数学杂志  2017, Vol. 37 Issue (6): 1261-1274   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
向妮
吴燕
窦楠
张俊玮
抛物型Monge-Ampère型方程的Cauchy-Neumann问题
向妮, 吴燕, 窦楠, 张俊玮    
湖北大学数学与统计学学院, 湖北 武汉 430062
摘要:本文研究了一类抛物型Monge-Ampère型方程的Cauchy-Neumann问题.通过构造辅助函数,利用函数在极大值点的性质及柯西不等式等方法对方程的解进行估计,得到了方程解的全局二阶梯度估计.接着利用抛物方程的一般理论,进一步得到在光滑条件下,解的长时间存在性,推广了抛物型Monge-Ampère方程的结果.
关键词抛物型Monge-Ampère型方程    Cauchy-Neumann问题    先验估计    梯度估计    
THE CAUCHY-NEUMANN PROBLEM FOR PARABOLIC TYPE AND MONGE-AMPÈRE TYPE EQUATIONS
XIANG Ni, WU Yan, DOU Nan, ZHANG Jun-wei    
School of Mathematics and Statistics, Hubei University, Wuhan 430062, China
Abstract: In this paper, we study the Cauchy-Neumann problem for parabolic type and Monge-Ampère type equations. By establishing an anxiliary function, using the methods of the properity at the maximum point and cauchy inequality, we prove the global gradient estimates for second order derivatives. And by using the general theory of parabolic equations, we obtain that such solution exists for all times under smoothness and regularity conditions, which generalizes the results of parabolic type and Monge-Ampère type equations.
Key words: parabolic type and Monge-Ampère type equation     Cauchy-Neumann problem     a priori estimate     gradient estimate    
1 引言

椭圆型Monge-Ampère方程已得到广泛研究, 具体可见文献[3-5].在文献[5]中, 作者考虑Monge-Ampère型方程半线性Neumann边值问题, 通过证明二阶导数的先验估计得到该类方程Neumann边值问题经典解的存在性, 唯一性以及正则性.关于完全非线性方程Neumann边值问题也有一些研究成果, 如参考文献[9].抛物型Monge-Ampère型方程是一类典型的完全非线性抛物方程, 它在最优控制理论等方面的研究中具有重要的应用, 许多学者对此类方程进行了深入研究[1, 2, 7, 8, 10-12].本文考虑抛物型Monge-Ampère型方程的Cauchy-Neumann问题, 形如

$ \frac{\partial u}{\partial t}={\det}^{\frac {1}{n}}[D^{2}u-A(x, u, Du)]-B(x, u, Du), ~~\mbox{在 $\Omega\times[0, T)$ 内} $ (1.1)
$ D_{\nu}u= \varphi(x, u), ~~\mbox{在 $\partial\Omega\times[0, T)$ 上}, $ (1.2)
$ u(x, 0)=u_{0}(x), ~~\mbox{在 $\Omega$ 内}, $ (1.3)

其中$\Omega$$\mathbb{R}^{n}$中的$A$-凸区域, $n\geq 2$, $\partial\Omega\in C^{4}$, $Du$为梯度向量, $D^{2}u$$u$的Hessian矩阵, $A\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$$n\times n$的对称矩阵值函数, $B\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$是正的向量值函数, $\varphi\in C^{2, 1}(\partial\Omega\times\mathbb{R})$是向量值函数, $u_{0}\in C^{2}(\bar{\Omega})$, $\nu$$\partial\Omega$上的单位内法向量.一般用$x, z, p$分别表示$\Omega, \mathbb{R}, \mathbb{R}^{n}$中的元素.

进一步地, 当$D^{2}u-A(x, u, Du)$正定时, 称$u$是椭圆解.为了得到问题(1.1)-(1.3)椭圆解的先验估计, 要求$A, B, \varphi, u_0$满足适当的光滑性条件和结构性条件:若函数$A$满足

$ A_{ij, kl}(x, z, p)\xi_{i}\xi_{j}\eta_{k}\eta_{l}\geq 0 (> 0), $ (1.4)

则称$A$是正则(严格正则)的, 其中$(x, z, p)\in\Omega\times\mathbb{R}\times \mathbb{R}^{n}, \xi, \eta \in \mathbb{R}^{n}, \xi\perp\eta, A_{ij, kl}=D^{2}_{p_{k}p_{l}}A_{ij}$.若函数$A$满足

$ D_{z}A_{ij}(x, z, p)\xi_{i}\xi_{j}\geq 0 (> 0), \mbox{ $\forall (x, z, p)\in\Omega\times\mathbb{R}\times\mathbb{R}^{n}, \xi\in\mathbb{R}^{n}$}, $ (1.5)

$A$$z$是非减(严格递增)的.同样地, 若函数$B$$\varphi$满足

$ D_{z}B(x, z, p)\geq 0 (> 0), ~~ \mbox{$\forall (x, z, p)\in\Omega\times\mathbb{R}\times\mathbb{R}^{n}$}, $ (1.6)
$ D_{z}\varphi(x, z)\geq 0 (> 0), ~~ \mbox{$\forall (x, z)\in\partial\Omega\times\mathbb{R}$}, $ (1.7)

则称$B$$\varphi$$z$是非减(严格递增)的, $u_{0}$满足相容性条件

$ {\det} ^{\frac {1}{n}}[D^{2}u_{0}-A(x, u_{0}, Du_{0})]-B(x, u_{0}, Du_{0})\geq 0. $ (1.8)

另外, 区域$\Omega$满足$A$ -凸条件, 即存在函数$\phi\in C^2(\overline{\Omega})$使得在$\partial\Omega$$\phi=0$, $D\phi\neq 0$, 在$\Omega$$\phi< 0$, 且满足不等式

$ D_{ij}\phi-D_{p_{k}}A_{ij}(x, u, Du)D_{k}\phi\geq \delta_{1}I, $ (1.9)

其中$I$为单位矩阵, $\delta_1$为正常数.为了获得问题(1.1)-(1.3)解的$C^2$估计, 还需要假设问题(1.1)-(1.3)的有界上解$\bar{u}$存在且满足

$ \frac{\partial \bar{u}}{\partial t}\geq {\det}^\frac {1}{n}[D^{2}\bar{u}-A(x, \bar{u}, D\bar{u})]-B(x, \bar{u}, D\bar{u}), ~~\mbox{在 $\Omega\times[0, T)$ 内}, $ (1.10)
$ D_{\nu}\bar{u}= \varphi(x, \bar{u}), ~~\mbox{在 $\partial\Omega\times[0, T)$ 上}, $ (1.11)
$ \bar{u}(x, 0)={u}_{0}(x), ~~ \mbox{在 $\Omega$ 上}. $ (1.12)

下面给出本文的主要结论.

定理1.1  设$u\in C^{4, 2}(\bar{\Omega}\times[0, T])$为抛物型Monge-Ampère型方程的Cauchy-Neumann问题(1.1)-(1.3)的椭圆解, $\Omega\in C^{4}$$\mathbb{R}^{n}$$A$ -凸区域, $A\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足(1.4)-(1.5)式, $0< B\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足$(1.6)$式, $\varphi\in C^{2, 1}(\bar{\Omega}\times\mathbb{R})$满足$(1.7)$式, $u_{0}\in C^{4}(\bar{\Omega})$满足$(1.8)$式.假设问题(1.1)-(1.3)的有界上解$\bar{u}\in C^{2, 1}(\bar{\Omega}\times[0, T])$存在且满足(1.10)-(1.12)式, 则有

$ \sup\limits_{\bar{\Omega}\times[0, T]}|D^{2}u|\leq C, $ (1.13)

其中$C$是依赖于$n, A, B, \varphi, u_{0}, \bar{u}, |u|_{1, \Omega}, \delta_1$的常数.

定理1.1中假设(1.1)-(1.3)式的上解有界, 因为定理1.1得到(000)式中二阶导数被$C$控制, 而$C$是依赖于$\bar{u}$的常数, 故如果不假设上解有界, 则不能得到解的二阶梯度估计.

为了保证$t=0$处的光滑性, 需要假设$u_{0}$满足相容性条件

$ (\frac{d}{dt})^{m}(\nu^{i}u_{i}-\varphi(x, u))|_{t=0}=0, $ (1.14)

其中$m\geq 0$, $u, u_{i}, \cdots$关于时间的导数可以由$(1.1)$$(1.3)$式得到.

