本文考虑一类时滞依赖状态的集值抽象积分微分方程:
其中A是Banach空间$\left( X, \Vert \cdot \Vert \right)$中紧分析预解算子$R\left( t\right), t>0$的无穷小生成元, $f(t), \ t\in J$是一个有界线性算子, $G:J\times \mathcal{B}\rightarrow P\left( X\right)$是有界闭凸值集值映射, $F:J\times \mathcal{B}\rightarrow X$, $\rho :J\times \mathcal{B}\rightarrow \left( -\infty, a\right]$是给定的函数, $\mathcal{B} $是一个抽象的相空间, $x_{t}:\left( -\infty, 0\right] \rightarrow X$, $% x_{t}\left( s\right) =x\left( t+s\right), s\leq 0$属于$\mathcal{B}$.
近年来,时滞依赖状态的微分方程温和解的存在性引起了许多学者的兴趣[1-3],具有预解算子的非线性积分微分方程作为偏积分微分方程的抽象形式出现在许多物理现象中[4-6],该预解算子类似于Banach空间中抽象微分方程的半群算子,并且可以从半群理论中提取(见文献[7-8]),,尽管如此,该预解算子不满足半群性质,受文献[9-10]启发,本文旨在利用预解算子理论建立(1.1)–(1.2) 温和解的存在性.
$ R\left(t\right), t>0$是由A产生的一个紧分析预解算子.设$\left(X, \| \cdot \|\right)$是Banach空间, $L\left(X;Y\right)$记为从X映射到Y的所有有界线性算子构成的Banach空间, 并且当$X=Y$时简记为$L\left(X\right)$.
定义2.1[11] 若每个集合$\widetilde{B}_{i}$在空间$C\left(\left[t_{i}, t_{i+1}\right];X\right)$内是相对紧时,则称$B\subseteq \mathcal{P}\mathcal{C}$是相对紧的.
定义2.2 若对任意的$x\in X$有$G\left( x\right) $是凸(闭)的, 则称集值映射$G:X\rightarrow P\left( X\right) $是凸(闭)值的.对X的任一有界子集B, 如果$G\left( B \right) = \bigcup\limits_{x \in B} G \left( x \right)$有界, 则称G在有界集上有界(即$\mathop {\sup }\limits_{x \in B} \{ \sup \{ \left\| y \right\|:y \in G(x)\} \} < \infty $).
定义2.3 若对任意的$x_{0}\in X$, $G\left( x_{0}% \right)$是X的非空闭子集, 并且对包含$G\left( x_{0}\right)$的X的任一开子集$\Omega$, 存在$x_{0}$的一个开邻域V, 使得$G\left( V\right) \subseteq \Omega$, 则称G在X中是上半连续的.
定义2.4 如果对X的任一有界子集$\Omega$, 有$G\left( \Omega \right)$是相对紧的, 则称集值映射G是全连续的.
引理2.1[12] 设集值映射[13-14]G是全连续的, 并且有非空紧值, 则G是上半连续的当且仅当G有闭图像(即当$ x_{n}\rightarrow x_{\ast }, y_{n}\rightarrow y_{\ast }, y_{n}\in G\left( x_{n}\right)$时, 有$\ y_{\ast }\in G\left( x_{\ast }\right)$).
定义2.5 记$\mathcal{N}$是kuratowski非紧测度[15], 如果集值映射$G:X\rightarrow P\left( X\right) $是上半连续的.且对所有满足$% \mathcal{N}\left( B\right) \neq 0$的X的子集B, 有$\mathcal{N}\left( G\left( B\right) \right) < \mathcal{N}\left( B\right)$, 则称G是凝聚的[13].
$P_{bd, cp, cv}\left( X\right)$, $P_{bd, cl, cv}\left( X\right)$, $P_{cp, cv}\left( X\right)$分别表示由X中的所有有界紧凸, 有界闭凸, 紧凸子集组成的集类.若存在$x\in X$, 使得$x\in G\left( x\right)$, 则称x是集值映射G的一个不动点[16].
