数学杂志  2017, Vol. 37 Issue (2): 390-400   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
魏利
陈蕊
一类Capillarity系统非平凡解的存在性研究
魏利, 陈蕊     
河北经贸大学数学与统计学学院, 河北 石家庄 050061
摘要:本文研究了一类capillarity系统解的存在性问题.采用在乘积空间中定义非线性映射的方法,把capillarity系统转化为非线性算子方程.借助于Sobolev嵌入定理等技巧证明非线性映射具有紧性,进而利用非线性映射值域的性质得到非线性算子方程解的存在性的结论.并由此获得在一定条件下capillarity系统在$L^{p_1}(\Omega)\times L^{p_2}(\Omega)\times \cdots \times L^{p_M}(\Omega)$空间中存在非平凡解的结论,其中Ω为RNN ≥ 1)中有界锥形区域且$\frac{2N}{N+1} < p_i < +\infty,i = 1,2,\cdots,M.$.本文所研究的问题和所采用的方法推广和补充了以往的相关研究工作.
关键词乘积空间    m增生映射    Caratheodory条件    嵌入    紧映射    capillarity系统    
STUDY ON THE EXISTENCE OF NON-TRIVIAL SOLUTION OF ONE KIND CAPILLARITY SYSTEMS
WEI Li, CHEN Rui     
School of Mathematics and Statistics, Hebei University of Economics and Business Shijiazhuang 050061, China
Abstract: In this paper, the existence of solution of one kind capillarity systems was studied.The capillarity systems are converted to nonlinear operator equation in view of the method of defining nonlinear mappings in product space.By using the techniques of Sobolev embedding theorems etc., the compactness of the nonlinear mapping is proved.Some properties of nonlinear mappings are employed to obtain the result that the nonlinear operator equation has solutions.Finally, the result that capillarity systems have non-trivial solution in $L^{p_1}(\Omega)\times L^{p_2}(\Omega)\times \cdots \times L^{p_M}(\Omega)$ is proved, where Ω is the bounded conical domain of RN (N ≥ 1) and $\frac{2N}{N+1} < p_i < +\infty,$ for $i = 1,2,\cdots,M.$.The system studied and the methods used in this paper extend and complement some previous corresponding work.
Key words: product space     m-accretive mapping     Caratheodory's conditions     embedding     compact mapping     capillarity systems    
1 引言及预备知识

源于Capillarity方程与毛细现象等实际问题密切相关, 所以对这类问题的研究活跃在数学领域.针对Capillarity方程解的存在性及其特征值问题的研究, 常见的方法是山路原理和极大极小原理.近期, 在文[1-2]中, 作者提出了新方法-利用极大单调算子和$m$增生映射的值域理论展开了对这类问题的研究.具体地, 2013年, 作者在文[1]中给出了以下具Neumann边值条件的Capillarity方程在$W^{1, p}(\Omega)$空间中存在解的充分条件

$ \begin{eqnarray}\left\{ \begin{array}{lll} -{\rm div}[(1+\frac{|\nabla u|^p}{\sqrt{1+|\nabla u|^{2p}}})|\nabla u|^{p-2}\nabla u]+ \lambda (|u|^{q-2}u + |u|^{r-2}u) = f(x)~~{\rm a.e.}~~x\in \Omega, \\ - <\vartheta, (1+\frac{|\nabla u|^p}{\sqrt{1+|\nabla u|^{2p}}})|\nabla u|^{p-2}\nabla u> \in \beta(u(x))-h(x)~~{\rm a.e.}~~x\in \Gamma, \end{array} \right.\end{eqnarray} $ (1)

其主要研究思路是首先建立具Neumann边值条件的Capillarity方程和具Dirichlet边值条件的Capillarity方程之间的关系; 然后将边值条件转化为非线性极大单调算子之和的形式; 最后利用Reich [3]提出的极大单调算子值域几乎相等的结论进行讨论.

2012年, 作者在文[2]中利用Calvert-Gupta [4]提出的$m$增生映射值域的扰动结论研究了以下具Neumann边值条件的Capillarity方程在$L^{p}(\Omega)$空间中存在解的结论

$ \begin{equation}\left\{ \begin{array}{lll} -{\rm div}[(1+\frac{|\nabla u|^p}{\sqrt{1+|\nabla u|^{2p}}})|\nabla u|^{p-2}\nabla u]+ \lambda (|u|^{q-2}u + |u|^{r-2}u)+\\g(x, u(x))= f(x) ~~{\rm a.e.}~~x\in \Omega, \\ - <\vartheta, (1+\frac{|\nabla u|^p}{\sqrt{1+|\nabla u|^{2p}}})|\nabla u|^{p-2}\nabla u> \in \beta_x(u(x))~~{\rm a.e.}~~x\in \Gamma. \end{array} \right.\end{equation} $ (1.2)

其主要研究思路是将边值条件和非线性方程揉合在一起定义所需的$m$增生映射.

当某个实际问题需要用多个Capillarity方程来研究的时候, 就引出了研究Capillarity系统的问题.本文分为两部分.第一部分是引言和预备知识, 第二部分给出一类Capillarity系统存在非平凡解的充分条件.本质上将对Capillarity方程的研究推广到了方程组的情形, 并采用了不同于文[1, 2]的方法.

下面介绍预备知识.

$E$为实Banach空间, $E^*$为其对偶空间.正规对偶映射$J: E \rightarrow 2^{E^*}$定义为$ J(x)=\{x^*\in E^* : \langle x, x^*\rangle=\|x\|^2=\|x^*\|^2\}, \forall x \in E, $其中$\langle \cdot, \cdot\rangle$表示$E$$E^*$元素间的广义对偶对.众所周知, 当$E$为实严格凸Banach空间时, 正规对偶映射为单值映射.为方便起见, 仍用J表示单值正规对偶映射.

