limits_{i=1}^{\infty}c_i \|\frac{y_n+z_n}{2}-J_{r_{n, i}}^{A_i}( \frac{y_n+z_n}{2})\|\rightarrow 0, $

as $n \rightarrow +\infty$. Since

$ \|y_n - z_n\|\leq \gamma_n \sum\limits_{i=1}^{\infty}c_i\|J_{r_{n, i}}^{A_i}(\frac{y_{n}+z_n}{2})-y_n\| + \delta_n \|\varepsilon"_n - y_n\|\\ \leq \gamma_n \sum\limits_{i=1}^{\infty}c_i\|J_{r_{n, i}}^{A_i}(\frac{y_{n}+z_n}{2})-\frac{y_{n}+z_n}{2}\| +\gamma_n \|\frac{y_{n}+z_n}{2}-y_n\|+ \delta_n \|\varepsilon"_n - y_n\|, $

then

$ \|y_n - z_n\|\leq \frac{2}{2-\gamma_n}[\gamma_n \sum\limits_{i=1}^{\infty}c_i\|J_{r_{n, i}}^{A_i}(\frac{y_{n}+z_n}{2})-\frac{y_n+z_n}{2}\| + \delta_n \|\varepsilon"_n-y_n\|] \rightarrow 0, $

as $n \rightarrow +\infty$. Therefore,

$ \|y_n - \sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i}y_n\|\\ \leq \|y_n - z_n\|+\|z_n - \sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i}(\frac{y_{n}+z_n}{2})\| \\+ \|\sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i}(\frac{y_{n}+z_n}{2})-\sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i}y_n\|\\ \leq \frac{3}{2}\|y_n - z_n\|+\beta_n\|y_n - \sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i}(\frac{y_{n}+z_n}{2})\| \\+ \delta_n \|\varepsilon"_n-\sum\limits_{i=1}^{\infty}c_iJ_{r_{n, i}}^{A_i}(\frac{y_{n}+z_n}{2})\|\rightarrow 0.\\ $

Next, we shall show that

$ {\rm{lim}}\;\mathop {{\rm{sup}}}\limits_{n \to + \infty } \langle \eta \sum\limits_{i = 1}^\infty {{a_i}} {f_i}({p_0}) - \sum\limits_{i = 1}^\infty {{b_i}} {F_i}({p_0}),J({x_{n + 1}} - {p_0})\rangle \le 0. $ (2.15)

Let $z_t$ be the same as that in (2.12). Since $\|z_t\|\leq \|z_t - p_0 \|+\|p_0\|, $ then $\{z_t\}$ is bounded, as $t \rightarrow 0$. Using Lemma 1.5, we have

$ \|z_t - y_{n}\|^2 = \|z_t - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n+\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n - y_n\|^2\\ \leq \|z_t - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n\|^2 + 2\langle \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n - y_n, J(z_t - y_n) \rangle \\ = \|t\eta \sum\limits_{i = 1}^{\infty} a_if_i(z_t) + (I-t\sum\limits_{i = 1}^{\infty} b_iF_i)\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cz_t - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_{n}\|^2\\+ 2\langle \sum\limits_{i = 1}^{\infty}c_i J_{r_{n, i}}^{A_i}y_n - y_n, J(z_t - y_n) \rangle \\ \leq \|\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cz_t - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_{n}\|^2 \\+ 2t\langle \eta \sum\limits_{i = 1}^{\infty} a_i f_i(z_t) - \sum\limits_{i = 1}^{\infty} b_iF_i(\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cz_t), J(z_t - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n) \rangle \\+2\langle \sum\limits_{i = 1}^{\infty}c_i J_{r_{n, i}}^{A_i}y_n - y_n, J(z_t - y_n) \rangle\\ \leq \|z_t - y_{n}\|^2 + 2t\langle \eta \sum\limits_{i = 1}^{\infty} a_i f_i(z_t) - \sum\limits_{i = 1}^{\infty} b_iF_i(\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cz_t), J(z_t - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n) \rangle \\ + 2 \| \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n - y_n\|\|z_t - y_n\| , $

which implies that

$ t\langle \sum\limits_{i = 1}^{\infty} b_iF_i(\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cz_t)-\eta \sum\limits_{i = 1}^{\infty} a_i f_i(z_t), J(z_t - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n) \rangle \\ \leq \| \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n - y_n\|\|z_t-y_{n}\|. $

So

$ \mathop {{\rm{lim}}}\limits_{t \to 0} \;\mathop {{\rm{lim}}\;{\rm{sup}}}\limits_{n \to + \infty } \langle \sum\limits_{i = 1}^\infty {{b_i}} {F_i}(\sum\limits_{i = 1}^\infty {{c_i}} J_{{r_{n,i}}}^{{A_i}}{Q_C}{z_t}) - \eta \sum\limits_{i = 1}^\infty {{a_i}} {f_i}({z_t}),J({z_t} - \sum\limits_{i = 1}^\infty {{c_i}} J_{{r_{n,i}}}^{{A_i}}{y_n})\rangle \le 0. $