下面介绍相空间$ \mathcal{B}$的公理化定义[17].具体来说, $ \mathcal{B}$是由赋予半模$\Vert \cdot \Vert _{\mathcal{B}}$的从$\left( -\infty, 0\right] $映射到X的函数组成的线性空间, 并且符合以下公理:
(A) 如果$x:\left(-\infty, \sigma+a\right)\rightarrow X$, $a>0$, 使得$x|_{\left[\sigma, \sigma+a\right]}\in C\left(\left[% \sigma, \sigma+a\right], X\right)$且$x_{\sigma}\in \mathcal{B}$, 则对任意的$t\in\left[\sigma, \sigma+a\right]$以下条件成立: (ⅰ) $x_{t}\in\mathcal{B}$; (ⅱ) $\|x\left(t\right)\|\leq H\|x_{t}\|_{\mathcal{B}}$; (ⅲ) $\|x_{t}\|_{\mathcal{B}}\leq K\left(t-\sigma\right)\sup\left\{\|x\left(s\right)\|:\sigma \leq s \leq t\right\}+M\left(t-\sigma\right)\|x_{\sigma}\|_{\mathcal{B}}$, 其中$H>0$是常数; $K, M:\left[0, \infty\right)\rightarrow\left[1, \infty\right)$, $% K$连续, M局部有界, 并且H, K, M与$x\left(\cdot\right)$无关.
(A1) 对(A)中的函数$x\left(\cdot\right)$, $t\rightarrow x_{t}$是从$\left[\sigma, \sigma+a\right]$映射到$\mathcal {B}$的连续函数.
(B) $\mathcal{B}$是完备的.
定义2.6 集值映射$G:J\times \mathcal{B}\rightarrow P_{cp, cv}\left( X\right)$称为Carathéodory集值映射, 如果:
(ⅰ) 对每个$\psi\in\mathcal{B}$, $G\left(\cdot, \psi\right):J\rightarrow X$是可测的;
(ⅱ) 对任意的$t\in J$, $G\left(t, \cdot\right):\mathcal{B}\rightarrow X$是上半连续的.
引理2.2[12] 若G为Carathéodory集值映射, 且对固定的$\psi \in \mathcal{B}$, 集合$S_{G, \psi }=\left\{g\in L^{1}\left( J, X\right) \right. \left. :g\left( t\right) \in G\left( t, \psi \right) \ a.e.\ t\in J\right\}$是非空的, $\Gamma :L^{1}\left( J, X\right) \rightarrow C\left( J, X\right)$是线性连续映射, 则$ \Gamma \circ S_{G}:C\left( J, X\right) \rightarrow P_{cp, cv}\left( C\left( J, X\right) \right), \ y\rightarrow \left( \Gamma \circ S_{G}\right) \left( y\right) =\Gamma \left( S_{G}, _{y}\right)$是$C\left( J, X\right) \times C\left( J, X\right)$上的闭图算子.
考虑如下系统:
定义2.7[7] 方程(2.1) 的预解算子[4-5]是一个有界算子泛函$ R\left( t\right) \in L\left( X\right)$, 且具有下列性质:
(ⅰ) $R\left(0\right)=I$, I表示X上的恒等算子.
(ⅱ) 对所有的$u\in X$, $t\mapsto R\left(t\right)y$是连续的.
(ⅲ) 对$t\in J$, $R\left( t\right) \in B\left( Y\right), t\in J$, 其中Y是赋予图像范数$\Vert y\Vert_{Y}=\Vert Ay\Vert+\Vert y\Vert$的Banach空间$D\left( A\right)$.若$y\in Y$, 有$R\left( \cdot \right) y\in C^{1}\left( J, X\right) \cap C\left( J, Y\right)$并且
令$0\in \rho (A)$, 当$0 < \alpha \leq 1$时,可以定义分数阶算子$% A^{\alpha }$, 此算子在其定义域$D\left( A^{\alpha }\right)$[4]上是一个闭线性算子.并且, $D\left( A^{\alpha }\right)$在X上凝聚.表达式
定义了$D\left( A^{\alpha }\right)$上的一个范数.此后,用$% X_{\alpha }$表示Banach空间$D\left( A^{\alpha }\right)$并赋予范数$\Vert x\Vert _{\alpha }$.
引理2.3 [4] 由上面条件可得:
(ⅰ)$A^{\alpha}:X_{\alpha}\rightarrow X_{\alpha}$,则当$0\leq \alpha \leq 1$时,$X_{\alpha}$是一个Banach空间.
(ⅱ)若预解算子A是紧的,则当$0 < \beta \leq \alpha$时,$X_{\alpha }\hookrightarrow X_{\beta }$是连续并且紧的.
(ⅲ)对每个$\alpha >0$,存在一个正常数$% C_{\alpha }$使得
引理2.4[18] 假设(a)和(b)成立, 则存在一个常数$H=H(a)$, 使得
引理2.5[7] 设B是Banach空间X中的有界凸子集, $\Gamma:B\rightarrow P\left(B\right)$是上半连续的凝聚集值映射, 如果对任意的$x\in B$, $\Gamma\left(x\right)$是B中的闭凸子集, 则$\Gamma$在B中有一个不动点.