称多值算子$B: E \rightarrow 2^{E^*}$为单调算子[5]:若$ \forall x_{i} \in D(B), y_{i}\in Bx_{i}, i =1, 2, $均有

$ \langle x_{1}-x_{2}, y_{1}-y_{2}\rangle \geq 0. $ (1.3)

若(1.3) 式中等号成立的充要条件是$x_1 = x_2, $则称$B$为严格单调算子.称算子$B$为极大单调算子:若$B$单调且$\forall r > 0, R(J+rB) = E^*$.

称多值映射$A:E \rightarrow 2^E$为增生映射[6]:若$\langle v_{1}-v_{2}, j(u_{1}-u_{2})\rangle\ge 0, $ $\forall u_{i} \in D(A)$$v_{i} \in Au_{i}, \, i=1, 2$, 这里$j(u-v) \in J(u-v).$称增生映射$A$$m$增生的:若$R(I+\lambda A) = E, $ $\forall \lambda>0.$

$E_1$$E_2$均为实Banach空间.映射$C : E_1 \rightarrow E_2$称为有界映射:若$C$$E_1$中的有界子集映射成$E_2$中的有界子集.映射$C : E_1 \rightarrow E_2$称为紧映射:若$C$连续且将$E_1$中的有界子集映射成$E_2$中的相对紧集.

称函数$\Phi : E \rightarrow (-\infty, +\infty]$为正则凸函数[6]:若存在$u_0 \in E$使得$\Phi(u_0) <+\infty$$\Phi((1-\lambda)u + \lambda v)\leq (1-\lambda)\Phi(u)+\lambda \Phi(v), $ $\forall u, v \in E$$\lambda \in [0, 1].$称函数$\Phi : E \rightarrow (-\infty, +\infty]$是下半连续函数:若$\lim\limits_{y \rightarrow x}\inf\Phi(y) \geq \Phi(x), $$\forall x\in E.$$E$上定义的正则凸函数$\Phi$, 其次微分$\partial \Phi : E \rightarrow E^* $定义为$\forall u \in E, $

$ \partial \Phi(u) = \{w \in E^*: \Phi(u)-\Phi(v)\leq \langle u -v, w\rangle, ~~\forall v \in E\}. $

$E_1$$E_2$为实Banach空间.则记号“$E_1 \hookrightarrow \hookrightarrow E_2$”表示空间$E_1$紧嵌入到$E_2$.

定义1.1 [5] 设$N$为正整数, $\Omega$$R^N$中有界开集, 称$g:\Omega \times R^N \rightarrow R $满足Caratheodory条件, 如果

(ⅰ) $g(x, \cdot ): R^{N} \rightarrow R$连续a.e. $x \in \Omega$;

(ⅱ) 映射$g(\cdot, r ): \Omega \rightarrow R$可测, $\forall r \in R^N$.

引理1.1[7] 设$X_1$, $X_2, \cdots, X_M$为实Banach空间, 则$X_1 \times X_2\times \cdots \times X_M$定义为

$ X_1 \times X_2\times \cdots \times X_M = \{(x_1, x_2, \cdots, x_M): x_i \in X_i, ~ i = 1, 2, \cdots, M\}. $

$\forall (x_1, x_2, \cdots, x_M), (y_1, y_2, \cdots, y_M) \in X_1 \times X_2\times \cdots\times X_M, $定义

$ k_1(x_1, x_2, \cdots, x_M)+k_2(y_1, y_2, \cdots, y_M)= (k_1x_1+k_2y_1, k_1x_2+k_2y_2, \cdots, k_1x_M+k_2y_M), $

$X_1 \times X_2\times \cdots \times X_M$成为线性空间.特别地, 当定义如下范数

$ \|(x_1, x_2, \cdots, x_M)\|= (\|x_1\|^2_{X_1}+\|x_2\|^2_{X_2}+\cdots+\|x_M\|^2_{X_M})^{\frac{1}{2}} $

时, $X_1 \times X_2 \times \cdots\times X_M$为实Banach空间且$(X_1 \times X_2 \times \cdots\times X_M)^{*} = X_1^{*} \times X_2^{*}\times \cdots \times X_M^{*}.$

引理1.2[5] 若$\Phi : E \rightarrow (-\infty, \infty]$为正则凸、下半连续函数, 则$\partial \Phi : E \rightarrow 2^{E^*}$极大单调.

引理1.3[4] 令$\Omega$$R^{N}$中的有界区域, 令$J_{p}:L^{p}(\Omega)\rightarrow L^{p'}(\Omega)$表示正规对偶映射.则当$ 1 < p <+\infty$时,

$ J_{p}u = |u|^{p-1}{\rm sgn} u\|u\|^{2-p}_{p}, ~~\forall u\in L^{p}(\Omega), $

这里$\frac{1}{p}+\frac{1}{p'}=1.$

引理1.4[8] 令$ \Omega$$R^{N}$中的有界锥形区域.若$mp>N, $$W^{m, p}(\Omega)\hookrightarrow \hookrightarrow C_{B}(\Omega);$$ 0 < mp\leq N $$ q_{0}= \frac{Np}{N-mp}, $$ W^{m, p}(\Omega)\hookrightarrow\hookrightarrow L^{q}(\Omega), $其中$1 \leq q < q_{0}.$

定理1.1[9] 令$E$为实Banach空间, $A: E \rightarrow 2^E$$m$增生映射且$(I+A)^{-1}: E \rightarrow E$为紧映射.令$C: D(A) \subset E \rightarrow E$为有界映射且存在$\lambda \in (0, 1]$使得$C(I+\lambda A)^{-1}: E \rightarrow E$为紧映射.假设$p \in E$且存在正常数$b, r$$z \in D(A) : \|z\| < b$满足

