数学杂志  2017, Vol. 37 Issue (2): 247-256   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
OU YANGCheng
CHEN Xian-feng
MO Jia-qi
THE POINTED LAYER SOLUTION OF SINGULAR PERTURBATION FOR NONLINEAR EVOLUTION EQUATIONS WITH TWO PARAMETERS
OU YANGCheng1, CHEN Xian-feng2, MO Jia-qi3     
1. Faculty of Science, Huzhou University, Huzhou 313000, China;
2. Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China;
3. Department of Mathematic, Anhui Normal University, Wuhu 241003, China
Abstract: In this paper, the nonlinear singular perturbation problem for the evolution equations is studied.The outer solution and corrective terms of the pointed, boundary and initial layers for the solution are constructed.By using the fixed point theorem, the uniformly validity of solution to the problem ia proved and the results of the study for the singular perturbation with two parameters is extended.
Key words: pointed layer     singular perturbation     evolution equation    
两参数非线性发展方程的奇摄动尖层解
欧阳成1, 陈贤峰2, 莫嘉琪3     
1. 湖州师范学院理学院, 浙江 湖州 313000;
2. 上海交通大学数学系, 上海 200240;
3. 安徽师范大学数学系, 安徽 芜湖 241003
摘要:本文研究了一类具有非线性发展方程奇摄动问题.引入伸长变量和多重尺度,构造了初始边值问题外部解和尖层、边界层和初始层校正项,得到了问题形式解.利用不动点定理,证明了问题的解的一致有效性.推广了对两参数的奇摄动问题的研究结果.
关键词尖层    奇摄动    发展方程    
1 Introduction

The nonlinear singular perturbation evolution equations are an important target in the mathematical, engineering mathematics and physical etc. circles. Many approximate methods were improved. Recently, many scholars did a great of work, such as de Jager et al. [1], Barbu et al. [2], Hovhannisyan et al. [3], Graef et al. [4], Barbu et al. [5], Bonfoh et al. [6], Faye et al. [7], Samusenko [8], Liu [9] and so on. Using the singular perturbation and other's theorys and methods the authoes also studied a class of nonlinear singular perturbation problems [10-24]. In this paper, using the special and simple method, we consider a class of the evolution equation.

Now we studied the following singular perturbation evolution equations initial-boundary value problem with two parameters

$\begin{eqnarray} & & \varepsilon^{2}\frac{\partial^{2}u}{\partial t^{2}}-\mu^{2}Lu=f(t, x, u), \ \ (t, x)\in(0, T_{0}]\times\Omega, \\ \end{eqnarray}$ (1.1)
$\begin{eqnarray} & & u=g(t, x), \ \ x\in\partial\Omega, \\ \end{eqnarray}$ (1.2)
$\begin{eqnarray} & & u|_{t=0}=h_{1}(x), \ \ \varepsilon\frac{\partial u}{\partial t}|_{t=0}=h_{2}(x), \ \ x\in\Omega, \end{eqnarray}$ (1.3)

where

$\begin{eqnarray*} & & L=\sum^{n}_{i, j=1}\alpha_{ij}\frac{\partial^{2}}{\partial x_{i}\partial x_{j}} +\sum^{n}_{i=1}\beta_{i}\frac{\partial}{\partial x_{i}}, \\ & & \sum^{n}_{i, j=1}\alpha_{ij}\xi_{i}\xi_{j}\geq\lambda\sum^{n}_{i=1}\xi^{2}_{i}, \ \ \forall\xi_{i}\in\Re, \ \lambda>0, \end{eqnarray*}$

$\varepsilon$ and $\mu$ are small positive parameters, $x=(x_{1}, x_{1}, \cdots, x_{n})\in\Omega, \Omega$ is a bounded region in $\Re^n, \ \partial\Omega$ denotes boundary of $\Omega$ for class $C^{1+\alpha}$, where $\alpha\in(0, 1)$ is Hölder exponent, $T_{0}$ is a positive constant large enough, $f(t, x, u)$ is a disturbed term, $L$ signifies a uniformly elliptic operator.

