数学杂志  2017, Vol. 37 Issue (3): 580-590   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WEI Han-yu
LI Chun-li
XIA Tie-cheng
THE FRACTIONAL NOLINEAR BI-INTEGRABLE COUPLINGS OF KAUP-NEWELL HIERARCHY AND ITS HAMILTONIAN STRUCTURES
WEI Han-yu1, LI Chun-li1, XIA Tie-cheng2     
1. College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China;
2. Department of Mathematics, Shanghai University, Shanghai 200444, China
Abstract: In this paper, we study the fractional nolinear bi-integrable couplings of KaupNewell hierarchy. By using fractional isospectral problems and non-semisimple matrix Lie algebras on which there exist non-degenerate, symmetric and ad-invariant bilinear forms, the fractional nonlinear bi-integrable couplings of Kaup-Newell hierarchy are presented. Furthermore, we also obtained the fractional Hamiltonian structures of the fractional integrable couplings of Kaup-Newell hierarchy. The methods derived by us can be generalized to other fractional integrable couplings of soliton hierarchy.
Key words: matrix Lie algebras     Kaup-Newell hierarchy     bi-integrable couplings     fractional Hamiltonian structures    
Kaup-Newell族的分数阶非线性双可积耦合及其Hamilton结构
魏含玉1, 李春丽1, 夏铁成2     
1. 周口师范学院数学与统计学院, 河南 周口 466001;
2. 上海大学数学系, 上海 200444
摘要:本文研究了Kaup-Newell族的分数阶非线性双可积耦合.利用分数阶等谱问题和非半单矩阵Lie代数上的非退化、对称双线性形式,得到了Kaup-Newell族的分数阶非线性双可积耦合,并求出了Kaup-Newell族双可积耦合的分数阶Hamilton结构.本文的方法还可以应用于其它孤子族分数阶可积耦合.
关键词矩阵Lie代数    Kaup-Newell族    双可积耦合    分数阶Hamilton结构    
1 Introduction

The theory of integrals and derivatives of non-integer order goes back to Leibniz, Liouville, Riemann, Grunwald and Letnikov. The fractional analysis attracted the interest of many researchers, because fractional analysis has numerous applications: kinetic theories [1, 2], statistical mechanics [3, 4], dynamics in complex media [5, 6], and many others [7-9]. The main advantage of fractional derivative in comparison with classical integer-order models is that it provides an effective instrument for the description of memory and hereditary properties of various materials and progress. Also, the advantages of the fractional derivatives become apparent in modeling mechanical and electrical properties of real materials, as well as in the description of rheological properties of rocks, and in many other fields.

Tu proposed a Lie algebras and trace identity to constructing the integrable system and Hamiltonian structure of integrable systems [10]. Afterwards, Ma called the method as Tu scheme [11]. From then on, many integrable system and theirs Hamiltonian structure were obtained [12, 13]. Then how to obtain new fractional integrable hierarchies of the fractional soliton equations is an important and interesting work in soliton theory.In [14], Wu firstly proposed the generalized Tu formula and research for the Hamiltonian structures of fractional AKNS hierarchy, Yu presented the generalized fractional KN equation hierarchy and its fractional Hamiltonian structure [15].Integrable couplings [16] were coupled systems of integrable equations, which has been introduced when we study of Virasoro symmetric algebras. It is an important and interesting topic to search for integrable couplings in soliton theory.

Let us consider an integrable evolution equation

$\quad D^{\beta}_{t}u=K(u). $ (1.1)

An integrable coupling of eq.(1.1)

$\quad D^{\beta}_{t}\bar{u}=\bar{K}_{1}(\bar{u})=\left(\begin{array}{c} K(u)\\ S_1(u,u_1) \\\end{array}\right),\bar{ u}=\left(\begin{array}{c} u\\ u_1\\\end{array}\right) $ (1.2)

is called nonlinear, if $ S_1(u,u_1) $ is nonlinear with respect to the sub-vector $ u_1 $ of dependent variables [17]. An integrable system of the form

$\quad D^{\beta}_{t}\bar{u}=\bar{K}_{2}(\bar{u})=\left(\begin{array}{c} K(u)\\ S_1(u,u_1) \\ S_2(u,u_1,u_2) \\\end{array}\right),\bar{ u}=\left(\begin{array}{c} u\\ u_1\\ u_2\\\end{array}\right) $ (1.3)

is called a bi-integrable coupling of eq.(1.1). Note that in(1.3), $ S_1 $ does not depend on $ u_2 $, and the whole systemis of triangular form. In this paper, we would like to explore some mathematical structures of Lie algebras and zero curvature equations, to construct bi-integrable couplings and their Hamiltonian structures by using the generalized fractional trace variational identity associated with the enlarged Lax pairs. In this paper, we shall introduce a kind of explicit Lie algebra for which fractional couplings of Kaup-Newell hierarchy can be generated. Then we construct the fractional Hamiltonian structures of the fractional integrable couplings of Kaup-Newell hierarchy by using generalized fractional trace variational identity.