$ \langle Cx + y - p, j(x-z)\rangle \geq 0, $

$\forall x \in D(A): \|x\|\geq r, $ $\forall y \in Ax, $其中$j(x-z) \in J(x-z)$, 那么$ p \in R(A+C).$

2 Capillarity系统非平凡解的存在唯一性

本文研究以下Capillarity系统

$ \begin{equation}\left\{ \begin{array}{lll} -{\rm div}[(1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2{p_i}}}})|\nabla u_i|^{p_i-2}\nabla u_i]+ \lambda_i (|u_i|^{q_i-2}u_i + |u_i|^{r_i-2}u_i) +\\ \varepsilon_i g_i(x, \nabla u_i, u_i)= f_i(x)\\ ~~{\rm a.e.}~~x\in \Omega, \\ - <\vartheta, (1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2{p_i}}}}) |\nabla u_i|^{p_i-2}\nabla u_i> \in \beta_x(u_i(x))~~{\rm a.e.}~~x\in \Gamma, \\ i = 1, 2, \cdots, M. \end{array} \right.\end{equation} $ (2.1)

在(2.1) 式中, $\Omega$$R^{N}$$ (N \geq 1)$中有界锥形区域且其边界$\Gamma\in C^{1}$ (见文献[10]); $\varepsilon_i \in R^+\bigcup \{0\}, $ $\lambda_i \in R^+, $ $i = 1, 2, \cdots, M;$ $\vartheta$表示$\Gamma$的外法向导数; $|\cdot|$表示$R^{N}$中的范数; $\langle\cdot, \cdot \rangle$表示$R^N$中的内积.

$g_i:\Omega\times R^N \times R \rightarrow R$为满足Carathéodory条件的给定函数, $i = 1, 2, \cdots, M.$假设它们满足以下增长性条件:存在正常数$b_i$使得

$ |g_i(x, r_1, \cdots, r_{N+1})-g_i(x, s_1, \cdots, s_{N+1})|\leq b_i|r_{N+1}-s_{N+1}|, $

$ \forall(r_1, r_2, \cdots, r_{N+1}), (s_1, s_2, \cdots, s_{N+1})\in R^{N+1}, $ $i = 1, 2, \cdots, M.$

$\beta_{x}$$\varphi_{x}$的次微分, 即$\beta_x\equiv\partial\varphi_x.$这里$\varphi_{x}= \varphi(x, \cdot):R\rightarrow R, $ $\forall x\in\Gamma, $其中$\varphi:\Gamma\times R\rightarrow R$为给定函数, 见文[11].假设$\forall x\in\Gamma, ~\varphi_{x}: R \rightarrow R$为正则凸、下半连续函数, $\varphi_{x}(0)=0$, $0\in \beta_x(0)$$\forall t\in R, $函数$x\in\Gamma \rightarrow (I+\lambda \beta_x)^{-1}(t)\in R$可测, $\lambda >0.$

假设对$i = 1, 2, \cdots, M, $ $ \frac{2N}{N+1} < p_i < +\infty;$$p_i \geq N$时, $1 \leq q_i, r_i < +\infty;$$p_i < N$时, $1 \leq q_i, r_i \leq \frac{Np_i}{N-p_i}.$进一步假设Green公式成立.

引进如下记号: $Y = L^{p_1}(\Omega)\times L^{p_2}(\Omega)\times \cdots \times L^{p_M}(\Omega).$分别用$\|\cdot\|_{p_i}$$\|\cdot\|_Y$表示$L^{p_i}(\Omega)$和空间$Y$中的范数.令$ \frac{1}{p_i} + \frac{1}{p'_i} = 1, $ $i = 1, 2, \cdots, M.$

引理2.1  定义$\Phi_{i}:W^{1, p_i}(\Omega)\rightarrow R$$\forall u\in W^{1, p_i}(\Omega)$,

$ \Phi_{i}(u) = \int_{\Gamma}\varphi_{x}(u|_{\Gamma}(x))d\Gamma(x), $

(ⅰ) $\Phi_{i}$$W^{1, p_i}(\Omega)$上的正则凸、下半连续函数.从而引理1.2蕴含$\partial \Phi_i$是极大单调算子, $i = 1, 2, \cdots, M.$

(ⅱ) $\langle v_i, \partial\Phi_i(u_i)\rangle = \displaystyle\int_\Omega \beta_x(u_i|_\Gamma)v_i|_\Gamma d\Gamma(x), $ $\forall u_i, v_i \in W^{1, p_i}(\Omega), $ $i = 1, 2, \cdots, M.$因此由$0 \in \beta_x(0)$可知$\partial\Phi_i(0)= 0, ~i = 1, 2, \cdots, M.$

(ⅲ) $\langle \psi, \partial\Phi_i(u_i)\rangle = 0, $ $\forall \psi \in C_0^\infty(\Omega).$

 由类似于文[10]可证结论(ⅰ)和(ⅲ)成立.类似于文[12]可证结论(ⅱ)成立.

引理2.2[2] 定义$B_{i}:W^{1, p_i}(\Omega)\rightarrow (W^{1, p_i}(\Omega))^*$

$ \langle v, B_{i}u \rangle = \int_{\Omega}\langle(1+\frac{|\nabla u|^{p_i}}{\sqrt{1+|\nabla u|^{2p_i}}})|\nabla u|^{p_i-2}\nabla u, \nabla v \rangle dx\\ + \lambda_i \int_{\Omega}|u(x)|^{q_i-2}u(x) v(x) dx + \lambda_i \int_{\Omega}|u(x)|^{r_i-2}u(x) v(x)dx, $

$ \forall u, v \in W^{1, p_i}(\Omega).$$B_{i}$极大单调且严格单调, $i = 1, 2, \cdots, M.$

引理2.3[2] 定义$A_{i}:L^{p_i}(\Omega)\rightarrow L^{p_i}(\Omega)$$ D(A_{i}) = \{u\in L^{p_i}(\Omega)|$存在$ f \in L^{p_i}(\Omega), $使得$f = B_{i}u+\partial\Phi_{i}(u) \}.$$ u \in D(A_{i}), $$ A_{i}u = \{ f \in L^{p_i}(\Omega)|f = B_{i}u + \partial\Phi_{i}(u)\}$, $i = 1, 2, \cdots, M$.则$A_i$$m$增生映射, $i = 1, 2, \cdots, M$.