Hypotheses that

$[H_{1}]$ $\sigma=\varepsilon/\mu$ as $\mu\rightarrow 0$;

$[H_{2}]$ $\alpha_{ij}, \beta_{i}$ with regard to $x$ are Hölder continuous, $g$ and $h_{i}$ are sufficiently smooth functions in correspondence ranges;

$[H_{3}]$ $f$ is a sufficiently smooth functions in correspondence ranges except $x_{0}\in\Omega$;

$[H_{4}]$ $f(t, x, u)\leq -c < 0, (x\neq x_{0})$, where $C>0$ is a constant and for $f(t, x, u)=0$, there exists a solution $U_{00}$, such as $\lim\limits_{x\rightarrow x_{0}}U(t, x)\neq U(t, x_{0})$.

2 Construct Outer Solution

Now we construct the outer solution of problems (1.1)--(1.3).

The reduced problem for the original problem is

$\begin{equation} f(t, x, u)=0. \end{equation}$ (2.1)

From hypotheses, there is a solution $U_{00}(t, x)\ (x\neq x_{0})$ to equation (2.1). And there is a $U_{00}(t, x)$ which satisfies $f(t, x_{0}, U_{00}(t.x_{0}))=0$.

Let the outer solution $U_{00}(t, x)$ to problems (1.1)--(1.3), and

$\begin{equation} U(t, x)\sim\sum^{\infty}_{i, j=0}U_{ij}(t, x)\varepsilon^{i}\mu^{j}. \end{equation}$ (2.2)

Substituting eq. (2.2) into eq. (1.1), developing the nonlinear term $f$ in $\varepsilon$, and $\mu$, and equating coefficients of the same powers of $\varepsilon^{i}\mu^{j}\ (i, j=0, 1, \cdots, i+j\neq 0)$, respectively. We can obtain $U_{ij}(t, x), \ i, j=0, 1, \cdots, i+j\neq 0$. Substituting $U_{00}(t, x)$ and $U_{ij}(t, x), \ i, j=0, 1, \cdots, i+j\neq 0$ into eq.(2.2), we obtain the outer solution $U(t, x)$ to the original problem. But it does not continue at $(t, x_{0})$ and it may not satisfy the boundary and initial conditions (1.2)--(1.3), so that we need to construct the pointed layer, boundary layer and initial layer corrective functions.

3 Construct Pointed Layer Corrective Term

Set up a local coordinate system $(\rho, \phi)$ near $x_{0}\in\Omega$. Define the coordinate of every point $Q$ in the neighborhood of $x_{0}$ with the following way: the coordinate $\rho(\leq\rho_{0})$ is the distance from the point $Q$ to $x_{0}$, where $\rho_{0}$ is small enough. The $\phi=(\phi_{1}, \phi_{2}, \cdots, \phi_{n-1})$ is a nonsingular coordinate.

In the neighborhood of $x_{0}: (0\leq\rho\leq\rho_{0})\in\Omega$,

$\begin{equation} L=a_{nn}\frac{\partial^{2}}{\partial\rho^{2}} +\sum^{n-1}_{i=1}a_{ni}\frac{\partial^{2}}{\partial\rho\partial \phi_{i}} +\sum^{n-1}_{i, j=1}a_{ij}\frac{\partial^{2}}{\partial \phi_{i}\partial \phi_{j}} +b_{n}\frac{\partial}{\partial\rho}+\sum^{n-1}_{i=1}b_{i}\frac{\partial}{\partial \phi_{i}}, \end{equation}$ (3.1)

where

$\begin{eqnarray*} & & a_{nn}=\sum^{n}_{i, j=1}\alpha_{ij}\frac{\partial\rho}{\partial x_{i}} \frac{\partial\rho}{\partial x_{j}}, \ \ a_{ni}=2\sum^{n}_{j, k=1}\alpha_{jk}\frac{\partial\rho}{\partial x_{j}} \frac{\partial\phi_{i}}{\partial x_{k}}, \ \ a_{ij}=\sum^{n}_{k, l=1}\alpha_{kl}\frac{\partial\phi_{i}}{\partial x_{k}} \frac{\partial\phi_{j}}{\partial x_{l}}, \\ & & b_{n}=\sum^{n}_{i, j=1}\alpha_{ij}\frac{\partial^{2}\rho}{\partial x_{i}\partial x_{j}}, \ \ b_{i}=\sum^{n}_{i, j=1}\alpha_{ij} \frac{\partial^{2}_{i}\phi_{i}}{\partial x_{i}\partial x_{j}}. \end{eqnarray*}$