在梯度估计的证明中, 还需要$A$的结构性条件

$ A(x, z, p)\geq -\mu_0(1+|p|^2)I, $ (1.15)

其中$p\in \mathbb{R}^{n}$, $\mu_0$为正常数.

基于前面的先验估计, 结合连续性方法以及抛物方程的一般理论, 可以得到问题(1.1)-(1.3)光滑解的存在性和正则性如下.

定理1.2  设$\Omega$$\mathbb{R}^{n}$中有界光滑的$A$ -凸区域, $n\geq 2$, $A\in C^{\infty}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$且满足(1.4), (1.5)和(As)式, $0< B\in C^{\infty}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足$(1.6)$式, $\varphi\in C^{\infty}(\bar{\Omega}\times\mathbb{R})$满足$(1.7)$式, $u_{0}\in C^{\infty}(\bar{\Omega})$满足相容性条件$(1.8)$和(Am)式.假设问题(1.1)-(1.3)的光滑有界上解$\bar{u}\in C^{\infty}(\bar{\Omega}\times[0, T])$存在且满足(1.10)-(1.12)式, 则对任意的$t\geq 0$, 问题(1.1)-(1.3)存在光滑解.另外, 当$t\rightarrow\infty$时, $u$光滑地收敛到光滑函数$u^{\infty}$, 其中$u^{\infty}$满足Neumann边值问题

$\begin{aligned} &{\det}^{\frac {1}{n}}[D^{2}u^{\infty}-A(x, u^{\infty}, Du^{\infty})]=B(x, u^{\infty}, Du^{\infty}), ~~\mbox{在 $\Omega$ 内}, \\\ &D_{\nu}u^{\infty}= \varphi(x, u^{\infty}), ~~\mbox{在 $\partial\Omega$ 上}.\end{aligned} $
2 预备知识

这一节, 先介绍与证明相关的一些基本概念和基本引理, 然后给出解的$C^0$$C^1$估计.定义算子$\mathcal{L}_{t}=-\frac{\partial}{\partial t}+F^{ij}(D_{ij}-D_{p_{l}}A_{ij}D_{l})-D_{p_{l}}BD_{l}, $$D_{i}=\frac{\partial }{\partial x_{i}}, $ $D_{ij}=\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}, $ $w_{ij}=u_{ij}-A_{ij}(x, u, Du), $ $w_{\xi\xi}=w_{ij}\xi_{i}\xi_{j}, $ $F^{ij}=\frac{\partial{\det}^{\frac {1}{n}}w_{ij}}{\partial w_{ij}}=\frac{1}{n}({\det}^{\frac{1}{n}}w_{ij})w^{ij}, $其中$\{w^{ij}\}$$\{w_{ij}\}$的逆矩阵.

引理2.1$u, v \in C^{2, 1}(\bar{\Omega}\times[0, T])$, 且$u, v$是椭圆解, $A\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$$n\times n$对称矩阵值函数满足$(1.5)$式, $B\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$是向量值函数满足$(1.6)$式, 假设$u, v$满足如下条件

(1) 在$\Omega\times[0, T)$上,

$ \begin{aligned} &-\frac{\partial u}{\partial t}+{\det}^{\frac {1}{n}}[D^{2}u-A(x, u, Du)]-B(x, u, Du)\\ \geq &-\frac{\partial v}{\partial t}+{\det}^{\frac {1}{n}}[D^{2}v-A(x, v, Dv)]-B(x, v, Dv); \end{aligned} $

(2) 在$\partial\Omega\times[0, T]$上, 如果$u>v$, 那么${u_{\nu}>v_{\nu}}$;

(3) 在$\bar{\Omega}\times\{t=0\}$上, $u\leq v$,

则在$\bar{\Omega}\times[0, T]$内, $u\leq v$.

  令$w=D^{2}u-A(x, u, Du), \tilde{w}=D^{2}v-A(x, v, Dv)$, 考虑

$ \begin{eqnarray*} && -\frac{\partial u}{\partial t}+{\det}^{\frac {1}{n}}[D^{2}u-A(x, u, Du)]-B(x, u, Du)\\ && -(-\frac{\partial v}{\partial t}+{\det}^{\frac {1}{n}}[D^{2}v-A(x, v, Dv)]-B(x, v, Dv))\\ &=&-(\frac{\partial u}{\partial t}-\frac{\partial v}{\partial t})+\int^{1}_{0}\frac{\partial {\det}^{\frac{1}{n}}[hw+(1-h)\tilde{w}]}{\partial[hw_{ij}+(1-h)\tilde{w}_{ij}]}dh(w-\tilde{w})_{ij}\\ &&-\int^{1}_{0}\frac{\partial B(x, hu+(1-h)v, hDu+(1-h)Dv)}{\partial[hu+(1-h)v]}dh(u-v)\\ &&-\int^{1}_{0}\frac{\partial B(x, hu+(1-h)v, hDu+(1-h)Dv)}{\partial[hu_k+(1-h)v_k]}dh(u-v)_k\\ &=&-\frac{\partial }{\partial t}(u-v)+a_{ij}(u-v)_{ij}-a_{ij}[A_{ij}(x, u, Du)-A_{ij}(x, v, Dv)]\\ &&-b(u-v)-c_k(u-v)_{k}\\ &=&-\frac{\partial }{\partial t}(u-v)+a_{ij}(u-v)_{ij}-(a_{ij}D_{p_{k}}A_{ij}(x, \bar{z}, \bar{p})+c_k)(u-v)_{k}\\ &&-(a_{ij}D_{z}A_{ij}(x, \bar{z}, \bar{p})+b)(u-v), \end{eqnarray*} $

其中$h\in[0, 1]$, $\bar{z}=\vartheta u+(1-\vartheta)v$, $\bar{p}=\vartheta Du+(1-\vartheta)Dv$, $\vartheta \in[0, 1]$,

$ \begin{aligned} a_{ij} &=\int^{1}_{0}\frac{\partial {\det}^{\frac{1}{n}}[hw+(1-h)\tilde{w}]}{\partial[hw_{ij}+(1-h)\tilde{w}_{ij}]}dh,\\ b &=\int^{1}_{0}\frac{\partial B(x, hu+(1-h)v, hDu+(1-h)Dv)}{\partial[hu+(1-h)v]}dh,\\ c_k &=\int^{1}_{0}\frac{\partial B(x, hu+(1-h)v, hDu+(1-h)Dv)}{\partial[hu_k+(1-h)v_k]}dh.\ \end{aligned} $

$u(x, t), v(x, t)$是椭圆解可知$(a_{ij})$是正定矩阵, 又由$(1.5), (1.6)$式可得$a_{ij}D_{z}A_{ij}(x, \bar{z}, \bar{p})+b \geq0.$由条件(1), 可以得到

$ \begin{aligned} &-\frac{\partial }{\partial t}(u-v)+a_{ij}(u-v)_{ij}-(a_{ij}D_{p_{k}}A_{ij}(x, \bar{z}, \bar{p})+c_k)(u-v)_{k}\\ &-(a_{ij}D_{z}A_{ij}(x, \bar{z}, \bar{p})+b)(u-v)\geq 0, \end{aligned} $

由抛物方程的极值原理得

$ \begin{aligned} \sup\limits_{\bar{\Omega}\times[0, T]}(u-v)\leq \sup\limits_{\partial \Omega\times[0, T]\cup \bar{\Omega}\times\{t=0\}}(u-v)^{+}, \end{aligned} $

这里$(u-v)^{+}=\max\{u-v, 0\}$.

接下来, 假设$u-v$$\partial\Omega\times[0, T]$上取得正极大值, 则$u-v> 0$, 且$D_{\nu}(u-v)\leq 0$, 这与条件(2)矛盾, 故$u-v$不能在$\partial\Omega\times[0, T]$上取得正极大值.再根据条件(3), 故有$u\leq v$$\bar{\Omega}\times[0, T]$上恒成立.

为了证明问题(1.1)-(1.3)解的先验估计, 给出以下引理.

引理2.2$\Omega$$\mathbb{R}^{n}$中的$A$ -凸区域, $u\in C^{3, 2}(\bar{\Omega}\times[0, T])$为问题(1.1)-(1.3)的椭圆解, $A\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足$(1.5)$式, $B\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足$(1.6)$式, $\varphi\in C^{2}(\bar{\Omega}\times\mathbb{R})$满足$(1.7)$式.如果$0\not\equiv\frac{\partial u}{\partial t}\geq 0$$t=0$成立, 则对任意的$ t > 0$, 有$\frac{\partial u}{\partial t}>0$恒成立.