命题2.1 定义$ A: Y \rightarrow Y$

$ Au = (A_1u_1, A_2u_2, \cdots, A_Mu_M), ~~u = (u_1, u_2, \cdots, u_M)\in Y, $

$A$$m$增生映射.

 首先注意当$\frac{2N}{N+1}< p_i < +\infty$时, $L^{p_i}(\Omega)$为严格凸Banach空间, 所以定义在$L^{p_i}(\Omega)$上的正规对偶映射为单值映射, $i =1, 2, \cdots, M$.

若定义$J: Y \rightarrow Y^*$

$ J u = (J_{p_1}u_1, J_{p_2}u_2, \cdots, J_{p_M}u_M), $

$\forall u = (u_1, u_2, \cdots, u_M)\in Y, $其中$J_{p_i}$表示$L^{p_i}(\Omega)$上的正规对偶映射, $i = 1, 2, \cdots, M, $$J$$Y$上的正规对偶映射.

事实上, 因为$J_{p_i}$表示$L^{p_i}(\Omega)$上的正规对偶映射, 所以由乘积空间的性质和正规对偶映射的定义可知

$ \langle u , Ju\rangle = \langle u_1, J_{p_1}u_1 \rangle +\langle u_2, J_{p_2}u_2\rangle +\cdots +\langle u_M, J_{p_M}u_M\rangle\\ = \|u_1\|^2_{p_1}+\|u_2\|^2_{p_2}+\cdots+\|u_M\|^2_{p_M} = \|u\|_{Y}^2, $

而且

$ \|Ju\|^2_{Y^*} = \|J_{p_1}u_1\|^2_{p'_1}+\|J_{p_2}u_2\|^2_{p'_2}+\cdots +\|J_{p_M}u_M\|^2_{p'_M}=\\ \|u_1\|^2_{p_1}+\|u_2\|^2_{p_2}+\cdots +\|u_M\|^2_{p_M}= \|u\|^2_Y. $

因此$J$$Y$上的正规对偶映射.

因为$A_i$是增生映射, 所以$\forall u = (u_1, u_2, \cdots, u_M), v = (v_1, v_2, \cdots, v_M) \in Y, $

$ \langle Au - Av, J(u-v) \rangle =\langle A_1u_1 - A_1v_1, J{p_1}(u_1-v_1) \rangle + \langle A_2u_2 - A_2v_2, J{p_2}(u_2-v_2)\rangle \\ \;\;\;\;\;\;\;\;\;+\cdots+ \langle A_Mu_M - A_Mv_M, J{p_M}(u_M-v_M) \rangle\geq 0. $

因此$A$为增生映射.

$\forall~ \lambda >0$$\forall v = (v_1, v_2, \cdots, v_M) \in Y, $$A_i$$m$增生映射, 故存在$u_i \in L^{p_i}(\Omega)$使得$v_i = u_i + \lambda A_iu_i, $于是$R(I+\lambda A) = Y.$

至此证明了$A$$m$增生映射.

引理2.4 若$\eta_{\mu}^{(i)}: R \rightarrow R$单调、Lipschitz连续具Lipschitz常数$\frac{1}{\mu}$$(\eta_{\mu}^{(i)})'$$R$上除至多有限点外连续, 其中$\mu > 0, $$\langle \eta_{\mu}^{(i)}(u - v), \partial\Phi_{i}(u)- \partial\Phi_{i}(v)\rangle \geq 0, ~\forall u \in W^{1, p_i}(\Omega), ~ i = 1, 2, \cdots, M.$进一步由引理2.1知$\langle \eta_{\mu}^{(i)}(u), \partial\Phi_{i}(u)\rangle \geq 0, ~\forall u \in W^{1, p_i}(\Omega), ~ i = 1, 2, \cdots, M.$

 因为$\eta_{\mu}^{(i)}: R \rightarrow R$单调且Lipschitz常数为$\frac{1}{\mu}$, 所以存在$\kappa_x^{(i)} \in [0, 1]$满足

$ u|_\Gamma (x) - \mu\eta_{\mu}^{(i)}(u|_\Gamma (x)-v|_\Gamma (x))= \kappa_x^{(i)} u|_\Gamma (x)+(1-\kappa_x^{(i)})v|_\Gamma (x) $

$ v|_\Gamma (x) + \mu\eta_{\mu}^{(i)}(u|_\Gamma (x)-v|_\Gamma (x))= \kappa_x^{(i)} v|_\Gamma (x)+(1-\kappa_x^{(i)})u|_\Gamma (x). $

由假设条件知$\varphi_x$为凸函数, 从而

$ \varphi_x(u|_\Gamma (x) - \mu\eta_{\mu}^{(i)}(u|_\Gamma (x)-v|_\Gamma (x)))+\varphi_x(v|_\Gamma (x) +\\ \mu\eta_{\mu}^{(i)}(u|_\Gamma (x)-v|_\Gamma (x))) \leq \varphi_x(u|_\Gamma (x))+\varphi_x(v|_\Gamma (x)). $

利用引理2.1知

$ \Phi_i (u - \mu \eta^{(i)}_{\mu}(u - v))+ \Phi_i (v + \mu \eta^{(i)}_{\mu}(u - v))\leq \Phi_i(u)+\Phi_i(v). $