We lead into the variables of multiple scales[1] on $0\le \rho \le {{\rho }_{0}}\subset \Omega $:

$$ \widetilde{\sigma}=\frac{h(\rho, \phi)}{\mu}, \ \ \widetilde{\rho}=\rho\ \ \widetilde{\phi}=\phi, $$

where $h(\rho, \phi)$ is a function to be determined. For convenience, we still substitute $\rho, \phi$ for $\widetilde{\rho}, \widetilde{\phi}$ below respectively. From eq.(3.1), we have

$\begin{equation} L=\frac{1}{\mu^{2}}K_{0}+\frac{1}{\mu}K_{1}+K_{2}, \end{equation}$ (3.2)

while

$$K_{0}=a_{nn}h^{2}_{\rho}\frac{\partial^{2}}{\partial\rho^{2}}$$

and $K_{1}, K_{2}$ are determined operators and their constructions are omitted.

Let $h_{\rho}=\sqrt{1/a_{nn}}$ and the solution $u$ of original problems (1.1)--(1.3) be

$\begin{equation} u=U(t, x)+V_{1}(t, \rho, \phi), \end{equation}$ (3.3)

where $V_{1}$ is a pointed layer corrective term. And

$\begin{equation} V_{1}\sim\sum^{\infty}_{i, j=0}v_{1ij}(t, \rho, \phi)\sigma^{i}\mu^{j}. \end{equation}$ (3.4)

Substituting eqs.(3.1)--(3.4) into eq.(1.1), expanding nonlinear terms in $\sigma$ and $\mu$, and equating the coefficients of like powers of $\sigma^{i}\mu^{j}$, respectively, for $i, j=0, 1, \cdots$, we obtain

$\begin{eqnarray} & & K_{10}v_{100}=0, \ \ (\rho, \phi)\in(0\leq\rho\leq\rho_{0}), \\ \end{eqnarray}$ (3.5)
$\begin{eqnarray} & & v_{100}|_{\rho=0}=-U_{00}(t, x_{0}), \\ \end{eqnarray}$ (3.6)
$\begin{eqnarray} & & K_{10}v_{1ij}=G_{ij}, \ \ (\rho, \phi)\in(0\leq\rho\leq\rho_{0}), \ \ i, j=0, 1, \cdots, \ \ i+j\neq 0, \\ \end{eqnarray}$ (3.7)
$\begin{eqnarray} & & v_{1ij}|_{\rho=0}=-U_{ij}(t, x_{0}), \ \ i, j=0, 1, \cdots, \ \ i+j\neq 0, \end{eqnarray}$ (3.8)

where $G_{ij}\ (i, j=0, 1, \cdots, \ \ i+j\neq 0)$ are determined functions. From problems (3.5)--(3.6), we can have $v_{100}$, From $v_{100}$ and eqs.(3.7)--(3.8), we can obtain solutions $v_{1ij}\ (i, j=0, 1, \cdots, \ \ i+j\neq 0)$, successively.

From the hypotheses, it is easy to see that $v_{1ij}\ (i, j=0, 1, \cdots)$ possesses boundary layer behavior

$\begin{equation} v_{1ij}=O(\exp(-\delta_{ij}\frac{\rho}{\sigma})), \ \ i=0, 1, \cdots, \end{equation}$ (3.9)

where $\delta_{ij}>0\ (i, j=0, 1, \cdots)$ are constants.

Let $\overline{v}_{1ij}=\psi(\rho)v_{1ij}$, where $\psi(\rho)$ is a sufficiently smooth function in $0\leq\rho\leq\rho_{0}$, and satisfies

$\begin{equation*}\psi(\rho)= \left\{ \begin{aligned} & 1, ~~~~ 0\leq\rho\leq(1/3)\rho_{0}, \\ & 0, ~~~~ \rho\geq(2/3)\rho_{0}. \end{aligned} \right. \end{equation*}$

For convenience, we still substitute $v_{1ij}$ for $\overline{v}_{1ij}$ below. Then from eq. (3.4), we have the pointed layer corrective term $V_{1}$ near $(0\leq\rho\leq\rho_{0})\subset\Omega$.