2 Brief Overview of Fractional Derivatives and Integrals

Kolwankar and Gangal [18, 19] deflned the local fractional derivative as

$D^{\alpha}_{x^{+}}f(x)=\lim_{y\to x^{+}}\frac{1}{\Gamma(1-\alpha)}\frac{d}{dy}\int_{x}^{y}\frac{(f(\xi)-f(x))}{(y-\xi)^{\alpha}}d\xi\quad(0<\alpha<1) .$ (2.1)

Chen et al. [20] gave the necessary conditions for the following relationship

$D^{\alpha}_{x^{+}}f(x)=\lim_{y\to x^{+}}\frac{\Gamma(1+\alpha)(f(y)-f(x))}{(y-x)^{\alpha}}\quad(0<\alpha<1) .$ (2.2)

We adopt derivative (2.2) for simplicity. Some fractional derivative properties are proposed as follows.

(ⅰ) The generalized Leibniz product law. If $ f(x),g(x) $ are $ \alpha $ order differentiable functions, one can have

$D^{\alpha}_{x}(f(x)g(x))=g(x)D^{\alpha}_{x}f(x)+f(x)D^{\alpha}_{x}g(x).$ (2.3)

Proof  By the simplicity definition (2.2), we have

$\begin{split}D^{\alpha}_{x}(f(x)g(x))&= \lim_{y\to x^{+}}\frac{\Gamma(1+\alpha)(f(y)g(y)-f(x)g(x))}{(y-x)^{\alpha}}\\&= \lim_{y\to x^{+}}\frac{\Gamma(1+\alpha)(f(y)g(y)-f(x)g(y)+f(x)g(y)-f(x)g(x))}{(y-x)^{\alpha}}\\&= \lim_{y\to x^{+}}\frac{\Gamma(1+\alpha)(f(y)-f(x))g(y)}{(y-x)^{\alpha}}+\\& \lim_{y\to x^{+}}\frac{\Gamma(1+\alpha)(g(y)-g(x))f(x)}{(y-x)^{\alpha}}\\&=g(x)D^{\alpha}_{x}f(x)+f(x)D^{\alpha}_{x}g(x),\end{split}$ (2.4)

the proof is completed.

(ⅱ) The Leibniz Formula for fractional differentiable functions reads.

$_{0}I^{\alpha}_{x}D^{\alpha}_{x}f(x)=f(x)-f(0) \quad (0 < a <1) ,$ (2.5)

where $ _{0}I^{\alpha}_{x} $ denotes the Riemann-Liouville integration, which is defined as

$_{0}I^{\alpha}_{x}f(x)=\frac{1}{\Gamma(\alpha)}\int_{0}^{x}(x-\xi)^{\alpha-1}f(\xi)d\xi\quad(0< a <1) .$ (2.6)

Therefore from the defined fractional integration, properties (ⅰ) and (ⅱ), the integration by parts can be used during the fractional calculus

$_{0}I^{\alpha}_{x}[g(x)D^{\alpha}_{x}f(x)]=f(x)g(x)|_{0}^{x}-_{0}I^{\alpha}_{x}[f(x)D^{\alpha}_{x}g(x)].$ (2.7)

(ⅲ) Fractional variational derivative

$\frac{\delta L}{\delta y}=\frac{\partial L}{\partial y}+\sum_{k=1}(-1) ^{k} (D^{\alpha}_{x})^{k}(\frac{\partial L}{\partial(D^{\alpha}_{x})^{k}y}),$ (2.8)

where $ k $ is a positive integer. Properties (ⅱ) and (ⅲ) can be proved similarly, we omit these proofs in this paper.

3 Matrix Lie Algebras and Bi-Integrable Couplings

To generate bi-integrable couplings, we introduce a kind of block matrices

$M({A_1},{A_2},{A_3}) = \left( { \begin{array}{*{20}{c}} {{A_1}}&{{A_2}}&{{A_3}}\\ 0&{{A_1} + \xi {A_2}}&{{A_2}}\\ 0&0&{{A_1}} \end{array} } \right),$ (3.1)

where $ \xi $ be an arbitrary fixed constant, which could be zero. $ A_i=A_i(λ),i=1,2,3 $ are square matrices of the same order, depending on the free parameter $ λ $. Then we have the commutator relation

$[M(A_1,A_2,A_3) ,M(B_1,B_2,B_3)]=M(C_1,C_2,C_3) $ (3.2)

with

$\left\{ {\begin{array}{*{20}{l}} {{C_1} = [{A_1},{B_1}],}\\ {{C_2} = [{A_1},{B_2}] + [{A_2},{B_1}] + \xi [{A_2},{B_2}],}\\ {{C_3} = [{A_1},{B_3}] + [{A_3},{B_1}] + [{A_2},{B_2}].} \end{array}} \right.$ (3.3)

This closure property implies that all block matrices defined by(3.1) form a matrix Lie algebra. Such matrix Lie algebras create a basis for us to generate nonlinear Hamiltonian bi-integrable couplings. The block $ A_1 $ corresponds to the original integrable equation, and the other two blocks $ A_2 $ and $ A_3 $ are used to generate the supplementary vector fields $ S_1 $ and $ S_2 $.The commutator $ [A_2,B_2] $ yields nonlinear terms in the resulting bi-integrable couplings.