由次微分的定义可知

$ \Phi_i(u - \mu \eta^{(i)}_{\mu}(u - v))-\Phi_i(u) \geq \langle - \mu \eta^{(i)}_{\mu}(u - v), \partial\Phi_i(u)\rangle $

$ \Phi_i(v+ \mu \eta^{(i)}_{\mu}(u - v))-\Phi_i(v) \geq \langle \mu \eta^{(i)}_{\mu}(u - v), \partial\Phi_i(v)\rangle. $

从而

$ \mu \langle\eta^{(i)}_{\mu}(u - v), \partial\Phi_i(v)- \partial\Phi_i(u) \rangle \leq \Phi_i(u - \mu \eta^{(i)}_{\mu}(u - v))+\\\Phi_i(v+ \mu \eta^{(i)}_{\mu}(u - v))-\Phi_i(u)-\Phi_i(v) \leq 0. $

因此结论成立.

题2.2 映射$(I+A)^{-1}: Y \rightarrow Y$为紧映射.

 若$u + Au = w $$\{w = (w_1, w_2, \cdots, w_M)\}$$Y$中有界, 则只需证明$\{u = (u_1, u_2, \cdots, u_M)\}$$Y$中相对紧.

事实上, 转化为证明若$u_i + A_iu_i = w_i $$\{w_i\}$$L^{p_i}(\Omega)$中有界, 则$\{u_i\}$$L^{p_i}(\Omega)$中相对紧, $i = 1, 2, \cdots, M.$

将证明分为以下两种情形:

(ⅰ) $p_i \geq 2.$

$ k > 0, $定义$\delta_{k}^{(i)}: R \rightarrow R$$\delta_{k}^{(i)}(t) = |(t\bigwedge k)\bigvee (-k)|^{p_i-1}{\rm sgn}t.$$\delta_{k}^{(i)}$单调、Lipschitz连续、$\delta_{k}^{(i)}(0) = 0$$(\delta_{k}^{(i)})'$$R$上除至多有限点外连续.引理2.4蕴含

$ \langle \delta_{k}^{(i)}u_i, A_iu_i \rangle = \langle\delta_{k}^{(i)}(u_i), B_i u _i\rangle + \langle \delta_{k}^{(i)}(u_i), \partial\Phi_i(u_i)\rangle\\ \;\;\;\;\;\geq \langle\delta_{k}^{(i)}(u_i), B_i u _i\rangle \geq \int_\Omega |\nabla u_i|^{p_i}[(\delta_{k}^{(i)})'(u_i)]dx \\ \;\;\;\;\;\;\geq {\rm const} \int_{\{|u_i| < k\}}|{\rm grad}(|(u_i\bigwedge k)\bigvee (-k)|^{2-\frac{2}{p_i}}{\rm sgn}u_i)|^{p_i}dx. $

因此

$ \langle |u_i|^{p_i-1}{\rm sgn}u_i, A_iu_i \rangle = \lim_{k \rightarrow \infty} \langle \delta_{k}^{(i)}u_i, A_iu_i \rangle \nonumber\\ \;\;\;\;\;\;\;\geq {\rm const}~\int_{\Omega}|{\rm grad}(|u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i)|^{p_i}dx. $ (2.2)

(2.2) 式蕴含

$ \|w_i\|_{p_i}\|u_i\|^{\frac{p_i}{p_i'}}_{p_i}\geq \langle |u_i|^{p_i-1}{\rm sgn}u_i, w_i \rangle\nonumber\\ \;\;\;\;\;\;\;= \langle |u_i|^{p_i-1}{\rm sgn}u_i, u_i \rangle +\langle |u_i|^{p_i-1}{\rm sgn}u_i, A_iu_i \rangle \nonumber\\ \;\;\;\;\;\;\;\geq \|u_i\|_{p_i}^{p_i}+{\rm const}~\int_{\Omega}|{\rm grad}(|u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i)|^{p_i}dx. $ (2.3)

由(2.3) 式可知

$ {\rm const}.\geq \|w_i\|_{p_i}\geq \|u_i\|_{p_i}^{p_i-\frac{p_i}{p_i'}}= \|u_i\|_{p_i} = \||u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i\|^{\frac{p_i}{2(p_i-1)}}_{\frac{p_i^2}{2(p_i-1)}}. $ (2.4)

再由(2.3) 和(2.4) 式可知

$ {\rm const}.\geq \int_{\Omega}|{\rm grad}(|u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i)|^{p_i}dx. $ (2.5)

$p_i \geq 2, $$\frac{p_i^2}{2(p_i-1)}\leq p_i.$因此$\{|u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i\}$$W^{1, \frac{p_i^2}{2(p_i-1)}} (\Omega)$中有界.利用引理1.4 $\{|u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i\}$$L^{p_i}(\Omega)$中相对紧.因为Nemytskii映射$u \in L^{p_i}(\Omega) \rightarrow |u_i|^{\frac{p_i}{2(p_i-1)}}{\rm sgn}u_i \in L^{p_i}(\Omega)$连续, 所以$\{u_i\}$$L^{p_i}(\Omega)$中相对紧, $i = 1, 2, \cdots, M$.于是$\{u\}$$Y$中相对紧.至此证明了$(I+A)^{-1}$为紧映射.