  对$(1.1)$式关于$t$求导可得

$ \begin{aligned} \frac{\partial}{\partial t}(\frac{\partial u}{\partial t})=& \frac{\partial}{\partial t}({\det}^\frac{1}{n}w_{ij})-\frac{\partial}{\partial t}B=F^{ij}\frac{\partial w_{ij}}{\partial t}-(D_{z}B)\frac{\partial u}{\partial t}-(D_{p_{k}}B)\frac{\partial u_{k}}{\partial t}\\ =&F^{ij}(\frac{\partial u}{\partial t})_{ij}-F^{ij}\frac{\partial A_{ij}}{\partial t}-(D_{z}B)\frac{\partial u}{\partial t}-(D_{p_{k}}B)\partial_{k}(\frac{\partial u}{\partial t})\\ =&F^{ij}(\frac{\partial u}{\partial t})_{ij}-F^{ij}(D_{z}A_{ij})(\frac{\partial u}{\partial t})-F^{ij}(D_{p_{k}}A_{ij})\partial_{k}(\frac{\partial u}{\partial t})-(D_{z}B)\frac{\partial u}{\partial t}-\\(D_{p_{k}}B)\partial_{k}(\frac{\partial u}{\partial t})\\ =&F^{ij}(\frac{\partial u}{\partial t})_{ij}-(F^{ij}D_{p_{k}}A_{ij}+D_{p_{k}}B)\partial_{k}(\frac{\partial u}{\partial t})-(F^{ij}D_{z}A_{ij}+D_{z}B)(\frac{\partial u}{\partial t}), \end{aligned} $

由椭圆解知$F^{ij}$为正定矩阵, 由$(1.5), (1.6)$式得$D_{z}A_{ij}\geq 0, D_{z}B\geq 0$, 从而可以得到$F^{ij}D_{z}A_{ij}+D_{z}B\geq 0$, 则由抛物方程的极值原理得

$ \begin{aligned} \inf\limits_{\bar{\Omega}\times[0, T]}(\frac{\partial u}{\partial t})\geq \inf\limits_{\partial\Omega\times[0, T]\cup\bar{\Omega}\times\{t=0\}}(\frac{\partial u}{\partial t})^{-}, \end{aligned} $

其中$(\frac{\partial u}{\partial t})^{-}= \min \{\frac{\partial u}{\partial t}, 0\}$.

假设$\frac{\partial u}{\partial t}$$\partial\Omega\times[0, T]$上取得负极小值, 则$\frac{\partial u}{\partial t} <0$, 又有

$ \begin{aligned} (\frac{\partial u}{\partial t})_{\nu}=\frac{\partial }{\partial t}(\frac{\partial u}{\partial \nu})=(D_{z}\varphi)\frac{\partial u}{\partial t}\leq 0, \end{aligned} $

这与$(\frac{\partial u}{\partial t})_{\nu}> 0$矛盾.

根据相容性条件(cc)知在$\bar{\Omega}\times\{t=0\}$上, $\frac{\partial u}{\partial t}\geq 0$.由上面的计算得

$ \begin{aligned} \inf\limits_{\bar{\Omega}\times[0, T]}(\frac{\partial u}{\partial t})\geq \inf\limits_{\partial\Omega\times[0, T)\cup\bar{\Omega}\times\{t=0\}}(\frac{\partial u}{\partial t})^{-}=0. \end{aligned} $

若存在点$(x_{0}, t_{0})\in\Omega\times(0, T)$使得$\frac{\partial u}{\partial t}=0$, 则由抛物方程的强极值原理得$\frac{\partial u}{\partial t}\equiv 0$, 这与$t=0$$\frac{\partial u}{\partial t}\not\equiv 0$矛盾; 若存在点$(x_{0}, t_{0})\in\partial\Omega\times(0, T)$使得$\frac{\partial u}{\partial t}=0$, 则$(\frac{\partial u}{\partial t})_{\nu}=D_{z}\varphi\frac{\partial u}{\partial t}=0$, 与Hopf引理矛盾.

综上可得, 对任意的$ t > 0$, $\frac{\partial u}{\partial t}>0$恒成立.

接下来给出问题(1.1)-(1.3)解的$C^0$$C^1$估计.

定理2.1  设$\Omega$$\mathbb{R}^{n}$中有界的$A$-凸区域, $u\in C^{2, 1}(\bar{\Omega}\times[0, T])$为问题(1.1)-(1.3)的椭圆解, $A\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足$(1.5)$式, $B\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足$(1.6)$式, $\varphi\in C^{2, 1}(\bar{\Omega}\times\mathbb{R})$满足$(1.7)$式, 假设问题(1.1)-(1.3)的有界上解$\bar{u}\in C^{2, 1}(\bar{\Omega}\times[0, T])$存在且满足(1.10)-(1.12)式, 则有$\sup\limits_{\bar{\Omega}\times[0, T]}|u| \leq C, $其中$C$是依赖于$n, A, B, \varphi, u_{0}, \bar{u}$的常数.

  由相容性条件$(1.8)$和引理2.2可得对任意的$t>0$$\frac{\partial u}{\partial t} > 0 $, 则有$u(x, t)\geq u(x, 0)=u_{0}(x)$, 已知问题(1.1)-(1.3)存在上解$\bar{u}$, 根据引理2.1有$u\leq \bar{u}$, 从而可以得到$\sup\limits_{\bar{\Omega}\times[0, T]}|u| \leq C, $其中$C$是依赖于$n, A, B, \varphi, u_{0}, \bar{u}$的常数.

定理2.2  设$\Omega$$\mathbb{R}^{n}$中有界的$A$ -凸区域, $u\in C^{3, 2}(\bar{\Omega}\times[0, T])$为问题(1.1)-(1.3)的$A$ -凸解, $A\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足$(1.5)$式, $B\in C^{2}(\bar{\Omega}\times\mathbb{R}\times\mathbb{R}^{n})$满足$(1.6)$式, $\varphi\in C^{2, 1}(\bar{\Omega}\times\mathbb{R})$满足$(1.7)$式.假设问题(1.1)-(1.3)的有界上解$\bar{u}\in C^{2, 1}(\bar{\Omega}\times[0, T])$存在且满足(1.10)-(1.12)式.如果对$t=0$$0\not\equiv\frac{\partial u}{\partial t}\geq 0$成立, 则有$\sup\limits_{\bar{\Omega}\times[0, T]}|\frac{\partial u}{\partial t}| \leq C, $其中$C$是依赖于$n, A, B, \varphi, u_{0}, \bar{u}, \Omega$的常数.

  首先对$(\frac{\partial u}{\partial t})^{2}$关于$t$求导得

$ \begin{aligned} \frac{\partial}{\partial t}[(\frac{\partial u}{\partial t})^{2}] =&2\frac{\partial u}{\partial t}\frac{\partial ^{2}u}{\partial t^{2}}=2\frac{\partial u}{\partial t}\frac{\partial[{\det}^{\frac{1}{n}}w_{ij}-B]}{\partial t}\\ =&2\frac{\partial u}{\partial t}[F^{ij}\frac{\partial w_{ij}}{\partial t}-(D_{z}B)\frac{\partial u}{\partial t}-(D_{p_{k}}B)\frac{\partial u_{k}}{\partial t}]\\ =&2F^{ij}\frac{\partial u}{\partial t}\partial_{ij}(\frac{\partial u}{\partial t})-2F^{ij}(D_{z}A_{ij})(\frac{\partial u}{\partial t})^2-2F^{ij}(D_{p_{k}}A_{ij})\frac{\partial u}{\partial t}\partial_{k}(\frac{\partial u}{\partial t})\\ &-2(D_{z}B)(\frac{\partial u}{\partial t})^{2}-2(D_{p_{k}}B)\frac{\partial u}{\partial t}\partial_{k}(\frac{\partial u}{\partial t})\\ =&F^{ij}[(\frac{\partial u}{\partial t})^{2}]_{ij}-2F^{ij}(\frac{\partial u}{\partial t})_{i}(\frac{\partial u}{\partial t})_{j}-2F^{ij}(D_{z}A_{ij})(\frac{\partial u}{\partial t})^{2}\\ &-F^{ij}(D_{p_{k}}A_{ij})\partial_{k}(\frac{\partial u}{\partial t})^{2}-2(D_{z}B)(\frac{\partial u}{\partial t})^{2}-(D_{p_{k}}B)\partial_{k}(\frac{\partial u}{\partial t})^{2}, \end{aligned} $