Let us consider linear spectral problem

$D^{\alpha}_{x}\varphi=U(u,λ)\varphi,\quad D^{\beta}_{t}\varphi=V(u,λ)\varphi $ (3.4)

from the fractional zero curvature equation

$D^{\beta}_{t}U-D^{\alpha}_{x}V+[U,V]=0,$ (3.5)

we get an integrable system

$D^{\beta}_{t_n}u=K_n(u). $ (3.6)

Now we introduce an enlarged spectral matrix

$\bar U = \bar U(\bar u,\lambda ) = \left( {\begin{array}{*{20}{c}} {U(u,\lambda )}&{{U_1}({u_1},\lambda )}&{{U_2}({u_2},\lambda )}\\ 0&{U(u,\lambda ) + \xi {U_1}({u_1},\lambda )}&{{U_1}({u_1},\lambda )}\\ 0&0&{U(u,\lambda )} \end{array} } \right),$ (3.7)

where $ \bar{u} $ consists of $ u,u_1,u_2 $. From an enlarged generalized zero curvature equation

$D^{\beta}_{t}\bar{U}-D^{\alpha}_{x}\bar{V}+[\bar{U},\bar{V}]=0$ (3.8)

with

$\bar V = \bar V(\bar u,\lambda ) = \left( {\begin{array}{*{20}{c}} {V(u,\lambda )}&{{V_1}(u,{u_1},\lambda )}&{{V_2}(u,{u_1},{u_2},\lambda )}\\ 0&{V(u,\lambda ) + \xi {V_1}(u,{u_1},\lambda )}&{{V_1}(u,{u_1},\lambda )}\\ 0&0&{V(u,\lambda )} \end{array}} \right)$ (3.9)

gives rise to

$\left\{ {\matrix{ {D_t^\beta U - D_x^\alpha V + [U,V] = 0,} \hfill \cr {D_t^\beta {U_t} - D_x^\alpha {V_1} + [U,{V_1}] + [{U_1},V] + \xi [{U_1},{V_1}] = 0,} \hfill \cr {D_t^\beta {U_t} - D_x^\alpha {V_2} + [U,{V_2}] + [{U_2},V] + [{U_1},{V_1}] = 0,} \hfill \cr } } \right.$ (3.10)

i.e.,

$D^{\beta}_{t_n}\bar{u}=\left(\begin{array}{c} D^{\beta}_{t_n}u\\ D^{\beta}_{t_n}u_1\\ D^{\beta}_{t_n}u_2\\\end{array}\right)=\left(\begin{array}{c} K(u)\\ S_{1}(u,u_1) \\ S_{2}(u,u_1,u_2) \\\end{array}\right). $ (3.11)

This is a bi-integrable coupling of the evolution eq.(3.6), noting the zero curvature representation (3.5) of (3.4). Normally, it is nonlinear with respect to $ u_1 $ and $ u_2 $, thereby providing a nonlinear bi-integrable coupling.

We take a solution $ \bar{W} $ to the enlarged stationary zero curvature equation

$D^{\alpha}_{x}\bar{W}=[\bar{U},\bar{W}$] (3.12)

apply the associated generalized fractional trace variational identity [18]

$\frac{\delta }{{\delta \bar u}}\langle \bar W,{\bar U_\lambda }\rangle = {\lambda ^{ - \gamma }}\frac{\partial }{{\partial \lambda }}{\lambda ^\gamma }\langle \bar W,{\bar U_{\bar u}}\rangle (\gamma \;{\rm{is}}\;{\rm{a}}\;{\rm{constant}})$ (3.13)

to furnish Hamiltonian structures for the bi-integrable couplings described above.

In the next section, we will apply the above computational paradigm to the Kaup-Newell hierarchy, thus generating ahierarchy of nonlinear Hamiltonian bi-integrable couplings for the Kaup-Newell equations. We remark that our general ideaworks for both positive and negative soliton hierarchies.

4 Application to the Kaup-Newell Hierarchy

The Kaup-Newell spectral problem [21]

$D_x^\alpha \varphi = U(u,\lambda )\varphi ,U = \left( { \matrix{ { - \lambda } & {\lambda q} \cr r & \lambda \cr } } \right),u = \left( {\matrix{ q \cr r \cr } } \right).$ (4.1)

Setting

$W = \left( {\matrix{ a & {\lambda b} \cr c & { - a} \cr } } \right) = \sum\limits_{m \ge 0} {{W_m}} {\lambda ^{ - m}} = \sum\limits_{m \ge 0} {\left( {\matrix{ {{a_m}} & {\lambda {b_m}} & {} \cr {{c_m}} & { - {a_m}} & {} \cr } } \right)} {\lambda ^{ - m}},$ (4.2)

the stationary zero curvature equation $ D^{\alpha}_{x}W=[U,W] $ gives

$\left\{ {\matrix{ {D_x^\alpha {a_m} = - r{b_{m + 1}} + q{c_{m + 1}},} \hfill \cr {D_x^\alpha {b_m} = - 2{b_{m + 1}} - 2q{a_m},} \hfill \cr {D_x^\alpha {c_m} = 2r{a_m} + 2{c_{m + 1}},} \hfill \cr {{b_0} = {c_0} = 0,{a_0} = 1,{b_1} = - q,{c_1} = - r,{a_1} = - {1 \over 2}qr,} \hfill \cr {{b_2} = {1 \over 2}D_x^\alpha q + {1 \over 2}{q^2}r,{c_2} = - {1 \over 2}D_x^\alpha r + {1 \over 2}q{r^2},{a_2} = {1 \over 4}rD_x^\alpha q - {1 \over 4}qD_x^\alpha r + {3 \over 8}{q^2}{r^2},\cdots .} \hfill \cr } .} \right.$ (4.3)