(ⅱ)$\frac{2N}{N+1} < p_i < 2.$

为此, 定义$\eta_{n}^{(i)}, \theta_{n}^{(i)}: R\rightarrow R$如下

$ \begin{eqnarray}\eta_{n}^{(i)}(t) = ~\left\{ \begin{array}{lll} |t|^{p_i-1}{\rm sgn}t, ~~\forall |t| \geq \frac{1}{n}, \\ (\frac{1}{n})^{p_i-2}t, ~~\forall |t| \leq \frac{1}{n}\\ \end{array} \right.\end{eqnarray} $ (2.6)

$ \begin{eqnarray}\theta_{n}^{(i)}(t) =~\left\{ \begin{array}{lll} |t|^{2-\frac{2}{p_i}}{\rm sgn}t, ~~\forall |t| \geq \frac{1}{n}, \\ (\frac{1}{n})^{1-\frac{2}{p_i}}t, ~\forall |t| \leq \frac{1}{n}.\\ \end{array} \right.\end{eqnarray} $ (2.7)

于是

$ [\eta_{n}^{(i)}(t)]' = (p_i-1)\times (\frac{p'_i}{2})^{p_i}\times \{[\theta_{n}^{(i)}(t)]'\}^{p_i}, ~~\forall |t|\geq \frac{1}{n} $

$ [\eta_{n}^{(i)}(t)]' = \{[\theta_{n}^{(i)}(t)]'\}^{p_i}, ~~\forall |t|\leq \frac{1}{n}. $因为$\eta_{n}^{(i)}$单调、Lipschitz连续、$\eta_{n}^{(i)}(0) = 0 $$(\eta_{n}^{(i)})'$$R$上除至多有限点外连续, 所以引理2.4蕴含$\langle \eta_{n}^{(i)}(u_i), \partial\Phi_{i}(u_i)\rangle\geq 0, $ $u \in W^{1, p_i}(\Omega).$

下面计算

$ \langle|u_i|^{p_i-1}{\rm sgn}u_i, A_{i}u_i\rangle = \mathop {\lim }\limits_{n \to \infty }\langle \eta_{n}^{(i)}(u_i), A_{i}u_i\rangle\nonumber\\ \geq \mathop {\lim }\limits_{n \to \infty }\langle\eta_{n}^{(i)}(u_i), B_{i}u_i\rangle\nonumber\\ = \mathop {\lim }\limits_{n \to \infty }\int _{\Omega} (1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i}[(\eta_{n}^{(i)})'(u_i)]dx\nonumber\\ + \lambda_i \mathop {\lim }\limits_{n \to \infty } \int _{\Omega}|u_i|^{q_i-2}u_i \eta_{n}^{(i)}(u_i)dx+\lambda_i \mathop {\lim }\limits_{n \to \infty } \int _{\Omega}|u_i|^{r_i-2}u_i \eta_{n}^{(i)}(u_i)dx\nonumber\\ \geq \mathop {\lim }\limits_{n \to \infty }\int _{\Omega}|\nabla u_i|^{p_i}[(\eta_{n}^{(i)})'(u_i)]dx\nonumber\\ \geq {\rm const} \cdot \mathop {\lim }\limits_{n \to \infty }\int _{\Omega}|{\rm grad}(\theta_{n}^{(i)}(u_i))|^{p_i}dx\nonumber\\ \geq {\rm const} \int_{\Omega}|{\rm grad}(|u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i)|^{p_i}dx. $ (2.8)

$w_i = u_i + A_{i}u_i$, 故

$ \|w_i\|_{p_i} \||u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i\|_{\frac{{p_i}^{2}}{2(p_i-1)}}^{\frac{{p_i}^{2}}{2(p_i-1)p'_i}}\nonumber\\ \geq \langle|u_i|^{p_i-1}{\rm sgn}u_i, w_i\rangle\nonumber\\ = \langle |u_i|^{p_i-1}{\rm sgn}u_i, u_i\rangle +(|u_i|^{p_i-1}{\rm sgn}u_i, A_{i}u_i\rangle\nonumber\\ \geq \||u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i\|_{\frac{{p_i}^{2}}{2(p_i-1)}}^{\frac{{p_i}^{2}}{2(p_i-1)}}+ {\rm const} \cdot \|{\rm grad}(|u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i)\|_{p_i}^{p_i}, $ (2.9)

于是由$\frac{2N}{N+1}< p_i < 2 $和(2.9) 式可知

$ \||u_i|^{2-\frac{2}{p_i}}{\rm sgn}u\|_{p_i}^{\frac {p_i}{2(p_i-1)}} \leq \||u_i| ^{2-\frac{2}{p_i}}{\rm sgn}u_i\|_{\frac{{p_i}^{2}}{2(p_i-1)}}^{\frac{p_i}{2(p_i-1)}} \leq \|w_i\|_{p_i}\leq {\rm const}. $

再利用(2.9) 式, $ \|{\rm grad}(|u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i)\|_{p_i}\leq {\rm const}.$从而$\{ |u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i \}$$W^{1, p_i}(\Omega)$中有界.

由引理1.4知当$N\geq 2$时,

$ W^{1, p_i}(\Omega)\hookrightarrow\hookrightarrow L^{\frac{{p_i}^{2}}{2(p_i-1)}}(\Omega); $

$N=1$时,

$ W^{1, p_i}(\Omega)\hookrightarrow\hookrightarrow C_{B}(\Omega), $

所以$\{ |u_i|^{2-\frac{2}{p_i}}{\rm sgn}u_i \}$$ L^{\frac{{p_i}^{2}}{2(p_i-1)}}(\Omega)$中相对紧.又因为Nemytskii映射

$ u_i \in L^{\frac{{p_i}^{2}}{2(p_i-1)}}(\Omega) \rightarrow |u_i|^{\frac{p_i}{2(p_i-1)}}{\rm sgn}u \in L^{p_i}(\Omega) $

连续, 所以$\{u_i\}$$L^{p_i}(\Omega)$中相对紧.于是$\{u\}$$Y$中相对紧.至此证明了$(I+A)^{-1}$为紧映射.