由上面的计算可得

$ \begin{aligned} 0\leq &2F^{ij}(\frac{\partial u}{\partial t})_{i}(\frac{\partial u}{\partial t})_{j}=-\frac{\partial}{\partial t}[(\frac{\partial u}{\partial t})^{2}]+F^{ij}[(\frac{\partial u}{\partial t})^{2}]_{ij}\\ &-[F^{ij}D_{p_{k}}A_{ij}+D_{p_{k}}B]\partial_{k}(\frac{\partial u}{\partial t})^{2}-[2F^{ij}D_{z}A_{ij}+2D_{z}B](\frac{\partial u}{\partial t})^{2}, \end{aligned} $

由椭圆解知$F^{ij}$为正定矩阵, 由$(1.5), (1.6)$式得$D_{z}A_{ij}\geq 0, D_{z}B \geq 0$, 从而可以得到$2F^{ij}D_{z}A_{ij}+2D_{z}B\geq 0$, 则由抛物方程的极值原理得

$ \begin{aligned} \sup\limits_{\bar{\Omega}\times[0, T]}(\frac{\partial u}{\partial t})^{2}\leq \sup\limits_{\partial\Omega\times[0, T]\cup\bar{\Omega}\times\{t=0\}}[(\frac{\partial u}{\partial t})^{2}]^{+}, \end{aligned} $

其中$[(\frac{\partial u}{\partial t})^{2}]^{+}=\max\{(\frac{\partial u}{\partial t})^{2}, 0\}$.假设$(\frac{\partial u}{\partial t})^2$$\partial\Omega\times[0, T]$上取得正极大值, 计算可得

$ \begin{aligned} D_{\nu}(\frac{\partial u}{\partial t})^2=2\frac{\partial u}{\partial t}D_{\nu}(\frac{\partial u}{\partial t})=2(\frac{\partial u}{\partial t})^2D_{z}\varphi\geq 0, \end{aligned} $

这与已知$D_{\nu}(\frac{\partial u}{\partial t})^2< 0$相矛盾, 故

$ \begin{aligned} \sup\limits_{\bar{\Omega}\times[0, T]}(\frac{\partial u}{\partial t})^{2} \leq \sup\limits_{\bar{\Omega}\times\{t=0\}}[(\frac{\partial u}{\partial t})^{2}]^{+}. \end{aligned} $

综合上面的计算可得$\sup\limits_{\bar{\Omega}\times[0, T]}|\frac{\partial u}{\partial t}|\leq M, $其中$M$是依赖于$n, A, B, \varphi, u_{0}, \bar{u}, \Omega$的常数.

由文献[11]中的定理$9$可得对任意的$t_{0}\in[0, T]$, 有

$ \sup\limits_{\bar{\Omega}\times[0, T]}|Du(x, t_{0})| \leq M_{1}, $

其中$M_{1}$是依赖于$n, A, B, \varphi, \Omega$的常数.由$t_{0}$的任意性可得

$ \sup\limits_{\bar{\Omega}\times[0, T]}|Du| \leq C, $ (2.1)

其中$C$是依赖于$n, A, B, \varphi, \Omega, M_{1}$的常数.

3 $C^{2}$估计

本节给出定理1.1的证明, 在证明二阶梯度估计之前先介绍一个引理, 此引理对证明二阶梯度估计非常重要, 其证明过程和文献[6]中的引理2.1类似, 省略证明细节.

引理3.1$u\in C^2(\bar{\Omega}\times[0, T])$是问题(1.1)-(1.3)的椭圆解, $\tilde{u}\in C^2(\bar{\Omega}\times[0, T])$是问题(1.1)-(1.3)的椭圆有界上解, 其中$A$满足(1.4)-(1.5)式, 则有$\mathcal{L}_{t}e^{N(\tilde{u}-u)}\geq \varepsilon\sum_{i}F^{ii}-C, $其中$N$是正常数, $\varepsilon, C$是依赖于$A, B, \Omega, |u|_{1, \Omega}, \tilde{u}, N$的正常数.

首先定义辅助函数$v, G$如下

$ \begin{equation}\label{f} \begin{split} v=v(x, t, \xi)=e^{\alpha|Du|^{2}+\beta \Phi}(w_{\xi\xi}-v'),\\ G=\log v=\log(w_{\xi\xi}-v')+\alpha |Du|^{2}+\beta \Phi, \end{split} \end{equation} $ (3.1)

其中$(x, t)\in\bar{\Omega}\times[0, T]$, $|\xi|=1$, 且$\alpha, \beta$是待定的正常数.另外, $(3.1)$式中的$\Phi$$v'$分别给出如下: $\Phi=e^{N(\tilde{u}-u)}, $其中$\Phi$是引理$3.1$中的辅助函数, $\tilde{u}=\bar{u}-a\phi$, $\bar{u}$满足(1.10)-(1.12)式, $a$是足够小的常数, $\phi$$A$ -凸区域的定义函数, 满足$(1.9)$式且在$\partial\Omega$$D_{\nu}\phi=-1$.接着定义$v'$如下

$ v'(x, t, \xi)=2(\xi, \nu)\xi_{i}'(D_{i}\varphi(x, u)-D_{k}uD_{i}\nu_{k}-A_{ij}\nu_{j}), $

其中$\xi'=\xi-(\xi, \nu)\nu$, $\nu\in C^{3}(\bar{\Omega})$是从$\partial\Omega\times[0, T]$延拓到$\bar{\Omega}\times[0, T]$的单位内法向量.

定理1.1的证明 本定理的证明通过对$v$$\bar{\Omega}\times[0, T]$上的最大值的估计, 得到对应的$D^{2}u$$\bar{\Omega}\times[0, T]$上的估计, 从而得到本定理的结论.

  下面分两种情形证明定理1.1.

假设$v(x, t)$在点$(x_{0}, t_{0})$处取得最大值, 且以下所有的计算都在点$(x_{0}, t_{0})$处进行.

情形一$(x_{0}, t_{0})\in \Omega \times (0, T)$, 根据$(3.1)$式中$v$$G$的定义知, $G$也在点$(x_{0}, t_{0})$处取得最大值.对$G$关于$x_{i}$求偏导得

$ \begin{equation}\label{3.2} 0=D_{i}G=\frac{D_{i}(w_{\xi\xi}-v')}{w_{\xi\xi}-v'}+2\alpha D_{k}uD_{ki}u+\beta D_{i}\Phi, \end{equation} $ (3.2)

再对$D_{i}G$关于$x_{j}$求偏导得

$ \begin{equation}\label{g} \begin{split} 0\geq D_{ij}G =&\frac{D_{ij}(w_{\xi\xi}-v')}{w_{\xi\xi}-v'}-\frac{D_{i}(w_{\xi\xi}-v')D_{j}(w_{\xi\xi}-v')}{(w_{\xi\xi}-v')^{2}}\\&+2\alpha (D_{ki}uD_{kj}u+D_{k}uD_{kij}u)+\beta D_{ij}\Phi. \end{split} \end{equation} $ (3.3)

将算子$\mathcal{L}_{t}$作用到$G$上得

$ \begin{equation}\label{3.4} \begin{split} 0\geq&\mathcal{L}_{t}G =-\frac{\partial}{\partial t}G+F^{ij}(D_{ij}G-D_{p_{l}}A_{ij}D_{l}G)-D_{p_{l}}BD_{l}G\\ =& \mathcal{L}_{t}\log(w_{\xi\xi}-v')+\alpha\mathcal{L}_{t}|Du|^{2}+\beta\mathcal{L}_{t} \Phi, \end{split} \end{equation} $ (3.4)

其中第一个不等式运用了$(3.2)$, $(3.3)$式和$\frac{\partial G}{\partial t}=0$.