Let

$V^{(n)}=(\lambda^{n}W)_++\triangle_n,$ (4.4)

where $ \triangle_n=-a_ne_1 $. The fractional zero curvature equation

$D^{\beta}_{t_{n}}U-D^{\alpha}_{x}V^{(n)}+[U,V^{(n)}]=0$ (4.5)

generate the fractional Kaup-Newell hierarchy of soliton equations

$\begin{split}D^{\beta}_{t_{n}}u=K_n(u)=( D^{\alpha}_{x}b_{n},D^{\alpha}_{x}c_{n})^{T}=J\frac{\delta H_n}{\delta u},\quad n\geq 1\end{split}$ (4.6)

with the Hamiltonian operator $ J $, the Hamiltonian functions and the hereditary recursion operator $ L $ :

$\eqalign{ & J = \left( {\matrix{ 0 & {D_x^\alpha } \cr {D_x^\alpha } & 0 \cr } } \right),\quad {H_n} = {{2{a_n} - q{c_n}} \over n}, \cr & L = \left( {\matrix{ { - {1 \over 2}D_x^\alpha - {1 \over 2}D_x^\alpha qD_x^{ - \alpha }r} & { - {1 \over 2}D_x^\alpha qD_x^{ - \alpha }q} \cr { - {1 \over 2}D_x^\alpha rD_x^{ - \alpha }r} & {{1 \over 2}D_x^\alpha - {1 \over 2}D_x^\alpha rD_x^{ - \alpha }q} \cr } } \right). \cr} $ (4.7)

When we take $ n=2 $, hierarchy (4.6) can be reduced to 2-order fractional Kaup-Newell equations

$\left\{ {\matrix{ {D_{{t_2}}^\beta q = D_x^\alpha ({1 \over 2}D_x^\alpha q + {1 \over 2}{q^2}r),} \hfill \cr {D_{{t_2}}^\beta r = D_x^\alpha ( - {1 \over 2}D_x^\alpha r + {1 \over 2}q{r^2}).} \hfill \cr } } \right.$ (4.8)

We begin with an enlarged spectral matrix

$\bar U(\bar u) = \left( { \matrix{ U & {{U_1}} & {{U_2}} \cr 0 & {U + \xi {U_1}} & {{U_1}} \cr 0 & 0 & U \cr } } \right),\quad \bar u = \left( {\matrix{ q \cr r \cr {{p_1}} \cr {{p_2}} \cr {{w_1}} \cr {{w_2}} \cr } } \right),$ (4.9)

where $ U $ is defined as in (4.1) and the supplementary spectral matrices $ U_1 $ and $ U_2 $ read

$\eqalign{ & {U_1} = {U_1}({u_1}) = \left( { \matrix{ 0 & {\lambda {p_1}} \cr {{p_2}} & 0 \cr } } \right),{u_1} = \left( {\matrix{ {{p_1}} \cr {{p_2}} \cr } } \right),\cr & {U_2} = {U_2}({u_2}) = \left( { \matrix{ 0 & {\lambda {w_1}} \cr {{w_2}} & 0 \cr } } \right),{u_2} = \left( {\matrix{ {{w_1}} \cr {{w_2}} \cr } } \right). \cr} $ (4.10)

To solve the enlarged stationary zero curvature eq.(3.12), we take a solution of the following form

$\bar W(\bar u) = \left( { \matrix{ W & {{W_1}} & {{W_2}} \cr 0 & {W + \xi {W_1}} & {{W_1}} \cr 0 & 0 & W \cr } } \right),$ (4.11)

where $ W $, defined by (4.2), and

${W_1} = \left( {\matrix{ e & {\lambda f} \cr g & { - e} \cr } } \right),{W_2} = \left( {\matrix{ {e'} & {\lambda f'} \cr {g'} & { - e'} \cr } } \right)$ (4.12)

Setting

$\begin{split}&e=\sum_{m\geq0}e_m\lambda^{-m},f=\sum_{m\geq0}f_m\lambda^{-m},g=\sum_{m\geq0}g_m\lambda^{-m},\\&e'=\sum_{m\geq0}e'_m\lambda^{-m},f'=\sum_{m\geq0}f'_m\lambda^{-m},g'=\sum_{m\geq0}g'_m\lambda^{-m},\end{split}$ (4.13)