Since $z_t \rightarrow p_0, $ then

$ \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cz_t \rightarrow \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cp_0 = p_0 $

as $t \rightarrow 0$. Noticing that

$ \langle \sum\limits_{i = 1}^{\infty} b_iF_i(p_0)-\eta \sum\limits_{i = 1}^{\infty} a_i f_i(p_0), J(p_0 - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n)\rangle \\ =\langle\sum\limits_{i = 1}^{\infty} b_iF_i(\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cp_0)-\eta \sum\limits_{i = 1}^{\infty} a_i f_i(p_0), J(p_0 - \sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n)- J(z_t -\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n)\rangle\\ + \langle\sum\limits_{i = 1}^{\infty} b_iF_i(\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cp_0)-\eta \sum\limits_{i = 1}^{\infty} a_i f_i(p_0)-\sum\limits_{i = 1}^{\infty} b_iF_i(\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cz_t)\\+\eta \sum\limits_{i = 1}^{\infty} a_i f_i(z_t), J(z_t -\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n)\rangle \\ + \langle \sum\limits_{i = 1}^{\infty} b_iF_i(\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}Q_Cz_t)-\eta \sum\limits_{i = 1}^{\infty} a_i f_i(z_t), J(z_t -\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n)\rangle, $

then we have

$ \mathop {{\rm{lim}}\;{\rm{sup}}}\limits_{n \to + \infty } \langle \sum\limits_{i = 1}^{\infty} b_iF_i(p_0)-\eta \sum\limits_{i = 1}^{\infty} a_if_i(p_0), J(p_0-\sum\limits_{i = 1}^{\infty} c_iJ_{r_{n, i}}^{A_i}y_n)\rangle\leq 0. $

Since $y_n - z_n \rightarrow 0, $ then $x_{n+1}-\sum\limits_{i = 1}^{\infty} c_i J_{r_{n, i}}^{A_i}y_n \rightarrow 0, $ which implies that

$ \mathop {{\rm{lim}}\;{\rm{sup}}}\limits_{n \to + \infty } \langle \sum\limits_{i = 1}^{\infty} b_iF_i(p_0)-\eta \sum\limits_{i = 1}^{\infty} a_i f_i(p_0), J(p_0 - x_{n+1})\rangle \leq 0. $

Assumption (ii) and (2.15) ensure that $\mathop {{\rm{lim}}\;{\rm{sup}}}\limits_{n \to + \infty }\omega_n^{(2)}\leq 0.$

Employing (2.11) again, we have

$ \|x_n - p_0\|^2 \leq \frac{\|x_n - p_0\|^2 - \|x_{n+1} - p_0\|^2 }{\omega_n^{(1)}}+\omega_n^{(2)}. $

Assumption (ⅱ) implies that $lim_{n \rightarrow \infty}\frac{\|x_n - p_0\|^2 - \|x_{n+1} - p_0\|^2 }{\omega_n^{(1)}} = 0.$ Then

$ \mathop {{\rm{lim}}}\limits_{n \to \infty } {\left\| {{x_n} - {p_0}} \right\|^2} \le \mathop {{\rm{lim}}\;{\rm{inf}}}\limits_{n \to \infty } \frac{{{{\left\| {{x_n} - {p_0}} \right\|}^2} - {{\left\| {{x_{n + 1}} - {p_0}} \right\|}^2}}}{{\omega _n^{(1)}}} + \mathop {{\rm{lim}}\;{\rm{sup}}}\limits_{n \to \infty } \omega _n^{(2)} \le 0. $

Then the result that $x_n \rightarrow p_0$ follows.

Case 2 If $\{\|x_n - p_0\|\}$ is not eventually decreasing, then we can find a subsequence $\{\|x_{n_m} - p_0\|\}$ so that $\|x_{n_m} - p_0\|\leq \|x_{n_{m+1}} - p_0\|$ for all $m \geq 1.$ From Lemma 1.7, we can define a subsequence $\{\|x_{\tau(n)} - p_0\|\}$ so that $\max\{\|x_{\tau(n)} - p_0\|, \|x_n - p_0\|\}\leq \|x_{\tau(n)+1} - p_0\|$ for all $n > n_1.$ This enable us to deduce that (similar to Case 1)

$ 0 \leq \omega_{\tau(n)}^{(3)}\leq \omega_{\tau(n)}^{(1)}(\omega_{\tau(n)}^{(2)}-\|x_{\tau(n)} - p_0\|^2)+(\|x_{\tau(n)} - p_0\|^2-\|x_{{\tau(n)}+1} - p_0\|^2)\rightarrow 0, $

and then copy Case 1, we have $\mathop {{\rm{lim}}}\limits_{n \to \infty } \|x_{\tau(n)} - p_0\| = 0.$ Thus $ 0 \leq \|x_{n} - p_0\|\leq \|x_{\tau(n)+1} - p_0\|\rightarrow 0, $ as $n \rightarrow \infty.$ This completes the proof.

