在种群动力学中, 对捕食者和食饵之间的动力学行为的研究已经长时期并且将继续成为生态学和数学生态学研究的重要课题.近年的研究表明, 在很多情况下, 特别当捕食者捕食食物时, 就必须得和其他物种进行分享和竞争食物, 因此一个更符合实际的捕食模型应该是具有比率型的模型.关于有比率型种群捕食模型研究已有大量工作, 诸多学者取得了很多成果[1-11]. 2003年, 谭德君[12]研究了具有时滞和基于比率的三种群捕食模型
的持续生存和无时滞时的全局渐近稳定性, 其中 $x_i(i=1, 2, 3)$分别表示捕食者, 食饵种群的密度, $a_i, a_{ij}, m_{ij}(i, j=1, 2, 3)$均为正常数, $\tau_i(i=1, 2)$为非负常数.详细的生物学意义可参见文献[13]. 2007年, 黄建科和吴筱宁[14]进一步研究了模型(1.1) 的全局渐近稳定性, 推广了文献[12]的结果, 同时也研究了该系统的持久性. Song和Zou [15]讨论了一类具有比率型的捕食模型的分支问题. Shi和Li [16]分析了类具有比率型的捕食模型的全局渐近稳定性. Bai等学者[17]考虑了一类具有比率型的随机捕食模型的动力学行为.具体相关研究可参考文献[18-22].
我们知道在很多生物现象中, 生物种群的周期性行为经常出现, 因此为了能更清晰全面地理解该捕食系统的动力学行为, 本文将研究系统(1.1) 的周期现象, 具体而言, 本文将以时滞为参数, 考察因时滞的变化导致系统(1.1) 出现Hopf分支, 得到了系统(1.1) 的平凡解稳定的条件, Hopf分支产生的条件及确定Hopf分支方向和分支周期解的稳定性的计算公式.为了研究简化, 假设 $\tau_1=\tau_2=\tau$, 于是得到下面的系统
这里 $x_i(i=1, 2, 3)$分别表示捕食者, 食饵种群的密度, $a_i, a_{ij}, m_{ij}~(i, j=1, 2, 3)$均为正常数, $\tau$为非负常数.
本文作如下安排:第二节研究了(1.2) 式的平凡解的稳定性和Hopf分支的存在性; 第三节讨论了Hopf分支方向及其分支周期解的稳定性的清晰的计算公式; 第四节进行数值模拟验证理论分析的正确性.
由文献[23]知, 系统的持续生存必然蕴含着正平衡点的存在, 我们设系统(1.2) 的正平衡点为 $E^*(x_1^*, x_2^*, x_3^*)$.令 $\bar{x_i}=x_i-x_i^*(i=1, 2, 3)$, 仍记 $\bar{x_i}$分别为 $x_i$, 则(1.2) 式化为
其中 $p_i(i=1, 2, \cdots, 11); q_j, r_j~ (j=1, 2, \cdots, 9)$的表达式参见附录A.系统(2.1) 的线性部分为
(2.2) 式的特征方程为
其中
当 $\tau=0$时, 方程(2.3) 变为
根据Routh-Hurwitz准则, 如果下列条件
成立, 则方程(2.4) 的所有根都具有负实部.方程的两边同时乘以 $e^{\lambda\tau}$得
若 ${\rm i}\omega$为(2.5) 式的解, 把 $\lambda={\rm i}\omega$代入(2.5) 式并分离实部和虚部得
于是
从而由 $\sin^2\omega\tau+\cos^2\omega\tau=1$, 得
其中 $k_i(i=0, 1, 2, \cdots, 8)$的表达式参见附录B.