首先将算子$\mathcal{L}_{t}$作用到$\log(w_{\xi\xi}-v')$上得

$ \begin{eqnarray}\label{3.8} \mathcal{L}_{t}\log(w_{\xi\xi}-v') &=&-\frac{\partial}{\partial t}\log(w_{\xi\xi}-v')+F^{ij}(D_{ij}-D_{p_{l}}A_{ij}D_{l})[\log(w_{\xi\xi}-v')]\nonumber\\ &&-D_{p_{l}}BD_{l}[\log(w_{\xi\xi}-v')]\nonumber\\ &=&-\frac{1}{w_{\xi\xi}-v'}\frac{\partial}{\partial t}(w_{\xi\xi}-v')+F^{ij}\frac{1}{w_{\xi\xi}-v'}D_{ij}(w_{\xi\xi}-v')\nonumber\\ &&-F^{ij}\frac{D_{i}(w_{\xi\xi}-v')D_{j}(w_{\xi\xi}-v')}{(w_{\xi\xi}-v')^{2}}-F^{ij}D_{p_{l}}A_{ij}\frac{D_{l}(w_{\xi\xi}-v')}{w_{\xi\xi}-v'}\nonumber\\ &&-D_{p_{l}}B\frac{D_{l}(w_{\xi\xi}-v')}{(w_{\xi\xi}-v')}\nonumber\\ &=&\frac{1}{w_{\xi\xi}-v'}\mathcal{L}_{t}(w_{\xi\xi}-v')-F^{ij}\frac{D_{i}(w_{\xi\xi}-v')D_{j}(w_{\xi\xi}-v')}{(w_{\xi\xi}-v')^{2}}, \end{eqnarray} $ (3.5)

其中第三个等式运用了算子$\mathcal{L}_{t}(w_{\xi\xi}-v')$的定义.

接着将算子$\mathcal{L}_{t}$作用到$|Du|^{2}$上得

$ \begin{equation}\label{3.9} \begin{split} \mathcal{L}_{t}|Du|^{2} =&-\frac{\partial}{\partial t}(|Du|^{2})+F^{ij}(D_{ij}-D_{p_{l}}A_{ij}D_{l})(|Du|^{2})-D_{p_{l}}BD_{l}(|Du|^{2})\\ =&-2D_{k}u\frac{\partial D_{k}u}{\partial t}+2F^{ij}D_{ki}uD_{kj}u+2F^{ij}D_{k}uD_{kij}u\\&-2F^{ij}(D_{p_{l}}A_{ij})D_{k}uD_{kl}u-2 (D_{p_{l}}B)D_{k}uD_{kl}u\\ =&2D_{k}u\mathcal{L}_{t}u_{k}+2F^{ij}D_{ki}uD_{kj}u. \end{split} \end{equation} $ (3.6)

同理, 第三个等式运用了算子$\mathcal{L}_{t}u_{k}$的定义.将$(3.5)$, $(3.6)$式代入$(3.4)$式得

$ \begin{equation}\label{m} \begin{split} 0\geq&\mathcal{L}_{t}G =\frac{1}{w_{\xi\xi}-v'}\mathcal{L}_{t}(w_{\xi\xi}-v')-F^{ij}\frac{D_{i}(w_{\xi\xi}-v^{'})D_{j}(w_{\xi\xi}-v')}{(w_{\xi\xi}-v')^{2}}\\ &+2\alpha D_{k}u\mathcal{L}_{t}u_{k}+2\alpha F^{ij}D_{ki}uD_{kj}u+\beta\mathcal{L}_{t} \Phi. \end{split} \end{equation} $ (3.7)

首先估计$(3.7)$式中的$\mathcal{L}_{t}(w_{\xi\xi}-v')$, 将$(1.1)$式沿$\xi$方向求导得

$ \begin{equation}\label{3.11} \begin{split} \frac{\partial u_{\xi}}{\partial t}=& F^{ij}[D_{ij}u_{\xi}-D_{\xi}A_{ij}-D_{z}A_{ij}u_{\xi}-D_{p_{l}}A_{ij}D_{l}u_{\xi}]-D_{\xi}B\\ &-D_{z}Bu_{\xi}-D_{p_{l}}BD_{l}u_{\xi}, \end{split} \end{equation} $ (3.8)

再次对$(3.8)$式沿$\xi$方向求导得

$ \begin{equation}\label{0} \begin{split} \frac{\partial u_{\xi\xi}}{\partial t} =&-F^{ik}F^{jl}D_{\xi}w_{ij}D_{\xi}w_{kl}+F^{ij}(D_{ij}u_{\xi\xi}-D_{\xi\xi}A_{ij}-D_{\xi z}A_{ij}u_{\xi}\\ &-D_{\xi p_{l}}A_{ij}D_{l}u_{\xi}-D_{z\xi}A_{ij}u_{\xi}-D_{zz}A_{ij}u_{\xi}^{2}-D_{zp_{l}}A_{ij}u_{\xi}D_{l}u_{\xi}-D_{z}A_{ij}u_{\xi\xi}\\ &-D_{p_{l}\xi}A_{ij}D_{l}u_{\xi}-D_{p_{l}z}A_{ij}u_{\xi}D_{l}u_{\xi}-D_{p_{l}p_{k}}A_{ij}D_{l}u_{\xi}D_{k}u_{\xi}\\ &-D_{p_{l}}A_{ij}D_{l}u_{\xi\xi})-D_{\xi\xi}B-D_{\xi z}Bu_{\xi}-D_{\xi p_{l}}BD_{l}u_{\xi}-D_{z\xi}Bu_{\xi}-D_{zz}Bu_{\xi}^{2}\\ &-D_{zp_{l}}Bu_{\xi}D_{l}u_{\xi}-D_{z}Bu_{\xi\xi}-D_{p_{l}\xi}BD_{l}u_{\xi}-D_{p_{l}z}D_{l}u_{\xi}u_{\xi}\\ &-D_{p_{l}p_{k}}BD_{l}u_{\xi}D_{k}u_{\xi}-D_{p_{l}}BD_{l}u_{\xi\xi}\\ =&-F^{ik}F^{jl}D_{\xi}w_{ij}D_{\xi}w_{kl}+F^{ij}(D_{ij}u_{\xi\xi}-D_{\xi\xi}A_{ij}-D_{zz}A_{ij}u_{\xi}^{2}\\ &-D_{p_{k}p_{l}}A_{ij}D_{k}u_{\xi}D_{l}u_{\xi}-D_{z}A_{ij}u_{\xi\xi}-D_{p_{l}}A_{ij}D_{l}u_{\xi\xi}-2D_{\xi z}A_{ij}u_{\xi}\\ &-2D_{\xi p_{l}}A_{ij}D_{l}u_{\xi}-2D_{zp_{l}}A_{ij}u_{\xi}D_{l}u_{\xi})-D_{\xi\xi}B-D_{zz}Bu_{\xi}^{2}\\ &-D_{p_{l}p_{l}}BD_{l}u_{\xi}D_{l}u_{\xi}-2D_{\xi z}Bu_{\xi}-2D_{\xi p_{l}}BD_{l}u_{\xi}\\ &-2D_{z p_{l}}Bu_{\xi}D_{l}u_{\xi}-D_{z}Bu_{\xi\xi}-D_{p_{l}}BD_{l}u_{\xi\xi}. \end{split} \end{equation} $ (3.9)

接着将算子$\mathcal{L}_{t}$作用到$u_{\xi\xi}$上得

$ \begin{equation}\label{3.13} \begin{split} \mathcal{L}_{t}u_{\xi\xi} =&-\frac{\partial}{\partial t}u_{\xi\xi}+F^{ij}(D_{ij}u_{\xi\xi}-D_{p_{l}}A_{ij}D_{l}u_{\xi\xi})-D_{p_{l}}BD_{l}u_{\xi\xi}\\ =&F^{ik}F^{jl}D_{\xi}w_{ij}D_{\xi}w_{kl}+F^{ij}D_{\xi\xi}A_{ij}+F^{ij}(D_{zz}A_{ij})u_{\xi}^{2}\\ &+F^{ij}(D_{p_{k}p_{l}}A_{ij})D_{k}u_{\xi}D_{l}u_{\xi}+F^{ij}(D_{z}A_{ij})u_{\xi\xi}+2F^{ij}(D_{\xi z}A_{ij})u_{\xi}\\ &+2F^{ij}(D_{\xi p_{l}}A_{ij})D_{l}u_{\xi}+2F^{ij}(D_{zp_{l}}A_{ij})(D_{l}u_{\xi})u_{\xi}+D_{\xi\xi}B+(D_{zz}B)u_{\xi}^{2}\\ &+(D_{p_{k}p_{l}}B)D_{k}u_{\xi}D_{l}u_{\xi}+2(D_{\xi z}B)u_{\xi}+2(D_{\xi p_{l}}B)D_{l}u_{\xi}\\ &+2(D_{z p_{l}}B)(D_{l}u_{\xi})u_{\xi}+(D_{z}B)u_{\xi\xi}, \end{split} \end{equation} $ (3.10)

其中第二个等式是将$(3.9)$式代入所得.由$(3.10)$$(1.4)$式可以得到

$ \begin{equation}\label{3.14} \mathcal{L}_{t}u_{\xi\xi}\geq F^{ik}F^{jl}D_{\xi}w_{ij}D_{\xi}w_{kl}-C[(1+w_{ii})\mathcal{J}+(w_{ii})^{2}], \end{equation} $ (3.11)

其中$\mathcal{J}={\rm tr} F^{ii}$, $C$是依赖于$n, A, B, |u|_{1, \Omega}$的常数.同理可得

$ \begin{equation}\label{3.15} |\mathcal{L}_{t}A_{\xi\xi}|\leq C\{(1+w_{ii})\mathcal{J}+w_{ii}\}, \end{equation} $ (3.12)
$ \begin{equation}\label{3.16} |\mathcal{L}_{t}v'|\leq C\{(1+w_{ii})\mathcal{J}+w_{ii}\}. \end{equation} $ (3.13)

结合$(3.11)$, $(3.12)$, $(3.13)$式可得

$ \begin{equation}\label{3.17} \mathcal{L}_{t}(w_{\xi\xi}-v')\geq F^{ik}F^{jl}D_{\xi}w_{ij}D_{\xi}w_{kl}-C[(1+w_{ii})\mathcal{J}+(w_{ii})^{2}], \end{equation} $ (3.14)

其中$C$是依赖于$n, A, B, |u|_{1, \Omega}$的常数.