which solves $ D^{\alpha}_{x}W= [U,W] $, we have

$\left\{ {\matrix{ {D_x^\alpha {e_m} = q{g_{m + 1}} - r{f_{m + 1}} + {p_1}{c_{m + 1}} - {p_2}{b_{m + 1}} + \beta {p_1}{g_{m + 1}} - \beta {p_2}{f_{m + 1}},} \hfill \cr {D_x^\alpha {f_m} = - 2{f_{m + 1}} - 2q{e_m} - 2{p_1}{a_m} - 2\beta {p_1}{e_m},} \hfill \cr {D_x^\alpha {g_m} = 2{g_{m + 1}} + 2r{e_m} + 2{u_2}{a_m} + 2{p_2}{e_m},} \hfill \cr {D_x^\alpha {{e'}_m} = q{{g'}_{m + 1}} - r{{f'}_{m + 1}} + {w_1}{c_{m + 1}} - {w_2}{b_{m + 1}} + {p_1}{g_{m + 1}} - {p_2}{f_{m + 1}},} \hfill \cr {D_x^\alpha {{f'}_m} = - 2{{f'}_{m + 1}} - 2q{{e'}_m} - 2{w_1}{a_m} - 2{p_1}{e_m},} \hfill \cr {D_x^\alpha {{g'}_m} = 2{{g'}_{m + 1}} + 2r{{e'}_m} + 2{w_2}{a_m} + 2{p_2}{e_m}.} \hfill \cr } } \right.$ (4.14)

We choose the initial data to be

$f_0=g_0=f'_0=g'_0=0,e_0=e'_0=1$ (4.15)

from the recursion relation (4.14), we can get

$\begin{split}&f_1=-q-(1+\beta)p_1,g_1=-r-(1+\beta)p_2,\\&e_1=-\frac{1}{2}(qr+qp_2+\beta qp_2+p_1r+\beta p_1r-\beta p_1p_2-\beta^{2}p_1p_2) ,\\&f'_1=-q-w_1-p_1,g'_1=-r-w_2-p_2,\\&e'_1=-\frac{1}{2}(qr+qw_2+qp_2+w_1r+ p_1r+p_1p_2+\beta p_1p_2) ,\cdots.\end{split}$ (4.16)

For each integer $ n\geq0 $, take

${\bar V^{(n)}} = \left( { \matrix{ {{V^{(n)}}} & {V_1^{(n)}} & {V_2^{(n)}} \cr 0 & {{V^{(n)}} + \xi V_1^{(n)}} & {V_1^{(n)}} \cr 0 & 0 & {{V^{(n)}}} \cr } } \right),$ (4.17)

where $ V^{(n)} $ define in (4.4), and $ V_1^{(n)} $, $ V_2^{(n)},$

$V_1^{(n)}=(\lambda^{n}W_1) _++\triangle_1,V_2^{(n)}=(\lambda^{n}W_2) _++\triangle_2 $ (4.18)

with $ \triangle_1=-e_ne_1,\triangle_2=-e'_ne_1 $, and then from the enlarged generalized zero curvature equation (3.8), we have

$D^{\beta}_{t_{n}}\bar{v}=S_{n}(\bar{v})=\left(\begin{array}{cc} S_{1n}(u,u_1) \\ S_{2n}(u,u_1,u_2) \\\end{array}\right),$ (4.19)

where

$\begin{split} &S_{1n}(u,u_1) =\left(\begin{array}{c} D^{\alpha}_{x}f_{n}\\ D^{\alpha}_{x}g_{n}\end{array}\right),S_{2n}(u,u_1,u_2) =\left(\begin{array}{c} D^{\alpha}_{x}f'_{n}\\ D^{\alpha}_{x}g'_{n}\end{array}\right). \end{split}$ (4.20)

Together with system (4.6), we present bi-integrable couplings of Kaup-Newell hierarchy

$D^{\beta}_{t_{n}}\bar{u}=\left(\begin{array}{cc}D^{\beta}_{t_{n}} q\\ D^{\beta}_{t_{n}}r\\ D^{\beta}_{t_{n}}p_1\\ D^{\beta}_{t_{n}}p_2\\ D^{\beta}_{t_{n}} w_1\\ D^{\beta}_{t_{n}} w_2\\\end{array}\right)=\bar{K}_n(\bar{u})=\left(\begin{array}{cc} K_n(u)\\ S_{1n}(u,u_1) \\ S_{2n}(u,u_1,u_2) \\\end{array}\right)=\left(\begin{array}{cc} D^{\alpha}_{x}b_{n}\\ D^{\alpha}_{x}c_{n}\\ D^{\alpha}_{x}f_{n}\\ D^{\alpha}_{x}g_{n}\\ D^{\alpha}_{x}f'_{n}\\ D^{\alpha}_{x}g'_{n} \end{array}\right),n\geq 1.$ (4.21)

When $ n=2 $, we can obtain the first nonlinear bi-integrable coupling of (4.8)