4 Construct Boundary Layer Corrective Term

Now we set up a local coordinate system $(\overline{\rho}, \overline{\phi})$ in the neighborhood near $\partial\Omega: 0\leq\overline{\rho}\leq\overline{\rho}_{0}$ as Ref. [9], where $\overline{\phi}= (\overline{\phi}_{1}, \overline{\phi}_{2}, \cdots, \overline{\phi}_{n-1}).$ In the neighborhood of $\partial\Omega: 0\leq\overline{\rho}\leq\overline{\rho}_{0}$,

$\begin{equation} L=\overline{a}_{nn}\frac{\partial^{2}}{\partial\overline{\rho}^{2}} +\sum^{n-1}_{i=1}\overline{a}_{ni} \frac{\partial^{2}}{\partial\overline{\rho}\partial\overline{ \phi}_{i}} +\sum^{n-1}_{i, j=1}\overline{a}_{ij} \frac{\partial^{2}}{\partial \overline{\phi}_{i}\partial \overline{\phi}_{j}} +\overline{b}_{n}\frac{\partial}{\partial\overline{\rho}} +\sum^{n-1}_{i=1}\overline{b}_{i}\frac{\partial}{\partial \overline{\phi}_{i}}, \end{equation}$ (4.1)

where

$\begin{eqnarray*} & & \overline{a}_{nn}=\sum^{n}_{i, j=1}\alpha_{ij}\frac{\partial\overline{\rho}}{\partial x_{i}} \frac{\partial\overline{\rho}}{\partial x_{j}}, \ \ \overline{a}_{ni}=2\sum^{n}_{j, k=1}\alpha_{jk}\frac{\partial\overline{\rho}}{\partial x_{j}} \frac{\partial\overline{\phi_{i}}}{\partial x_{k}}, \ \ \overline{a}_{ij}=\sum^{n}_{k, l=1}\alpha_{kl}\frac{\partial\overline{\phi}_{i}}{\partial x_{k}} \frac{\partial\overline{\phi_{j}}}{\partial x_{l}}, \\ & & \overline{b}_{n}=\sum^{n}_{i, j=1}\alpha_{ij} \frac{\partial^{2}\overline{\rho}}{\partial x_{i}\partial x_{j}}, \ \ \overline{b}_{i}=\sum^{n}_{i, j=1}\alpha_{ij} \frac{\partial^{2}_{i}\overline{\phi}_{i}}{\partial x_{i}\partial x_{j}}. \end{eqnarray*}$

We lead into the variables of multiple scales [1] on $(0\leq\overline{\rho}\leq \overline{\rho}_{0})\subset\Omega$:

$$ \overline{\sigma}=\frac{\overline{h}(\overline{\rho}, \overline{\phi})}{\mu}, \ \ \widetilde{\rho}=\overline{\rho}\ \ \widetilde{\phi}=\overline{\phi}, $$

where $\overline{h}(\overline{\rho}, \overline{\phi})$ is a function to be determined. For convenience, we still substitute $\overline{\rho}, \overline{\phi}$ for $\widetilde{\rho}, \widetilde{\phi}$ below respectively. From (4.1), we have

$\begin{equation} L=\frac{1}{\mu^{2}}\overline{K}_{0}+\frac{1}{\mu}\overline{K}_{1}+\overline{K}_{2}, \end{equation}$ (4.2)

while

$$\overline{K}_{0}=\overline{a}_{nn}\overline{h}^{2}_{\overline{\rho}} \frac{\partial^{2}}{\partial\overline{\sigma}^{2}}$$

and $\overline{K}_{1}, \overline{K}_{2}$ are determined operators and their constructions are omitted too.