接着估计$F^{ij}D_{i}(w_{\xi\xi}-v')D_{j}(w_{\xi\xi}-v')$, 由柯西不等式得

$ \begin{equation}\label{3.18} \begin{split} F^{ij}D_{i}(w_{\xi\xi}-v')D_{j}(w_{\xi\xi}-v')\leq (1+\theta)F^{ij}D_{i}w_{\xi\xi}D_{j}w_{\xi\xi}+C(\theta)F^{ij}D_{i}v'D_{j}v', \end{split} \end{equation} $ (3.15)

其中$\theta > 0$, $C(\theta)$是依赖于$\theta$的正常数.进一步, 估计$2\alpha D_{k}u\mathcal{L}_{t}u_{k}$, 将算子$\mathcal{L}_{t}$作用在$u_{k}$上可得

$ \begin{equation}\label{3.19} \begin{split} \mathcal{L}_{t}u_{k} =&-\frac{\partial}{\partial t}u_{k}+F^{ij}(D_{ij}u_{k}-D_{pl}A_{ij}D_{l}u_{k})-D_{p_{l}}BD_{l}u_{k}\\ =&-F^{ij}[D_{ij}u_{k}-D_{k}A_{ij}-D_{z}A_{ij}u_{k}-D_{p_{l}}A_{ij}D_{l}u_{k}]+D_{k}B+D_{z}Bu_{k}\\ &+D_{p_{l}}BD_{l}u_{k}+F^{ij}(D_{ij}u_{k}-D_{pl}A_{ij}D_{l}u_{k})-D_{p_{l}}BD_{l}u_{k}\\ =&F^{ij}D_{k}A_{ij}+F^{ij}D_{z}A_{ij}u_{k}+D_{k}B+D_{z}Bu_{k}, \end{split} \end{equation} $ (3.16)

其中第二个等式是将$(1.1)$式关于$x_{k}$求导代入得到的.则由$(3.16)$$(2.1)$式得

$ \begin{equation}\label{3.20} 2\alpha D_{k}u\mathcal{L}_{t}u_{k}\leq C\alpha (\mathcal{J}+1), \end{equation} $ (3.17)

其中$C$是依赖于$n, A, B, |u|_{1, \Omega}$的常数.由引理$3.1$

$ \begin{equation}\label{3.21} \begin{split} \mathcal{L}_{t}\Phi &=-\beta\frac{\partial}{\partial t}\Phi+\beta F^{ij}(D_{ij}\Phi-\beta D_{p_{l}}A_{ij}D_{l}\Phi)-\beta D_{p_{l}}BD_{l}\Phi \geq \varepsilon\mathcal{J}-C. \end{split} \end{equation} $ (3.18)

合并$(3.14)$, $(3.15)$, $(3.17)$, $(3.18)$式得

$ \begin{equation}\label{3.22} \begin{split} 0\geq \mathcal{L}_{t}G \geq&\frac{1}{w_{\xi\xi}-v'}F^{ik}F^{jl}D_{\xi}w_{ij}D_{\xi}w_{kl}-\frac{C}{w_{\xi\xi}-v'}[(1+w_{ii})\mathcal{J}+w_{ii}^{2}]\\ &-\frac{1+\theta}{(w_{\xi\xi}-v')^{2}}F^{ij}D_{i}w_{\xi\xi}D_{j}w_{\xi\xi}-\frac{C(\theta)}{(w_{\xi\xi}-v')^{2}}F^{ij}D_{i}v'D_{j}v'\\ &+\alpha w_{ii}-C\alpha(\mathcal{J}+1) +\varepsilon\beta \mathcal{J}-\beta C. \end{split} \end{equation} $ (3.19)

假设$\{w_{ij}\}$$(x_{0}, t_{0})$处为对角矩阵函数, 有最大特征值$w_{11}$, 且$w_{11}>1$, 否则结论已证.首先估计$(3.19)$式的三阶导数项.由文献[11]中的$(3.48)$式可以得到

$ \begin{equation}\label{3.23} F^{ik}F^{jl}D_{\xi}w_{ij}D_{\xi}w_{kl}-\frac{1}{w_{11}}F^{ij}D_{i}w_{\xi\xi}D_{j}w_{\xi\xi}\geq 0. \end{equation} $ (3.20)

由于$v'$是有界的, $w_{11}$, $w_{\xi\xi}$是可比较的, 则对任意的$\theta>0$, 存在更大的常数$C(\theta)$, 若$w_{11}>C(\theta)$, 则有

$ |w_{11}-w_{\xi\xi}+v'|<\theta w_{11}. $ (3.21)

$(3.20)$, $(3.21)$式可得

$ \begin{equation}\label{3.25} \begin{split} F^{ik}F^{jl}D_{\xi}w_{ij}D_{\xi}w_{kl}\geq \frac{1-\theta}{w_{\xi\xi}-v'}F^{ij}D_{i}w_{\xi\xi}D_{j}w_{\xi\xi}. \end{split} \end{equation} $ (3.22)

$(3.2)$式中的$D_{i}G=0$可得

$ \begin{equation}\label{01} D_{i}w_{\xi\xi}=(w_{\xi\xi}-v')(2\alpha D_{k}uD_{ki}u+\beta D_{i}\Phi)+D_{i}v'. \end{equation} $ (3.23)

$(3.23)$式和柯西不等式可得

$ \begin{equation} \begin{split}\label{3.26} F^{ij}D_{i}w_{\xi\xi}D_{j}w_{\xi\xi}&\leq 2F^{ii}[|D_{i}v'|^{2}+(w_{\xi\xi}-v')^{2}(2\alpha D_{k}uD_{ki}u+\beta D_{i}\Phi)^{2}]\\ &\leq 2F^{ii}|D_{i}v'|^{2}+C(w_{\xi\xi}-v')^{2}(\alpha^{2}w_{ii}+\beta^{2}\mathcal{J}+\alpha\beta), \end{split} \end{equation} $ (3.24)

其中$C$是依赖于$n, a, N, \bar{u}, \phi, |u|_{1, \Omega}$的常数.结合$(3.19)$, $(3.21)$, $(3.22)$, $(3.24)$式得对$w_{11}>C(\theta)$, 有

$ \begin{aligned} (\alpha-C(1+\alpha^2)\theta)w_{ii}\leq C[\alpha+\beta+\alpha\beta\theta +(\theta+\alpha-\beta+\theta \beta^{2})\mathcal{J}], \end{aligned} $

先选择$\alpha, \beta$足够大, 然后选择$\theta$是充分小的正常数, 从而可以得到估计$ w_{ii}(x_{0}, t_{0})\leq C, $其中$C$是依赖于$A, B, \Omega, |u|_{1, \Omega}$的常数.从而可以得到$|D^{2}u(x, t)|$对应的估计.

情形二$(x_{0}, t_{0})\in\partial\Omega\times[0, T]$, 考虑当$\xi$属于三种不同的方向, 分别来估计$v(x_{0}, t_{0}, \xi)$.

首先将切算子$\delta_{i}$作用到$(1.2)$式上可以得到

$ (D_{k}u)\delta_{i}\nu_{k}+\nu_{k}\delta_{i}(D_{k}u)=\delta_{i}\varphi, \mbox{在 $\partial\Omega$ 上}, $

其中$\delta_{i}=(\delta_{ij}-\tau_{i}\tau_{j})D_{j}$, 可以得到

$ D_{\tau\nu}u\leq C, \mbox{在$\partial\Omega$上}, $ (3.25)

其中$\tau$为任意的切向量.