假设方程(2.7) 有正根, 不失一般性, 假设方程有10个正根, 记为 $\omega_k(k=1, 2, \cdots, 10)$.于是由(2.6) 式得
这里 $k=1, 2, \cdots, 10;j=0, 1, 2, \cdots.$记
设 $\lambda(\tau)=\alpha(\tau)+i\omega(\tau)$为(2.5) 式的满足 $\alpha(\tau_k^{(j)})=0, \omega(\tau_k^{(j)})=\omega_k$的根, 其中 $\tau_k^{(j)}$由(2.8) 式定义.把 $\lambda(\tau)$代入(2.5) 式, 两端对 $\tau$求导, 整理得
这里
为了得到本文的主要结果, 假设
由上述讨论和Hale [24]的第11章的定理1.1可得
定理2.1 对系统(1.2), 假设条件 $(\mbox{H}1)$和 $(\mbox{H}2)$成立, 则
(ⅰ) $\tau\in[0, \tau_0), $其正平衡点是渐近稳定的;
(ⅱ) $\tau > \tau_0, $其正平衡点是不稳定的;
(ⅲ) $\tau=\tau_k^{(j)}$ $(k=1, 2, 3, \cdots, 10; k=1, 2, \cdots)$是~Hopf分支值, 其中 $\tau_k^{(j)}$由(2.8) 式定义.
本节利用中心流形理论和和规范型方法[25]给出系统(1.2) 的Hopf分支方向, 分支周期解的稳定性等计算公式.
为方便, 令 $t=s\tau, x_i(s\tau)=\tilde{x}_i(s)(i=1, 2, 3), $仍记 $\tilde{x}_i(s)$为 $x_i(s)$. $\tau=\tau_k^{(j)}+\mu, \mu\in{R}, \tau_k^{(j)}$由(2.8) 式定义, 且仍记 $t=s$, 则系统(1.2) 等价于系统
(3.1) 式的线性部分为
(3.1) 的右端的非线性部分为
对 $\varphi=(\varphi_1, \varphi_2, \varphi_3)^T\in{C([-1, 0], R^3)}$, 记
于是由Riesz表示定理, 存在分量为有界变差函数的二阶矩阵 $\eta(\theta, \mu): [-1, 0]\rightarrow{R^{3^2}}.$使对任意的 $\varphi\in{C([-1, 0], R^3)}$, 有
事实上, 只要取
即可.对 $\varphi\in{C([-1, 0], R^3)}, $定义
于是(3.1) 式可写成如下形式
其中 $x=(x_1, x_2, x_3)^T.$对 $\alpha\in{C([-1, 0], ({R^3})^*)}, $定义
对 $\varphi\in{C([-1, 0], R^3)}$和 $\psi\in{C([0, 1], ({R^3})^*)}$, 定义双线性积
这里 $\eta(\theta)=\eta(\theta, 0)$, 则算子 $A=A(0)$与 $A^*$是共轭算子.
由第2节的讨论及变换 $t=s\tau$可知, $ \pm {\rm{i}}{\omega _k}\tau _k^{(j)}$是算子 $A=A(0)$的特征值, 且 $A$的其它的特征值都具有严格负实部, 从而 $ \pm {\rm{i}}{\omega _k}\tau _k^{(j)}$也是算子 $A^*$的特征值, 于是有
引理3.1 $q(\theta ) = {(1, \alpha, \beta )^T}{e^{{\rm{i}}{\omega _k}\tau _k^{(j)}\theta }}$是算子 $A(0)$关于 $\omega_k\tau_k^{(j)}{\rm i}$的特征向量, $q^{*}(s)=D(1, \alpha^*, \beta^*)^{T}e^{i\omega_k\tau_k^{(j)}s}$是算子 $A^*$关于 $-\omega_k\tau_k^{(j)}{\rm i}$的特征向量并且 $\langle {q^*}, q\rangle = 1, \langle {\mathit{q}^*}, \bar q\rangle = 0, $其中
上述引理的证明直接计算即可, 故省略.