为了证明问题(1.1)–(1.2) 的温和解的存在性, 假设$\rho :J\times \mathcal{B}\rightarrow \left( -\infty, a\right]$连续, 另外, 假定以下条件成立:
H$_{\varphi }$ 函数$t\rightarrow \varphi _{t}$从$\mathcal{R}% \left( \rho ^{-}\right) =\left\{ \rho \left( s, \psi \right) :\rho \left( s, \psi \right) \leq 0, \left( s, \psi \right) \in J\times \mathcal{B}\right\}$到$\mathcal{B}$上是连续的, 且存在一个连续有界函数$J^{\varphi }:\mathcal{R}\left( \rho ^{-}\right) \rightarrow \left( 0, \infty \right)$, 使得对每个$t\in \mathcal{R}\left( \rho ^{-}\right)$, 有$\Vert \varphi _{t}\Vert _{% \mathcal{B}}\leq J^{\varphi }\left( t\right) \Vert \varphi \Vert _{\mathcal{B% }}$.
H1 存在常数$M_{1}, M_{2}>0, $使得$\Vert R\left( t\right) \Vert \leq M_{1}, \Vert f\left( t\right) \Vert \leq M_{2}, t\in J$.
H2 $F:J\times \mathcal{B}\rightarrow X$是连续的, 存在$% \beta \in \left( 0, 1\right)$, $L>0$使得对所有的$\ \left( t_{i}, \psi _{i}\right) \in J\times \mathcal{B}, \ i=1, 2.$,F是$X_{\beta }$-值并满足
而且, 存在正常数$L_{1}$使得
H3 函数$G:J\times \mathcal{B}\rightarrow P_{bd, cp, cv}\left( X\right)$满足如下性质:
(a) 对所有的$\psi\in\mathcal{B}$,函数$G\left(\cdot, \psi\right):J\rightarrow X$是强可测的.
(b) 对每个$t\in J$,函数$G\left(t, \cdot\right):\mathcal{B}\rightarrow X$是连续的,且对固定的$\psi \in \mathcal{B}$, 集合$S_{G, \psi }=\left\{ g\in L^{1}\left( J, X\right) :g\left( t\right) \in G\left( t, \psi \right)\ a.e.\ t\in J\right\}$是非空的.
(c) 对每个正常数$r, $存在正函数$\Theta _{r}\in L^{1}\left( J, \mathbb{R}_{+}\right)$使得
注3.1[17] 设$\varphi \in \mathcal{B}, t\leq 0$. $\varphi _{t}$表示定义为$\varphi _{t}\left( \theta \right) =\varphi \left( t+\theta \right)$形式的函数.因此, 如果公理A中的函数$x\left( \cdot \right)$满足$ x_{0}=\varphi$, 则$x_{t}=\varphi _{t}$.
定义3.1 函数$x:(-\infty, a]\rightarrow X$称为问题(1.1)–(1.2) 的温和解, 如果对任意的$s\in J$, 有$x_{0}=\varphi$, $% x_{\rho \left( s, x_{s}\right) }\in \mathcal{B}$, 函数$AR\left( t-s\right) F\left( s, x_{s}\right), s\in \left[ 0, a\right]$Bochner可积,$x(\cdot )$在区间$(t_{i}, t_{i+1}]\ (i=0, 1, \cdots, n)$上是连续的,并且满足
引理3.1[17] 如果$x:\left( -\infty, a\right] \rightarrow X$是一个使得$x_{0}=\varphi$且$x|_{J}\in \mathcal{P}% \mathcal{C}\left( J, X\right)$成立的函数, 则
其中$\widetilde{J^{\varphi }}=\mathop {\sup }\limits_{t\in \mathcal{R}\left( \rho ^{-}\right) }J^{\varphi }\left( t\right)$, ${M_a} = \mathop {\sup }\limits_{t \in J} M\left( t \right)$,${K_a} = \mathop {\max }\limits_{t \in J} K\left( t \right)$.
定理3.1 假设H1-H3和H$_{\varphi }$成立,如果
则系统(1.1)–(1.2) 至少存在一个温和解.
证 在赋予一致收敛范数的空间$\mathbb{Y}=\left\{ u\in \mathcal{P}\mathcal{C}:u\left( 0\right) =\varphi \left( 0\right) \right\}$上定义算子$\Gamma :\mathbb{Y}% \rightarrow P\left( \mathbb{Y}\right)$,定义如下
其中
$\overline{x}:\left( -\infty, a\right] \rightarrow X$满足$ \overline{x}_{0}=\varphi$, 且在J上$\overline{x}=x$.