(ⅰ) $\xi$是点$(x_{0}, t_{0})$处的单位法向量.首先定义辅助函数$g$如下: $\begin{aligned} g=\nu_{k}D_{k}u-\varphi(x, u). \end{aligned}$将算子$\mathcal{L}_{t}$作用到$g$上得

$ \begin{equation}\label{3.30} \begin{split} \mathcal{L}_{t}g =&-\frac{\partial}{\partial t}g+F^{ij}(D_{ij}g-D_{pl}A_{ij}D_{l}g)-D_{p_{l}}BD_{l}g\\ =&-\nu_{k}D_{kt}u+D_{z}\varphi D_{t}u+F^{ij}[\nu_{k}D_{ijk}u+2D_{i}\nu_{k}D_{jk}u+D_{ij}\nu_{k}D_{k}u\\ &-D_{ij}\varphi-2D_{iz}\varphi D_{j}u-D_{zz}uD_{i}uD_{j}u-D_{z}\varphi D_{ij}u-D_{p_{l}}A_{ij}D_{l}\nu_{k}D_{k}u\\ &-D_{p_{l}}A_{ij}\nu_{k}D_{kl}u+D_{p_{l}}A_{ij}D_{l}\varphi+D_{p_{l}}A_{ij}D_{z}\varphi D_{l}u]-D_{p_{l}}BD_{l}\nu_{k}D_{k}u\\ &-D_{p_{l}}B\nu_{k}D_{kl}u+D_{p_{l}}BD_{l}\varphi+D_{p_{l}}BD_{z}\varphi D_{l}u. \end{split} \end{equation} $ (3.26)

接下来, 将算子$\mathcal{L}_{t}$作用到$u$上可得

$ \begin{equation}\label{3.31} \begin{split} \mathcal{L}_{t}u &=-\frac{\partial}{\partial t}u+F^{ij}(D_{ij}u-D_{pl}A_{ij}D_{l}u)-D_{p_{l}}BD_{l}u\\ &=-\frac{\partial}{\partial t}u+F^{ij}(w_{ij}+A_{ij}-D_{pl}A_{ij}D_{l}u)-D_{p_{l}}BD_{l}u\\ &=-\frac{\partial}{\partial t}u+{\det}^{\frac{1}{n}}w_{ij}+F^{ij}A_{ij}-F^{ij}D_{pl}A_{ij}D_{l}u-D_{p_{l}}BD_{l}u\\ &=-\frac{\partial}{\partial t}u+\frac{\partial}{\partial t}u+B+F^{ij}A_{ij}-F^{ij}D_{pl}A_{ij}D_{l}u-D_{p_{l}}BD_{l}u\\ &=B+F^{ij}A_{ij}-F^{ij}D_{pl}A_{ij}D_{l}u-D_{p_{l}}BD_{l}u. \end{split} \end{equation} $ (3.27)

$(3.16)$, $(3.27))$式代入$(3.26)$式可得

$ \begin{equation}\label{3.32} \begin{split} \mathcal{L}_{t}g =&\nu_{k}\mathcal{L}_{t}u_{k}-D_{z}\varphi\mathcal{L}_{t}u+F^{ij}(2D_{i}\nu_{k}D_{jk}u+D_{ij}\nu_{k}D_{k}u-D_{ij}\varphi-2\varphi_{zi}D_{j}u\\ &-D_{zz}\varphi D_{i}uD_{j}u-D_{p_{l}}A_{ij}D_{l}\nu_{k}D_{k}u+D_{p_{l}}A_{ij}D_{l}\varphi)-D_{p_{l}}BD_{l}\nu_{k}D_{k}u\\ &+D_{p_{l}}BD_{l}\varphi. \end{split} \end{equation} $ (3.28)

$(3.16)$, $(3.27))$$(3.28)$式可得$ |\mathcal{L}_{t}g|\leq C(1+\mathcal{J}+|D^{2}u|), $其中$C$是依赖于$\Omega, A, B, \varphi, |u|_{1, \Omega}$的常数.又因为$1\leq Cw^{ii}, (w_{ii})^{\frac{1}{n-1}}\leq Cw^{ii}$, 所以

$ \begin{equation}\label{3.34} |\mathcal{L}_{t}g|\leq C(1+|D^{2}u|^{\frac{n-2}{n-1}})\mathcal{J}. \end{equation} $ (3.29)

又由于$\phi$$A$ -凸区域的定义函数, 由$(1.9)$式可得

$ \mathcal{L}_{t}\phi\geq \delta_{1}\mathcal{J}. $ (3.30)

结合$(3.29)$, $(3.30)$式, 并选取$-\phi$为闸函数, 由Hopf引理的证明可以得到

$ D_{\nu}g\leq C(1+M_{2}^{\frac{n-2}{n-1}}), \mbox{在 $\partial\Omega$ 上}, $ (3.31)

其中$M_{2}=\sup\limits_{\bar{\Omega}}|D^{2}u|$.计算$D_{\nu\nu}u$可得

$ \begin{equation}\label{12} D_{\nu\nu}u=D_{\nu}g+\nu_{i}D_{z}\varphi D_{i}u+\nu_{i}D_{i}\varphi-\nu_{i}D_{i}\nu_{k}D_{k}u. \end{equation} $ (3.32)

结合$(3.31)$, $(3.32)$式可以得到

$ D_{\nu\nu}u\leq C(1+M_{2})^{\frac{n-2}{n-1}}, \mbox{在 $\partial\Omega$ 上}. $ (3.33)

则由$(3.33)$式可得

$ v(x_{0}, t_{0}, \xi)= v(x_{0}, t_{0}, \nu)\leq C(1+M_{2})^{\frac{n-2}{n-1}}, \mbox{在 $\partial\Omega$ 上.} $ (3.34)

(ⅱ) $\xi$是点$(x_{0}, t_{0})$处的非切非法向量.单位向量$\xi$可以被写成$\xi=(\xi\cdot\tau)\tau+(\xi\cdot\nu)\nu$, 且$\tau\cdot\nu=0, (\xi\cdot\tau)^{2}+(\xi\cdot\nu)^{2}=1$.由$v'$的定义可得

$ \begin{equation}\label{a} \begin{split} w_{\xi\xi} &=(\xi\cdot\tau)^{2}w_{\tau\tau}+(\xi\cdot\nu)^{2}w_{\nu\nu}+2(\xi\cdot\tau)(\xi\cdot\nu)w_{\tau\nu}\\ &=(\xi\cdot\tau)^{2}w_{\tau\tau}+(\xi\cdot\nu)^{2}w_{\nu\nu}+v'(x, \xi), \end{split} \end{equation} $ (3.35)

$v$的定义得

$ \begin{equation}\label{c} \begin{split} v(x_{0}, t_{0}, \xi) &=e^{\alpha|Du|^{2}+\beta \Phi}(w_{\xi\xi}-v'(x, \xi))\\ &=e^{\alpha|Du|^{2}+\beta \Phi}((\xi\cdot\tau)^{2}w_{\tau\tau}+(\xi\cdot\nu)^{2}w_{\nu\nu}+v'(x, \xi)-v'(x, \xi))\\ &=(\xi\cdot\tau)^{2}v(x_{0}, t_{0}, \tau)+(\xi\cdot \nu)^{2}v(x_{0}, t_{0}, \nu)\\ &\leq (\xi\cdot\tau)^{2}v(x_{0}, t_{0}, \xi)+(\xi\cdot v)^{2}v(x_{0}, t_{0}, \nu), \end{split} \end{equation} $ (3.36)

其中第二个等式是将$(3.35)$式代入所得, 第四个不等式是由$v$在点$(x_{0}, t_{0})$和向量$\xi$处取得最大值所得.再结合$(3.34)$, $(3.36)$式得

$ v(x_{0}, t_{0}, \xi)\leq v(x_{0}, t_{0}, \nu)\leq C(1+M_{2})^{\frac{n-2}{n-1}}, \mbox{在 $\partial\Omega$ 上.} $