命题2.3 定义$C : Y \rightarrow Y$如下

$ Cu = (C_1u_1, C_2 u_2, \cdots, C_Mu_M), $

$\forall u = (u_1, u_2, \cdots, u_M)\in Y, $其中$C_i : L^{p_i}(\Omega)\rightarrow L^{p_i}(\Omega)$$C_iu_i = \varepsilon_i g_i(x, \nabla u_i, u_i), $ $i = 1, 2, \cdots, M.$$C : Y \rightarrow Y$连续.

 由$g_i$的假设条件可知$C_i: L^{p_i}(\Omega)\rightarrow L^{p_i}(\Omega)$有定义且$\forall u_i, v_i \in L^{p_i}(\Omega), $

$ \|C_iu_i-C_iv_i\|_{p_i}\leq b_i\varepsilon_i\|u_i-v_i\|_{p_i}, $

$i = 1, 2, \cdots, M.$由此可知$C_i$连续, $i = 1, 2, \cdots, M.$从而由乘积空间的性质$C : Y\rightarrow Y$连续.

命题2.4 映射$C(I+A)^{-1}: Y \rightarrow Y$为紧映射.

 由命题2.2和2.3易知映射$C(I+A)^{-1}: Y \rightarrow Y$为紧映射.

定理2.1 若存在$u = (u_1, u_2, \cdots, u_M)\in Y$使得对$ f = (f_1, f_2, \cdots, f_M) \in Y$$f \neq \theta$, 满足

$ \int_\Omega [g_i(x, \nabla u_i, u_i)-f_i]|u_i|^{p_i-2}u_i dx \geq 0, $ (2.10)

$i = 1, 2, \cdots, M, $这里$\theta$$Y$中的零元, 则$u = (u_1, u_2, \cdots, u_M)\in Y$为Capillarity系统(2.1) 的非平凡解.

如果进一步假设$g_i(x, r_1, \cdots, r_{N+1})$关于$r_{N+1}$单调, 即

$ (g_i(x, r_1, \cdots, r_{N+1})-g_i(x, t_1, \cdots, t_{N+1}))(r_{N+1} - t_{N+1}) \geq 0 , $

$\forall x \in \Omega$$(r_1, \cdots, r_{N+1}), (t_1, \cdots, t_{N+1})\in R^{N+1}, $ $i = 1, 2, \cdots, M, $那么Capillarity系统(2.1) 存在唯一非平凡解.

 若$ f = (f_1, f_2, \cdots, f_M) \in Y$满足(2.10), 则由命题2.1-2.4知定理1.1的条件被满足.从而$ u = (u_1, u_2, \cdots, u_M) \in Y$满足算子方程$ f = Au + Cu$.

由引理2.3, 命题2.1和命题2.3知$A\theta + C\theta = \theta.$因此由$f \neq \theta$$u \neq \theta.$$f = Au +Cu, $$f_i = B_{i} u_i + \partial \Phi_i(u_i)+C_iu_i, $ $i = 1, 2, \cdots, M.$ $\forall \psi \in C_0^{\infty}(\Omega), $利用引理2.1知

$ \langle \psi, f_i\rangle = \langle \psi, B_{_i}u_i + \partial \Phi_i(u_i)+C_iu_i \rangle = \langle \psi, B_{i}u_i+C_iu_i \rangle\\ \;\;\;\;\;\;= \int_\Omega <(1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i-2}\nabla u_i, \nabla \psi> dx + \int_\Omega \varepsilon_ig_i(x, \nabla u_i, u_i)\psi dx\\ \;\;\;\;\;\;+ \lambda_i\int_\Omega |u_i|^{q_i-2}u_i \psi dx + \lambda_i \int_\Omega |u_i|^{r_i-2}u_i \psi dx\\ \;\;\;\;\;\; = \int_\Omega - {\rm div}[(1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i-2}\nabla u_i] \psi dx \\ \;\;\;\;\;\;+ \lambda_i\int_\Omega |u_i|^{q_i-2}u_i \psi dx + \lambda_i \int_\Omega |u_i|^{r_i-2}u_i \psi dx+ \int_\Omega \varepsilon_ig_i(x, \nabla u_i, u_i)\psi dx, $

因此

$ -{\rm div}[(1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2{p_i}}}})|\nabla u_i|^{p_i-2}\nabla u_i]+ \lambda_i(|u_i|^{q_i-2}u_i + |u_i|^{r_i-2}u_i)+ \varepsilon_ig_i(x, \nabla u_i, u_i)\\ = f_i(x)~{\rm a.e.}~~ x \in \Omega. $

下证$-< \vartheta, (1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i-2}\nabla u_i> \in \beta_{x}(u_i(x)), ~~ x \in \Gamma.$

利用Green公式, $ \forall v_i \in W^{1, p_i}(\Omega)$,

$ \int_{\Gamma}< \vartheta, (1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i-2}\nabla u_i>v_i|_{\Gamma}d\Gamma(x)\\ = \int_{\Omega}{\rm div}[(1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i-2}\nabla u_i]v_i dx\\ + \int _{\Omega} <(1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i-2}\nabla u_i, \nabla v_i>dx\\ = \int_{\Omega} \lambda (|u_i|^{q_i-2}u_i + |u_i|^{r_i-2}u_i)v_i dx + \int_{\Omega}\varepsilon_ig_i(x, \nabla u_i, u_i)v_i dx-\int_\Omega f_i v_i dx\\ + \int _{\Omega} <(1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i-2}\nabla u_i, \nabla v_i>dx \\ = - \int_\Gamma \beta_x(u_i|_\Gamma) v_i|_\Gamma d\Gamma(x). $

因此

$ -< \vartheta, (1+\frac{|\nabla u_i|^{p_i}}{\sqrt{1+|\nabla u_i|^{2p_i}}})|\nabla u_i|^{p_i-2}\nabla u_i> \in \beta_{x}(u_i(x)), ~~ x \in \Gamma. $

至此证明了$u = (u_1, u_2, \cdots, u_M)$是(2.1) 式的非平凡解.