Remark 2.1 In similar studies, e.g. [5], they usually have the following strong restrictions on the parameters: $\sum\limits_{i = 1}^{\infty}|r_{n+1, i} - r_{n, i}| <+\infty, $ $r_{n, i}\geq \varepsilon > 0, 0 < \mathop {{\rm{lim}}\;{\rm{inf}}}\limits_{n \to \infty } \gamma_n \leq \mathop {{\rm{lim}}\;{\rm{sup}}}\limits_{n \to \infty } \gamma_n < 1$ and $\gamma_{n+1}-\gamma_n \rightarrow 0.$ By using new tools of Lemmas 1.6 and 1.7, these strong restrictions are deleted in our paper.

Remark 2.2 In scheme (A), let $E = C = (-\infty, +\infty), a_i = c_i = \frac{1}{2^i}, b_i = \frac{7}{8^i}, $ $f_i(x) = \frac{x}{2^i}, k = \frac{1}{2}, $ $F_i x = \frac{4^i}{7}x, \overline{\gamma} = \frac{4}{7}, \eta = \frac{1}{7}, \alpha_n = \beta_n = \delta_n = \varepsilon_n' = \varepsilon_n" = \frac{1}{(n+1)^2}, \zeta_n = \frac{1}{n+1}, r_{n, i} = (n+1)2^i$ and $A_i x = \frac{x}{2^i}$ for $i \in N^+$ and $n \geq 0.$ Then all of the assumptions in Theorem 2.2 are satisfied and $D = \{0\}.$ By using Visual Basic six, we get Table 2.1 and Figure 2.1 below, from which we can see the convergence of $\{x_n\}$.

Table 2.1
Numerical Results of $\{x_n\}$ with Initial $x_0 = -8.0$

Figure 2.1 Convergence of $\{x_n\}$
References
[1] Agarwal R P, O'Regan D, Sahu D R. Fixed point theory for Lipschitz-type mappings with applications[M]. Germany: Springer-Verlag, 2009.
[2] Cai Gang, Bu Shangquan. Approximation of common fixed points of a countable family of continuous pesudocontractions in a uniformly smooth Banach space[J]. Appl. Math. Lett., 2001, 24(2): 1998–2004.
[3] Takahashi W. Proximal point algorithms and four resolvents of nonlinear operators of monotone type in Banach spaces[J]. Taiwan. J. Math., 2008, 12(8): 1883–1910. DOI:10.11650/twjm/1500405125
[4] Wei Li, Liu Yuanxing. Strong and weak convergence theorems for zeros of m-d-accretive mappings in Banach spaces[J]. J. Math., 2016, 36(3): 573–583.
[5] Wei Li, Tan Ruilin. Iterative scheme with errors for common zeros of finite accretive mappings and nonlinear elliptic systems[J]. Abstr. Appl. Anal., 2014, Article ID 646843, 9 pages.
[6] Cui Huanhuan, Su Menglong. On sufficient conditions ensuring the norm convergence of an iterative sequence to zeros of accretive operators[J]. Appl. Math. Comput., 2015, 258: 67–71.
[7] Wei Li, Agarwal R P. Iterative algorithms for infinite accretive mappings and applications to p-Laplacian-like differential systems[J]. Fixed Point The. Appl., 2016, 5: 1–23.
[8] Cai Gang, Hu Changsong. Strong convergence theorems of a general iterative process for a finite family of λi-strictly pseudo-contractions in q-uniformly smooth Banach space[J]. Comput. Math. Appl., 2010, 59: 149–160. DOI:10.1016/j.camwa.2009.07.068
[9] Browder F E. Semicontractive and semiaccretive mappings in Banach spaces[J]. Bill. Am. Math. Soc., 1968, 74: 660–665. DOI:10.1090/S0002-9904-1968-11983-4
[10] Bruck R E. Properties of fixed-point sets of nonexpansive mappings in Banach spaces[J]. Trans. Am. Math. Soc., 1973, 179: 251–262. DOI:10.1090/S0002-9947-1973-0324491-8
[11] Ceng Luchuan, Khan A R, Ansari Q H, Yao J C. Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach spaces[J]. Nonlinear Anal., 2009, 70: 1830–1840. DOI:10.1016/j.na.2008.02.083
[12] Maing P E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization[J]. Set-Valued Anal., 2008, 66: 899–912.