Let $\overline{h}_{\overline{\rho}}=\sqrt{1/\overline{a}_{nn}}$ and the solution $u$ of original problems (1.1)--(1.3) be

$\begin{equation} u=U+V_{2}, \end{equation}$ (4.3)

where $V_{2}$ is a boundary layer corrective term. And

$\begin{equation} V_{2}\sim\sum^{\infty}_{i, j=0}v_{2ij}(t, \overline{\rho}, \overline{\phi})\varepsilon^{i}\sigma^{j}. \end{equation}$ (4.4)

Substituting eq.(4.4) into eqs.(1.1) and (1.2), expanding nonlinear terms in $\varepsilon$ and $\sigma$, and equating the coefficients of like powers of $\varepsilon^{i}\sigma^{j}\ (i, j=0, 1, \cdots)$. And we obtain

$\begin{eqnarray} & & \overline{K}_{0}v_{200}=0, \ \ (\overline{\rho}, \overline{\phi})\in(0\leq\overline{\rho}\leq\overline{\rho}_{0}), \\ \end{eqnarray}$ (4.5)
$\begin{eqnarray} & & v_{200}|_{\overline{\rho}=0}=g(t, x)-U_{00}(t, x), \\ \end{eqnarray}$ (4.6)
$\begin{eqnarray} & & K_{0}v_{2ij}=\overline{G}_{ij}, \ \ (\overline{\rho}, \overline{\phi})\in(0\leq\overline{\rho}\leq\overline{\rho}_{0}), \ \ i, j=0, 1, \cdots, \ \ i+j\neq 0, \\ \end{eqnarray}$ (4.7)
$\begin{eqnarray} & & v_{2ij}|_{\overline{\rho}=0}=-U_{ij}(t, x_{0}), \ \ i, j=0, 1, \cdots, \ \ i+j\neq 0, \end{eqnarray}$ (4.8)

where $\overline{G}_{ij}\ (i, j=0, 1, \cdots, \ i+j\neq 0)$ are determined functions successively, their constructions are omitted too.

From problems (4.5)--(4.6), we can have $v_{200}$. And from eqs. (4.7), (4.8), we can obtain solutions $v_{2ij}\ (i=0, 1, \cdots, \ i+j\neq 0)$ successively. Substituting into eq. (4.4), we obtain the boundary layer corrective function $V_{2}$ for the original boundary value problems (1.1)--(1.3).

From the hypotheses, it is easy to see that $v_{2ij}\ (i, j=0, 1, \cdots)$ possesses boundary layer behavior

$\begin{equation} v_{2ij}=O(\exp(-\overline{\delta}_{ij}\frac{\overline{\rho}}{\overline{\sigma}})), \ \ i, j=0, 1, \cdots, \end{equation}$ (4.9)

where $\overline{\delta}_{ij}>0\ (i, j=0, 1, \cdots)$ are constants.

Let $\overline{v}_{2ij}=\overline{\psi}(\overline{\rho})v_{2ij}$, where $\overline{\psi}(\overline{\rho})$ is a sufficiently smooth function in $0\leq\overline{\rho}\leq\overline{\rho}_{0}$, and satisfies

$\begin{equation*} \overline{\psi}(\overline{\rho})=\left\{ \begin{aligned} & 1, ~~~~0\leq\overline{\rho}\leq(1/3)\overline{\rho}_{0}, \\ & 0, ~~~~ \overline{\rho}\geq(2/3)\overline{\rho}_{0}. \end{aligned} \right. \end{equation*}$

For convenience, we still substitute $v_{2ij}$ for $\overline{v}_{2ij}$ below. Then from eq. (4.4) we have the boundary layer corrective term $V_{2}$ near $(0\leq\overline{\rho}\leq\overline{\rho}_{0})$.

5 Construct Initial Layer Corrective Term

The solution $u$ of original problems (1.1)--(1.3) be

$\begin{equation} u=U+V_{1}+V_{2}+W, \end{equation}$ (5.1)

where $W$ is an initial layer corrective term. Substituting eq. (5.1) into eqs. (1.1)--(1.3), we have