$\left\{ \begin{array}{*{35}{l}} D_{{{t}_{2}}}^{\beta }q= & D_{x}^{\alpha }(\frac{1}{2}D_{x}^{\alpha }q+\frac{1}{2}{{q}^{2}}r),\\ D_{{{t}_{2}}}^{\beta }r= & D_{x}^{\alpha }(-\frac{1}{2}D_{x}^{\alpha }r+\frac{1}{2}q{{r}^{2}}),\\ D_{{{t}_{2}}}^{\beta }{{p}_{1}}= & \frac{1}{2}D_{x}^{\alpha }[D_{x}^{\alpha }q+qr{{p}_{1}}+(1+\beta )D_{x}^{\alpha }{{p}_{1}}+(q+\beta {{P}_{1}}) \\ {} & (qr+q{{p}_{2}}+\beta q{{p}_{2}}+{{p}_{1}}r+\beta {{p}_{1}}r+\beta {{p}_{1}}{{p}_{2}}+{{\beta }^{2}}{{p}_{1}}{{p}_{2}})],\\ D_{{{t}_{2}}}^{\beta }{{p}_{2}}= & -\frac{1}{2}D_{x}^{\alpha }[D_{x}^{\alpha }r-qr{{p}_{2}}+(1+\beta )D_{x}^{\alpha }{{p}_{2}}+(r+\beta {{p}_{2}}) \\ {} & (qr+q{{p}_{2}}+\beta q{{p}_{2}}+{{p}_{1}}r+\beta {{p}_{1}}r+\beta {{p}_{1}}{{p}_{2}}+{{\beta }^{2}}{{p}_{1}}{{p}_{2}})],\\ D_{{{t}_{2}}}^{\beta }{{w}_{1}}= & D_{x}^{\alpha }[\frac{1}{2}D_{x}^{\alpha }(q+{{w}_{1}}+{{p}_{1}})+\\ {} &\frac{1}{2}{{q}^{2}}(r+{{w}_{2}}+{{p}_{2}})+\frac{1}{2}p_{1}^{2}(r+\beta r+\beta {{p}_{2}}+{{\beta }^{2}}{{p}_{2}}) \\ {} & +qr({{p}_{1}}+{{w}_{1}})+(1+\beta )q{{p}_{1}}{{p}_{2}}],\\ D_{{{t}_{2}}}^{\beta }{{w}_{2}}= & D_{x}^{\alpha }[-\frac{1}{2}(r+{{w}_{2}}+{{p}_{2}})+\\ {} &\frac{1}{2}{{r}^{2}}(q+{{w}_{1}}+{{p}_{1}})+\frac{1}{2}p_{2}^{2}(q+\beta q+\beta {{p}_{1}}+{{\beta }^{2}}{{p}_{1}}) \\ {} & +qr({{w}_{2}}+{{p}_{2}})+(1+\beta ){{p}_{1}}{{p}_{2}}r]. \\ \end{array} \right.$ (4.22)
5 Fractional Hamiltonian Structure

In order to generate Hamiltonian structures of the obtained fractional nonlinear bi-integrable couplings, we have to compute non-degenerate, symmetric and ad-invariant bilinear forms on the adopted Lie algebra

$\bar g = \left( {\matrix{ {\left( {\matrix{ {{A_1}} & {{A_2}} & {{A_3}} \cr 0 & {{A_1} + \xi {A_2}} & {{A_2}} \cr 0 & 0 & {{A_1}} \cr } } \right)|{A_1},{A_2},{A_3} \in \widetilde {sl}(2)} \cr } } \right).$ (5.1)

As usual, we transform the Lie algebra $ \bar{g} $ into a vector form through the mapping

$\sigma:\bar{g}\longrightarrow R^{9},\quad A\longmapsto(a_1,\cdots,a_9) ^{T}\in R^{9},$ (5.2)

where

$\eqalign{ & A = \left( { \matrix{ {{A_1}} & {{A_2}} & {{A_3}} \cr 0 & {{A_1} + \xi {A_2}} & {{A_2}} \cr 0 & 0 & {{A_1}} \cr } } \right) \in \bar g,\cr & {A_i} = \left( { \matrix{ {{a_{3i - 2}}} & {{a_{3i - 1}}} \cr {{a_{3i}}} & { - {a_{3i - 2}}} \cr } } \right),i = 1,2,3. \cr} $ (5.3)

A required bilinear form [22] on the underlying Lie algebra $ \bar{g} $ is given by

$\begin{split}\langle A,B\rangle_{\bar{g}}=&\eta_1(a_1b_1+\frac{1}{2}a_2b_3+\frac{1}{2}a_3b_2) +\eta_2[a_1b_4+\frac{1}{2}a_2b_6+\frac{1}{2}a_3b_5+a_4(b_1+\xi b_4) \\&+\frac{1}{2}a_5(b_3+\xi b_6) +\frac{1}{2}a_6(b_2+\xi b_5)]+\eta_3[2a_1b_7+a_2b_9+a_3b_8+2a_4b_4\\&+a_5b_6+a_6b_5+2a_7b_1+a_8b_3+a_9b_2],\end{split}$ (5.4)

where $ A $ and $ B $ are two block matrices of the form defined by (5.3), $ \eta_1,\eta_2,\eta_3 $ are constants.

Let us direct compute that

$\begin{split}&\langle\bar{W}\frac{\partial\bar{U}}{\partial\lambda}\rangle=\frac{1}{2}\eta_1(-2a+cq)+\\ &\frac{1}{2}\eta_2(cp_1-2e+gq+\beta gp_1) +\eta_3(cw_1+gp_1-2e'+qg'),\\&\langle\bar{W}\frac{\partial\bar{U}}{\partial q}\rangle=\\ &\frac{1}{2}\eta_1c\lambda+\frac{1}{2}\eta_2g\lambda+\eta_3g'\lambda,\langle\bar{W}\frac{\partial\bar{U}}{\partial r}\rangle=\frac{1}{2}\eta_1b\lambda+\frac{1}{2}\eta_2f\lambda+\eta_3f'\lambda,\langle\bar{W}\frac{\partial\bar{U}}{\partial w_1}\rangle=\eta_3c\lambda,\\&\langle\bar{W}\frac{\partial\bar{U}}{\partial p_1}\rangle=\\ &\frac{1}{2}\eta_2c\lambda+\frac{1}{2}\beta\eta_2g\lambda+\eta_3g\lambda,\langle\bar{W}\frac{\partial\bar{U}}{\partial p_2}\rangle=\\ &\frac{1}{2}\eta_2b\lambda+\frac{1}{2}\beta\eta_2f\lambda+\eta_3f\lambda,\langle\bar{W}\frac{\partial\bar{U}}{\partial w_2}\rangle=\eta_3b\lambda.\end{split}$ (5.5)