最后证明若进一步假设$g_i(x, r_1, \cdots, r_{N+1})$关于$r_{N+1}$单调, 则(2.1) 式的解还是唯一的.

事实上, 只需证明若$f = Au + Cu = A\widehat{u}+C\widehat{u}, $其中$u = (u_1, u_2, \cdots, u_M)$, $\widehat{u}= (\widehat{u_1}, \widehat{u_2}, \cdots, \widehat{u_M})$, 则: $u \equiv \widehat{u}, $$u_i \equiv \widehat{u_i}, $ $i = 1, 2, \cdots, M.$

在附加条件“$g_i(x, r_1, \cdots, r_{N+1})$关于$r_{N+1}$单调”的假设下, 易知$C_i$单调.利用引理2.1及2.2并注意下式

$0 \leq \langle u_i-\widehat{u_i}, B_{i} u_i - B_{i}\widehat{u_i}\rangle = \langle u_i-\widehat{u_i}, \partial \Phi_i (\widehat{u_i}) - \partial \Phi_i (u_i)\rangle + \langle u_i-\widehat{u_i}, C_i\widehat{u_i} - C_iu_i \rangle\leq 0, $

可知$\langle u_i-\widehat{u_i}, B_{i} u_i - B_{i}\widehat{u_i}\rangle = 0, $ $i = 1, 2, \cdots, M.$因此$u \equiv \widehat{u}.$

推论2.1 当$i \equiv 1$时, Capillarity系统退化成如下Capillarity方程

$ \begin{equation}\left\{ \begin{array}{lll} -{\rm div}[(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2{p}}}})|\nabla u|^{p-2}\nabla u]+\\ \lambda(|u|^{q-2}u + |u|^{r-2}u) + \varepsilon g(x, \nabla u, u)= f(x) ~~{\rm a.e.}~~x\in \Omega, \\ - <\vartheta, (1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2{p}}}}) |\nabla u|^{p-2}\nabla u> \in \beta_x(u(x))~~{\rm a.e.}~~x\in \Gamma. \end{array} \right.\end{equation} $ (2.11)

$f(x) \in L^p(\Omega)$满足$\displaystyle\int_\Omega [g(x, \nabla u, u)-f]|u|^{p-2}u dx \geq 0$时, (2.11) 式存在非平凡解$u(x) \in L^p(\Omega).$若进一步假设$g_i(x, r_1, \cdots, r_{N+1})$关于$r_{N+1}$单调, 则(2.11) 式存在唯一的非平凡解.

注2.1 文[1]在讨论Capillarity边值问题(1.1) 解的存在性时, 不仅要证明所定义的算子$A$$L$是极大单调算子, 还需要验证一个很复杂的不等式“$\langle Aw, J^{-1}(L_t(w))\rangle \geq - k_1 \|L_tw\|^2 - k_2\|L_tw\| - k_3, $其中$L_t$$L$的Yosida逼近”; 文[3]在讨论Capillarity边值问题(1.2) 解的存在性时, 不仅要验证$A$$m$增生、有界逆紧映射并且满足条件“$\langle Au - f, J(u-a)\rangle \geq C(a, f), $其中$f \in R(A)$$a \in D(A)$”, 还需要挖掘$A$的值域的特征.

本文采用了不同于文[1, 3]中的证明方法.从某种意义上讲, 研究方法相对简单.

参考文献
[1] 魏利, 段丽凌. 一类广义Capillarity方程的单调性方法[J]. 系统科学与数学, 2013, 33(8): 937–948.
[2] Wei Li, Duan Liling, Zhou H Y. Study on the existence and uniqueness of solution of generalized capillarity problem[J]. Abstract and Applied Analysis, 2012.
[3] Reich S. The range of sums of accretive and monotone operators[J]. J. Math. Anal. Appl., 1979, 68: 310–317. DOI:10.1016/0022-247X(79)90117-3
[4] Calvert B D, Gupta C P. Nonlinear elliptic boundary value problems in Lp-spaces and sums of ranges of accretive operators[J]. Nonl. Anal., 1978, 2(1): 1–26. DOI:10.1016/0362-546X(78)90038-X
[5] Pascali D, Sburlan S. Nonlinear mappings of monotone type[M]. Romania: Sijthoff Noordhoff Intern. Publ., 1978.
[6] Barbu V. Nonlinear semigroups and differential equations in Banach spaces[M]. Netherlands: Noordhoff Intern. Publ., 1976.
[7] Kato T. Perturbation theory for linear operators[M]. Second Corrected Printing of the Second Edition, Berlin, New York, Tokyo: Springer-Verlag, 1984.
[8] 李立康, 郭毓陶. 索伯列夫空间引论[M]. 上海: 上海科技出版社, 1981.
[9] Hirano N, Kalinde A K. On perturbations of m-accretive operators in Banach spaces[J]. Proc. Amer. Math. Soc., 1996, 124(4): 1183–1190. DOI:10.1090/S0002-9939-96-03140-1
[10] Wei Li, Agarwal R P. Existence of solutions to nonlinear Neumann boundary value problems with generalized p-Laplacian operator[J]. Comput. Math. Appl., 2008, 56(2): 530–541. DOI:10.1016/j.camwa.2008.01.013
[11] Wei Li, Duan Liling, Agarwal R P. Existence and uniqueness of the solution to integro-differential equation involving the generalized p-Laplacian operator with mixed boundary conditions[J]. J. Math., 2013, 33(6): 1009–1018.
[12] Wei Li, Agarwal R P, Wong P J Y. Non-linear boundary value problems with generalized pLaplacian, ranges of m-accretive mappings and iterative schemes[J]. Appl. Appl., 2014, 93(2): 391–407.