$\begin{eqnarray} & & \varepsilon^{2}W_{tt}-\mu^{2}LW=f(t, x, U+V_{1}+V_{2}+W)\nonumber\\ & & -f(t, x, U+V_{1}+V_{2})-\mu^{2}L(U+V_{1}+V_{2}), \\ \end{eqnarray}$ (5.2)
$\begin{eqnarray} & & W|_{x\in\partial\Omega}=(g(t, x)-U(t, x)-V_{2}(t, x))_{x\in\partial\Omega}, \\ \end{eqnarray}$ (5.3)
$\begin{eqnarray} & & W|_{t=0}=h_{1}(x)-U(0, x)-V_{1}(0, x)-V_{2}(0, x), \ \ x\in\Omega, \\ \end{eqnarray}$ (5.4)
$\begin{eqnarray} & & \varepsilon\frac{\partial W}{\partial t}|_{t=0}= h_{2}(x)-\varepsilon(\frac{\partial U(0, x)}{\partial t} -\frac{\partial V_{1}(0, x)}{\partial t}-\frac{\partial V_{2}(0, x)}{\partial t}), \ \ x\in\Omega. \end{eqnarray}$ (5.5)

We lead into a stretched variable [1, 2]: $\tau=t/\varepsilon$ and let

$\begin{equation} W\sim\sum^{\infty}_{i, j=0}w_{ij}(\tau, x)\varepsilon^{i}\mu^{j}. \end{equation}$ (5.6)

Substituting eqs. (2.2), (3.4), (4.4) and (5.6) into eqs. (5.2)--(5.5), expanding nonlinear terms in $\varepsilon$ and $\mu$, and equating the coefficients of like powers of $\varepsilon^{i}\mu^{j}$, respectively, for $i, j=0, 1, \cdots$, we obtain

$\begin{eqnarray} & & (w_{00})_{\tau\tau}=f(0, x, U_{00}+v_{100}+v_{200}+w_{00})-f(0, x, U_{00}+v_{100}+v_{200}), \\ \end{eqnarray}$ (5.7)
$\begin{eqnarray} & & w_{00}|_{x\in\partial\Omega}=0, \\ \end{eqnarray}$ (5.8)
$\begin{eqnarray} & & w_{00}|_{\tau=0}=h_{1}(x)-U_{00}(0, x)-v_{100}(0, x)-v_{200}(0, x), \ \ x\in\Omega, \\ \end{eqnarray}$ (5.9)
$\begin{eqnarray} & & \frac{\partial w_{00}}{\partial \tau}|_{\tau=0}=0, \ \ x\in\Omega.\\ \end{eqnarray}$ (5.10)
$\begin{eqnarray} & & (w_{ij})_{\tau\tau}=\overline{G}_{ij}, \ \ i, j=0, 1, \cdots, \ i+j\neq 0, \\ \end{eqnarray}$ (5.11)
$\begin{eqnarray} & & w_{ij}|_{x\in\partial\Omega}=h_{2}(x), \ \ i, j=0, 1, \cdots, \ i+j\neq 0, \\ \end{eqnarray}$ (5.12)
$\begin{eqnarray} & & w_{ij}|_{\tau=0}=-U_{ij}(0, x)-v_{1ij}(0, x)-v_{2ij}(0, x), \nonumber\\ & & x\in\Omega, \ \ i, j=0, 1, \cdots, \ i+j\neq 0, \\ \end{eqnarray}$ (5.13)
$\begin{eqnarray} & & \frac{\partial w_{ij}}{\partial \tau}|_{\tau=0}=-\frac{\partial U_{(i-1)j}(0, x)}{\partial t} -\frac{\partial v_{1(i-1)j}(0, x)}{\partial t}-\frac{\partial v_{2(i-1)j}(0, x)}{\partial t}, \nonumber\\ & & x\in\Omega, \ \ i, j=0, 1, \cdots, \ \ i+j\neq 0, \end{eqnarray}$ (5.14)

where $\overline{G}_{ij}\ (i, j=0, 1, \cdots, \ i+j\neq 0)$ are determined functions. From problems (5.7)--(5.10), we can have $w_{00}$, From $w_{00}$ and eqs. (5.11)--(5.14), we can obtain solutions $w_{ij} (i, j=0, 1, \cdots, \ i+j\neq 0)$ successively.