设$\overline{\varphi }:\left( -\infty, a\right) \rightarrow X$是$\varphi$的延拓使得在J上$\overline{% \varphi }\left( \theta \right) =\varphi \left( 0\right)$, 且
由公理A和$R\left( t\right)$的强连续性, 可知当$x\in B_{r}\left( 0, \mathbb{Y}% \right)$时,$\Gamma x\in \mathcal{P}\mathcal{C}$.又由引理2.3、H2和引理3.1, 可得
然后由Bocher's定理[19]可知$AR\left( t-s\right) F\left( s, \overline{x}_{s}\right)$是可积的.所以$\Gamma$在$B_{r}\left( 0, \mathbb{Y}\right)$上有明确定义.
分下面几步来证明温和解的存在性.
第一步 存在$r>0$, 使得$\Gamma \left( B_{r}\left( 0, % \mathbb{Y}\right) \right) \subset B_{r}\left( 0, \mathbb{Y}\right)$.
对任意的$r>0$, 易知$B_{r}$是$\mathbb{Y}$中的一个有界闭凸子集.下面证明存在$r>0$, 使得$\Gamma \left( B_{r}\right) \subset B_{r}$, 其中$\Gamma \left( {{B_r}} \right) = \bigcup\limits_{x \in {B_r}} \Gamma \left( x \right)$.采用反证法, 事实上, 如果上述结果不成立, 则对任意的$r>0$, 存在$ x^{r}\in B_{r}$, 使得$u^{r}\in \Gamma \left( x^{r}\right) $但$\Vert u^{r}\Vert _{\infty }>r$, 且对某些$g^{r}\in S_{G, \left(\overline{x^{r}}\right)_{\rho }}$, 有
故$r < \Vert u^{r}\Vert _{\infty }=\max_{t\in J}\left\vert u^{r}\left( t\right) \right\vert$.
因此, 对某些$t\in \left[0, a\right]$, 有
所以
这与(3.1) 矛盾.因此存在$r>0$使得$\Gamma \left( B_{r}\left( 0, \mathbb{Y}\right) \right) \subset B_{r}\left( 0, \mathbb{% Y}\right)$.
第二步 对每个$x\in \mathbb{Y}, \Gamma\left(x\right)$是凸的.
如果$u_{1}, u_{2}\in \Gamma \left( x\right)$, 则存在$ g_{1}, g_{2}\in S_{G, \overline{x}_{\rho }}$, 使得对任意的$t\in J$, 有
设$0\leq \lambda \leq 1$, 则对任意的$t\in J$, 有
因为$S_{G, \overline{x}_{\rho }}$是凸的(因为$G$有凸值), 所以.
第三步 对每个$x\in \mathbb{Y}, \Gamma\left(x\right)$是闭的.
设$\left\{ x_{n}\right\} _{n\geq 0}\in \Gamma \left( y\right)$, 使得在$\mathbb{Y}$中$ x_{n}\rightarrow x$, 则$x\in \mathbb{Y}$, 且存在$g_{_{n}}\in S_{G, \overline{x}_{_{\rho }}}$, 使得
由于G有非空紧值, 则在$L^{1}\left( J, X\right) $中存在一个序列$g_{_{n}}$使得$g_{_{n}}\rightarrow g$, 则$g\in S_{G, \overline{x}_{_{\rho }}}$.故
从而得到$x\in \Gamma \left( x\right)$.
第四步 从$B_{r}\left( 0, \mathbb{Y}\right) $到$B_{r}\left( 0, \mathbb{Y}\right)$上,$\Gamma$是凝聚映射.
为证明$\Gamma$是凝聚映射,令$\Gamma =\Gamma _{1}+\Gamma _{2}$,其中
下面证明$\Gamma _{1}$压缩且$\Gamma _{2}$是全连续算子.为了证明$\Gamma _{1}$压缩, 任取$x^{\ast }, x^{\ast \ast }\in B_{r}\left( 0, \mathbb{Y}% \right)$.对每个$t\in J$,有
(见(3.2) 式).因此
即$\Gamma _{1}$是压缩的.
下面证明$\Gamma _{2}$是全连续的.
(ⅰ)显然$\Gamma _{2}\left( B_{r}\left( 0, \mathbb{Y}\right) \right) =\left\{ \Gamma _{2}x:x\in B_{r}\left( 0, \mathbb{Y}\right) \right\}$是有界的.