The corresponding fractional variational identity (3.13) leads to

$\begin{eqnarray}&&\frac{\delta}{\delta\bar{u}}\frac{\frac{1}{2}\eta_1(2a_n-qc_n)+\frac{1}{2}\eta_2(2e_n-p_1c_n-qg_n-\beta p_1g_n)+\eta_3(2e'_n-w_1c_n-p_1g_n-qg_n')}{n}\nonumber\\&=&(\frac{1}{2}\eta_1c_n+\frac{1}{2}\eta_2g_n+\eta_3g'_n,\frac{1}{2}\eta_1b_n+\frac{1}{2}\eta_2f_n+\eta_3f'_n,\frac{1}{2}\eta_2c_n+\frac{1}{2}\beta\eta_2g_n+\eta_3g_n,\nonumber\\&&\frac{1}{2}\eta_2b_n+\frac{1}{2}\beta\eta_2f_n+\eta_3f_n,\eta_3c_n,\eta_3b_n )^{T},n\geq1.\end{eqnarray}$ (5.6)

It is easy to see that $ \gamma=0 $. Threrfor, the Kaup-Newell bi-integrable couplings in (4.21) possess the following Hamiltonian structures

$D^{\beta}_{t_{n}}\bar{u}=\bar{K}_n(\bar{u}) =\bar{J}\frac{\delta \bar{H}_n}{\delta \bar{u}},\quad n\geq 0,$ (5.7)

where the Hamiltonian operator is

$\bar J = \left( {\matrix{ 0 & 0 & {{1 \over {{\eta _3}}}} \cr 0 & {{{2D_x^\alpha } \over {\beta {\eta _2} + 2{\eta _3}}}} & {{{ - {\eta _2}} \over {{\eta _3}(\beta {\eta _2} + 2{\eta _3})}}} \cr {{1 \over {{\eta _3}}}} & {{{ - {\eta _2}} \over {{\eta _3}(\beta {\eta _2} + 2{\eta _3})}}} & {{{\eta _2^2 - \beta {\eta _1}{\eta _2} - 2{\eta _1}{\eta _3}} \over {2{\eta _3}(\beta {\eta _2} + 2{\eta _3})}}} \cr } } \right) \otimes \left( {\matrix{ 0 & {D_x^\alpha } \cr {D_x^\alpha } & 0 \cr } } \right)$ (5.8)

with $ \otimes $ denotes the Kronecker product of matrices, and the fractional Hamiltonian functionals read

$\bar{H}_{n}=\frac{\frac{1}{2}\eta_1(2a_n-qc_n)+\frac{1}{2}\eta_2(2e_n-p_1c_n-qg_n-\beta p_1g_n)+\eta_3(2e'_n-w_1c_n-p_1g_n-qg_n')}{n}.$ (5.9)

A direct computation shows a recursion relation

$\bar{K}_{n+1}=\bar{L}\bar{K}_{n},$ (5.10)

where the recursion operator $ \bar{L} $ is given by

$\bar L = \left( { \matrix{ L & 0 & 0 \cr {{L_1}} & {L + \xi {L_1}} & 0 \cr {{L_2}} & {{L_1}} & L \cr } } \right)$ (5.11)

with $ L $ being given by (4.7) and

$\eqalign{ & {L_1} = - {1 \over 2}\left( { \matrix{ {D_x^\alpha qD_x^{ - \alpha }{p_2} + D_x^\alpha {p_1}D_x^{ - \alpha }(r + \beta {p_2})} & {D_x^\alpha qD_x^{ - \alpha }{p_1} + D_x^\alpha {p_1}D_x^{ - \alpha }(q + \beta {p_1})} \cr {D_x^\alpha rD_x^{ - \alpha }{p_2} + D_x^\alpha {p_2}D_x^{ - \alpha }(r + \beta {p_2})} & {D_x^\alpha rD_x^{ - \alpha }{p_1} + D_x^\alpha {p_2}D_x^{ - \alpha }(q + \beta {p_1})} \cr } } \right),\cr & {L_2} = - {1 \over 2}\left( { \matrix{ {D_x^\alpha qD_x^{ - \alpha }{w_2} + D_x^\alpha {w_1}D_x^{ - \alpha }r + D_x^\alpha {p_1}D_x^{ - \alpha }{p_2}} & {D_x^\alpha qD_x^{ - \alpha }{w_1} + D_x^\alpha {w_1}D_x^{ - \alpha }q + D_x^\alpha {p_1}D_x^{ - \alpha }{p_1}} \cr {D_x^\alpha rD_x^{ - \alpha }{w_2} + D_x^\alpha {w_2}D_x^{ - \alpha }r + D_x^\alpha {p_2}D_x^{ - \alpha }{p_2}} & {D_x^\alpha rD_x^{ - \alpha }{w_1} + D_x^\alpha {w_2}D_x^{ - \alpha }q + D_x^\alpha {p_2}D_x^{ - \alpha }{p_1}} \cr } } \right). \cr} $
6 Conclusions