(ⅲ) $\xi$是点$(x_{0}, t_{0})$处的切向量, 则$(\xi\cdot\nu)=0$, 由$v'$的定义知$v'(x_{0}, t_{0}, \xi)=0$.假设在点$(x_{0}, t_{0})$的法向量为$\nu=(0, \cdots, 0, 1)$, ${w_{ij}(x_{0}, t_{0})}$是对角阵, 且有最大特征值$w_{11}(x_{0}, t_{0})>1$, 否则结论已证.计算$D_{\nu}\Phi$可得

$ \begin{equation}\label{1} \begin{split} D_{\nu}\Phi &=D_{\nu}(e^{N(\tilde{u}-u)}) =Ne^{N(\bar{u}-u-a\phi)}D_{\nu}(\bar{u}-u-a\phi)\\ &=Ne^{N(\bar{u}-u-a\phi)}[\varphi(x, \bar{u})-\varphi(x, u)+a] \geq aN, \end{split} \end{equation} $ (3.37)

其中第三个等式运用了$D_{\nu}\phi=-1$, 第四个不等式运用$(1.7)$式.在计算$D_{\nu}v$之前不妨设$D_{k}u> 0$, 否则取$|D_{k}u+C|^2$, 其中$C=\max\limits_{\bar{\Omega}}|Du|$.接着计算$D_{\nu}v$可得

$ \begin{equation}\label{aa} \begin{split} 0\geq& D_{\nu}v =D_{\nu}[e^{\alpha |Du|^{2}+\beta \Phi}(w_{\xi\xi}-v')]\\ \geq &e^{\alpha |Du|^{2}+\beta \Phi}\{[\beta D_{\nu}\Phi+2\alpha D_{k}u(D_{k}\varphi+D_{z}\varphi D_{k}u-D_{i}uD_{k}\nu_{i})]w_{\xi\xi}\\ &+D_{\nu}u_{\xi\xi}-D_{\nu}(A_{\xi\xi}+v')\}\\ \geq &e^{\alpha |Du|^{2}+\beta \Phi}\{(\beta c_{0}-2\alpha M)w_{\xi\xi}+D_{\nu}u_{\xi\xi}-D_{\nu}(A_{\xi\xi}+v')\}, \end{split} \end{equation} $ (3.38)

其中第二个不等式利用了$v'(x_{0}, t_{0}, \xi)=0$, 由(3.37)式可得$c_{0}=aN$,

$ M=\max\limits_{x\in\partial\Omega}|D_{k}u(D_{k}\varphi+D_{z}\varphi D_{k}u-D_{i}uD_{k}\nu_{i})|. $

由(3.38)式可得

$\begin{equation}\label{d} D_{\nu}u_{\xi\xi}\leq -(\beta c_{0}-2\alpha M)w_{\xi\xi}+D_{\nu}(A_{\xi\xi}+v'). \end{equation} $ (3.39)

另外, 对$(1.2)$式沿切向求二阶导得

$ (D_{k}u)\delta_{i}\delta_{j}\nu_{k}+(\delta_{i}D_{k}u)\delta_{j}\nu_{k}+(\delta_{j}D_{k}u)\delta_{i}\nu_{k}+\nu_{k}\delta_{i}\delta_{j}D_{k}u=\delta_{i}\delta_{j}\varphi, \mbox{在 $\partial\Omega$ 上}. $

在点$(x_{0}, t_{0})$处对切向量$\xi$, 有

$ \begin{equation}\label{e} \begin{split} D_{\nu}u_{\xi\xi} &\geq D_{z}\varphi D_{ij}u\xi_{i}\xi_{j}-2(\delta_{i}\nu_{k})D_{jk}u\xi_{i}\xi_{j}+(\delta_{i}\nu_{j})\xi_{i}\xi_{j}D_{\nu\nu}u-C\\ &\geq D_{z}\varphi D_{ij}u\xi_{i}\xi_{j}-2(\delta_{i}\nu_{k})D_{jk}u\xi_{i}\xi_{j}-C(1+M_{2})^{\frac{n-2}{n-1}}\\ &\geq D_{z}\varphi w_{\xi\xi}-2(\delta_{i}\nu_{k})D_{jk}u\xi_{i}\xi_{j}-C(1+M_{2})^{\frac{n-2}{n-1}}, \end{split} \end{equation} $ (3.40)

第二个不等式由$(3.33)$式得到.结合(3.39), (3.40)式可以得到

$ (\beta c_{0}-2\alpha M+D_{z}\varphi)w_{\xi\xi}\leq 2(\delta_{i}\nu_{k})D_{jk}u\xi_{i}\xi_{j}+D_{\nu}(A_{\xi\xi}+v')+C(1+M_{2})^{\frac{n-2}{n-1}}. $ (3.41)

观察(3.41)式右边的第一项的二阶导数项, 由$(3.25)$式可以得到在点$(x_{0}, t_{0})$的估计

$ \begin{aligned} (\beta c_{0}-2\alpha M+D_{z}\varphi )w_{\xi\xi} &\leq C(w_{\xi\xi}+|DD_{\nu}u|)+C(1+M_{2})^{\frac{n-2}{n-1}}\\ &\leq Cw_{\xi\xi}+C(1+M_{2})^{\frac{n-2}{n-1}}, \end{aligned} $

$\beta$满足$\begin{aligned} \beta\geq \frac{2}{c_{0}}[2\alpha M-\inf D_{z}\varphi+C], \end{aligned}$从而可以得到$w_{\xi\xi}\leq C(1+M_{2})^{\frac{n-2}{n-1}}, $故可以得到$v(x_{0}, t_{0}, \xi)\leq C(1+M_{2})^{\frac{n-2}{n-1}}, $其中$C$是依赖于$n, A, a, N, \varphi, |u|_{1, \Omega}$的常数.

从上面(ⅰ), (ⅱ), (ⅲ)三种情况得, 若$v$在边界点$(x_{0}, t_{0})$处取得$\bar{\Omega}\times[0, T]$上的最大值, 则$v(x_{0}, t_{0}, \xi)$$\bar{\Omega}\times[0, T]$上是有界的, 从而$D_{\xi\xi}u(x_{0}, \xi)$$\bar{\Omega}\times[0, T]$上是有界的.

综合以上两种情形, 运用柯西不等式可以得到$\sup\limits_{\bar{\Omega}\times[0, T]}|D^{2}u|\leq C, $其中$C$是依赖于$n, A, B, \varphi, u_{0}, \bar{u}, |u|_{1, \Omega}$的常数.

参考文献
[1] 保继光, 李美生. 一般区域上的抛物型Monge-Ampère方程[J]. 数学杂志, 1998, 18(3): 22–26.
[2] 李德生, 王志林. 二阶完全非线性抛物型方程的周期解[J]. 数学杂志, 1998, 18(1): 23–28.
[3] Gilbarg D, Trudinger N S. Elliptic partial differential equation of second order[M]. Berlin: Springer, 2001.
[4] Guan P, Wang X J. On a Monge-Ampère equation arising in geometric optics[J]. J. Diff. Geom., 1998, 48(48): 205–223.
[5] Jiang F, Trudinger N S, Xiang N. On the Neumann problem for Monge-Ampère type equations[J]. Canad. J. Math., 2016, 68(6): 1334–1361. DOI:10.4153/CJM-2016-001-3
[6] Jiang F, Trudinger N S, Yang X P. On the Dirichlet problem for Monge-Ampère type equations[J]. Calc. Var. Part. Diff. Equ., 2014, 49: 1223–1236. DOI:10.1007/s00526-013-0619-3
[7] Kim Y H, Streets J, Warren M. Parabolic optimal transport equations on manifolds[J]. Intern. Math. Res. Not., 2010, 2012(19): 4325–4350.
[8] Kitagawa J. A parabolic flow toward solutions of the optimal transportation problem on domains with boundary[J]. J. Für Die Reine Und Angewandte Mathematik, 2010, 2012(672): 127–160.
[9] Lions P L, Trudinger N S, Urbas J I E. The neumann problem for equations of monge-ampère type[J]. Commun. Pure Appl. Math., 1986, 39(4): 539–563. DOI:10.1002/(ISSN)1097-0312
[10] Schnürer O C, Schwetlick H R. Translating solutions for Gauss curvature flows with Neumann boundary conditions[J]. Pac. J. Math., 2004, 213: 89–109. DOI:10.2140/pjm
[11] Wang J, Liu H, Yang J. The initial and Neumann boundary value problem for a class parabolic Monge-Ampère equation[J]. Abs. Appl. Anal., 2013, 2013(1): 699–704.
[12] Wang G, Wang W. The first boundary value problem for general parabolic Monge-Ampere equation[J]. J.P.D.E., 1990, 2: 1–15.