(ⅱ)$\Gamma _{2}\left( B_{r}\left( 0, \mathbb{Y}\right) \right) =\left\{ \Gamma _{2}x:x\in B_{r}\left( 0, \mathbb{Y}\right) \right\}$是等度连续的.
令$t_{1}, t_{2}\in J, \ t_{1} < t_{2}$.设$x\in B_{r}, u\in \Gamma _{2}\left( x\right)$, 则存在$g\in S_{G, \overline{x}_{\rho }}$, 使得
则
因为$R\left( t\right)$是紧且解析的,所以$R\left( t\right)$在$\left( 0, a\right]$上是一致算子拓扑连续的.又因$t_{2}\rightarrow t_{1}$且$\varepsilon$充分小, 所以上述不等式的右端趋于零且与$x\in B_{r}$无关.
(ⅲ) $\left( \Gamma _{2}B_{r}\left( 0, \mathbb{Y}\right) \right) \left( t\right) =\left\{ \Gamma _{2}x\left( t\right) :x\in B_{r}\left( 0, \mathbb{Y}\right) \right\}$是相对紧的$% t\in J$.
当$t=0$时, 易证$\Gamma _{2}\left( B_{r}\right) \left( t\right)$是相对紧的.令$0 < t\leq a$是固定的, 且$0<\epsilon <t$, 对$% y\in B_{r}, u\in \Gamma _{2}\left(x\right)$, 存在泛函$ g\in S_{G, \overline{x}_{_{\rho }}}$, 使得
当$t=0$时, 显然$\Gamma _{2}\left( B_{r}\right) \left( t\right) $在X中是相对紧的.假如$0 < t\leq a$是固定的且$0<\epsilon <t$, 对任意的$% z\in B_{r}$和$\mathcal {K}_{1}\in \Gamma_{2}\left( x\right)$, 存在$% g\in S_{G, z_{_{\rho }}}$, 使得
显然, 即需要证明集合
在X中是相对紧的.
由引理2.4和算子$R\left(\epsilon\right)$的紧性可知
在X中是相对紧的, 而且, 由引理2.4, 有
所以集合$\left\{\int_{0}^{t-\epsilon }R\left( t-s\right) g\left( s\right) ds\right\}$在X中是相对紧的.对任意的$t\in J$, 有
不等式右端当$\epsilon \rightarrow 0$时, 一致收敛于零.由此可知, 存在相对紧集序列任意逼近于集合$ \left\{\int_{0}^{t}R\left( t-s\right) g\left( s\right) ds\right\}$.所以集合$\left\{\int_{0}^{t}R\left( t-s\right) g\left( s\right) ds\right\}$是X中的相对紧集.
(ⅳ)$\Gamma_{2}$有闭图.设$y^{n}\rightarrow y^{\ast }$,$y^{n}\in B_{r}, u_{n}\in \Gamma_{2}\left( y^{n}\right)$及$u_{n}\rightarrow u^{\ast }$, 需要证明$% u^{\ast }\in \Gamma _{2}\left( y^{\ast }\right)$.
事实上, 若$u_{n}\in \Gamma _{2}\left( y^{n}\right)$, 则存在$f_{n}\in S_{G, % \left(\overline{y^{n}}\right)_{\rho }}$, 使得对任意的$t\in J$, 有
下面证明存在$g^{\ast }\in S_{G, \left(\overline{y^{\ast }}% \right)_{\rho }}$, 使得
易知当$n\rightarrow \infty$时
考虑如下线性连续算子
由引理2.2可得, $\Gamma^{*} \circ S_{G}$是闭图算子, 且有
由于$y^{n}\rightarrow y^{\ast }$, 从引理2.2可得
即一定存在$g^{\ast }\left( t\right) \in S_{G, \left(\overline{y^{\ast }}\right)_{\rho}}$, 使得
所以$\Gamma _{2}$是上半连续的.从而$\Gamma =\Gamma_{1}+\Gamma_{2}$是上半连续且凝聚的.由引理2.5知, 具有分数阶算子的时滞依赖状态的脉冲多值积分微分方程问题(1.1)–(1.2) 至少有一个温和解.
推论3.1 假设H1, H2, H3(a)-(b), H$_{\varphi }$以及下面条件成立
H3(c')存在一个可积函数$m:J\rightarrow % \left[0, +\infty \right)$和常数$\upsilon \in \lbrack 0, 1)$使得
则当
时, 问题(1.1)–(1.2) 至少存在一个温和解.