A way to construct fractional nonlinear bi-integrable couplings of fractional soliton hierarchy is presented. The fractional variational identity has been generalized to the fractional zero-curvature equation. As an application, the fractional Kaup-Newell hierarchy gave a hierarchy of the fractional nonlinear bi-integrable couplings and fractional Hamiltonian structures. As its reduction, we gain the fractional nonlinear integrable couplings of the Kaup-Newell equations. The solution of reduced equations is a very important and difficult work, we will take great efforts in our next work. The obtained results supplement the existing theories on the perturbation equations and classical integrable couplings. The method can be generalized to other fractional integrable couplings.

References
[1] Zaslavsky G M. Chaos, fractional kinetics, and anomalous transport[J]. Phys. Rep., 2002, 371(6): 461–580. DOI:10.1016/S0370-1573(02)00331-9
[2] Tarasov V E, Zaslavsky G M. Dynamics with low-level fractionality[J]. Phys. A., 2006, 368(2): 399–415. DOI:10.1016/j.physa.2005.12.015
[3] Riewe F. Mechanics with fractional derivatives[J]. Phys. Rev. E., 1997, 55(3): 3581–3592. DOI:10.1103/PhysRevE.55.3581
[4] Tarasov V E. Fractional systems and fractional Bogoliubov hierarchy equations[J]. Phys. Rev. E., 2005, 71(1): 011102. DOI:10.1103/PhysRevE.71.011102
[5] Tarasov V E. Fractional Liouville and BBGKI equations[J]. J. Phys. Conf. Ser., 2005, 7(7): 17–33.
[6] Nigmatullin R. The realization of the generalized transfer in a medium with fractal geometry[J]. Phys. Status Solidi B., 1986, 133(1): 425–430. DOI:10.1002/(ISSN)1521-3951
[7] Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J]. Comput. Math. Appl., 2006, 51(9): 1367–1376.
[8] Jumarie G. Table of some basic fractional calculus formulae derived from a modified RiemannLiouville derivative for non-differentiable functions[J]. Appl. Math. Lett., 2009, 22(3): 378–385. DOI:10.1016/j.aml.2008.06.003
[9] Yu Fajun, Zhang Hongqing. Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation hierarchy[J]. Int. J. The. Phys., 2007, 46(12): 3182–3192. DOI:10.1007/s10773-007-9433-z
[10] Tu Guizhang. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems[J]. J. Math. Phys., 1989, 30(2): 330–338. DOI:10.1063/1.528449
[11] Ma Wenxiu. A new Liouville integrable generalized Hamiltonian equations and its reduction[J]. Chin. Ann. Math. Ser. A., 1992, 18(1): 115–123.
[12] Ma Wenxiu, Chen Min. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras[J]. J. Phys. A:Math. Gen., 2006, 39(34): 10787–10801. DOI:10.1088/0305-4470/39/34/013
[13] Wei Hanyu, Xia Tiecheng. Conservation laws and Hamiltonian structure for a nonlinear integrable couplings of Guo soliton hierarchy[J]. J. Math., 2015, 35(3): 539–548.
[14] Wu Guocheng, Zhang Sheng. A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy[J]. Phys. Lett. A., 2011, 375(42): 3659–3663. DOI:10.1016/j.physleta.2011.08.040
[15] Yu Fajun. A generalized fractional KN equation hierarchy and its fractional Hamiltonian structure[J]. Comput. Math. Appl., 2011, 62(3): 1522–1530. DOI:10.1016/j.camwa.2011.04.043
[16] Ma Wenxiu, Fuchssteiner B. Integrable theory of the perturbation equations[J]. Chaos Soli. Fract., 1996, 7(8): 1227–1250. DOI:10.1016/0960-0779(95)00104-2
[17] Ma Wenxiu. Nonlinear continuous integrable Hamiltonian couplings[J]. Appl. Math. Comput., 2011, 217(17): 7238–7244.
[18] Kolwankar K M, Gangal A D. Fractional differentiability of nowhere differentiable functions and dimensions[J]. Chaos, 1996, 6(4): 505–513. DOI:10.1063/1.166197
[19] Kolwankar K M, Gangal A D. Local fractional Fokker-Planck equation[J]. Phys. Rev. Lett., 1998, 80(2): 214–217. DOI:10.1103/PhysRevLett.80.214
[20] Chen Yan, Yan Ying, Zhang Kewei. On the local fractional derivative[J]. J. Math. Anal. Appl., 2010, 362(1): 17–33. DOI:10.1016/j.jmaa.2009.08.014
[21] Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrödinger equation[J]. J. Math. Phys., 1978, 19(4): 798–801. DOI:10.1063/1.523737
[22] Ma Wenxiu, Meng Jinghan, Zhang Mengshu. Nonlinear bi-integrable couplings with Hamiltonian structures[J]. Math. Comput. Simulat., 2016, 127(2): 166–177.