令 $z(t)=\langle q^*, x_t\rangle, $其中 $x_t$是方程(3.4) 当 $\mu=0$时的解, 则由文[25]有
其中 $\bar{f}(z, \bar{z})=h[0, W(z, \bar{z})+2\mbox{Re}{\{zq\}}], $ $W(z, \bar{z})=x_t-2\mbox{Re}{\{zq\}}.$而
再把(3.5) 式改写为
又
将(3.4), (3.5) 式代入(3.8) 式得
且 $W^{'}=W_zz^{'}+W_{\bar{z}}{\bar{z}}^{'}= AW+H(z, \bar{z}, \theta).$将上述相应的级数展式代入, 比较系数得
注意到 $x_t(\theta)=(x_{1t}(\theta), x_{3t}(\theta), x_{3t}(\theta))=W(z, \bar{z}, \theta)+zq(\theta)+\bar{z}\bar{q}(\theta)$和 $q(\theta ) = {(1, \alpha, \beta )^T}{e^{{\rm{i}}\theta {\omega _k}\tau _k^{(j)}}}, $有
与(3.7) 式比较得
下面来确定 $W_{11}(\theta), W_{20}(\theta).$
由(3.9) 式, 对 $\theta\in[-1, 0)$,
比较(3.10) 和(3.13) 式的同次幂系数, 得
由(3.10), (3.14) 式及 $A$的定义, 得
注意到 $q(\theta )={{(1, \alpha, \beta )}^{T}}{{e}^{\rm{i}{{\omega }_{k}}\tau _{k}^{(j)}\theta }}$得
其中 $E_1=(E_1^{(1)}, E_1^{(2)}, E_1^{(3)})^T\in{R^3}$为常向量.同理, 由(3.10), (3.15) 式及 $A$的定义, 得
其中 $E_2=(E_2^{(1)}, E_2^{(2)}, E_1^{(3)})^T\in{R^3}$为常向量.现在只需求(3.17) 式中的 $E_1$, (3.18) 式中的 $E_2$.由(3.11) 和(3.12) 式及 $A$的定义有
其中 $\eta(\theta)=\eta(0, \theta)$.由(3.9) 和(3.10) 式得
注意到
把(3.17) 和(3.21) 式代入(3.19) 式得
也就是
从而
于是 $E_1^{(1)}=\frac{\Delta_{11}}{\Delta_1}, ~E_1^{(2)}=\frac{\Delta_{12}}{\Delta_1}, ~E_1^{(3)}=\frac{\Delta_{13}}{\Delta_1}, $这里
类似地, 把(3.18) 和(3.22) 式代入(3.20) 式, 得
根据(3.17) 和(3.18) 式, 可以计算 $g_{21}$的值, 于是可以计算如下数值
定理3.1 假设条件 $(\mbox{H}1)$和 $(\mbox{H}2)$成立, 则 $\mu=0$是系统(1.2) 的Hopf分支值.分支方向由 $\mu$确定, 如果 $\mu > 0$ $(\mu < 0)$, 则系统(1.2) 有超临界分支(次临界分支); 分支周期解稳定性由 $\beta_2$确定, 如果 $\beta_2 > 0$ $(\beta_2 < 0)$, 分支周期解是稳定的(不稳定的); 分支周期解的周期由 $T_2$确定, 如果 $T_2 > 0$ $(T_2 < 0)$, 分支周期解的周期是增加的(减小的).
在这一节, 取不同的时滞 $\tau$对系统(1.2) 进行数值模拟, 考虑下列系统
显然, 系统(4.1) 有正平衡点 $E^*(1.465, 0.375, 0.22)$并且满足定理2.1的条件, 经计算得 $\tau_0=8.5, \lambda^{'}(\tau_0)=0.1275-0.7182{\rm i}, $从而, $c_1(0)=-12.0332-21.2541{\rm i}, \mu_2 > 0, \beta_2 < 0, T_2 > 0.$故得到当 $\tau < \tau_0=8.5$时, 正平衡点 $E^*(1, 0.5)$是渐近稳定的, 当 $\tau$通过临界值 $\tau_0=8.5$时, 正平衡点 $E^*(1, 0.5)$失去稳定性, Hopf分支产生, 由 $\mu_2 > 0, \beta_2 < 0$知Hopf分支为超临界的, 分支方向为 $\tau > \tau_0$且从 $E^*(1.465, 0.375, 0.22)$附近产生的Hopf分支周期解是稳定的, 其数值模拟见图 1-2.