From the hypotheses, it is easy to see that $w_{ij}\ (i, j=0, 1, \cdots)$ possesses initial layer behavior

$\begin{equation} w_{ij}=O(\exp(-\widetilde{\delta}_{ij}\frac{t}{\varepsilon})), \ \ i=0, 1, \cdots, \end{equation}$ (5.15)

where $\widetilde{\delta}_{ij}>0\ (i, j=0, 1, \cdots)$ are constants.

Then from eq. (5.15) we have the initial corrective term $W$.

From eq. (5.1), thus we obtain the formal asymptotic expansion of solution $u$ for the nonlinear singular perturbation evolution equations initial-boundary value problems (1.1)--(1.3) with two parameters

$\begin{eqnarray} u & \sim & U_{00}+\sum^{\infty}_{i, j=0, 1, i+j\neq 0}U_{ij}\varepsilon^{i}\mu^{j} +\sum^{\infty}_{i, j=0}(v_{1ij}(t, x)+v_{2ij}(t, x))\sigma^{i}\mu^{j}\nonumber\\ & & +\sum^{\infty}_{i, j=0}w_{ij}(\tau, x)\varepsilon^{i}\mu^{j}, \ \ 0<\varepsilon, \mu, \sigma\ll 1. \end{eqnarray}$ (5.16)
6 The Main Result

Now we prove that this expansion (5.16) is a uniformly valid in $\Omega$ and we have the following theorem

Theorem Under hypotheses $[H_{1}]-[H_{4}]$, then there exists a solution $u(t, x)$ of the nonlinear singular perturbation evolution equation initial-boundary value problems (1.1)--(1.3) with two parameters and holds the uniformly valid asymptotic expansion (5.16) for $\varepsilon$ and $\mu$ in $(t, x)\in[0, T_{0}]\times\overline{\Omega}$.

Proof  We now get the remainder term $R(t, x)$ of the initial-boundary value problems (1.1)--(1.3). Let

$\begin{equation} u(t, x)=\overline{u}(t, x)+R(t, x), \end{equation}$ (6.1)

where

$\begin{eqnarray*} \overline{u} & \sim & U_{00}+\sum^{m}_{i, j=0, i+j\neq 0}U_{ij}\varepsilon^{i}\mu^{j} +\sum^{m}_{i, j=0}(v_{1ij}(t, x)+v_{2ij}(t, x))\sigma^{i}\mu^{j}\\ & & +\sum^{m}_{i, j=0}w_{ij}(\tau, x)\varepsilon^{i}\mu^{j}. \end{eqnarray*}$

Using eqs. (2.2), (3.9), (4.9), (5.15), (6.1), we obtain

$\begin{eqnarray*} F[R] & \equiv & \varepsilon^{2}\frac{\partial^{2}R}{\partial t^{2}}-\mu^{2}LR -f(t, x, \overline{u}+R)+f(t, x, \overline{u})\\ & = & O(\lambda^{m+1})\ \ x\in\Omega, \ \lambda=\max(\varepsilon, \mu, \sigma), \\ R & = & O(\lambda^{m+1})\ \ x\in\partial\Omega, \ \lambda=\max(\varepsilon, \mu, \sigma), \\ R|_{t=0} & = & O(\lambda^{m+1})\ \ x\in\Omega, \ \lambda=\max(\varepsilon, \mu, \sigma), \\ \varepsilon\frac{\partial R}{\partial t}|_{t=0} & = & O(\lambda^{m+1})\ \ x\in\Omega, \ \lambda=\max(\varepsilon, \mu, \sigma). \end{eqnarray*}$

The linearized differential operator $\overline{L}$ reads

$$ \overline{L}[p]=\varepsilon^{2}\frac{\partial^{2}p}{\partial t^{2}} -\mu^{2}L[p], $$

and therefore

$$ \Psi[p]\equiv f[p]-\overline{L}[p]=f(t, x, \overline{u})-f(t, x, (\overline{u}+p)) +f_{u}(t, x, (\overline{u}+p))p. $$

For fixed $\varepsilon, \mu$, the normed linear space $N$ is chosen as

$$ N=\{p|p\in C^{2}((0, T_{0}]\times\Omega), \ p|_{\partial\Omega}=g, \ p|_{t=0}=h_{1}, \ p_{t}|_{t=0}=h_{12}\} $$

with norm

$$ \|p\|=\max_{t\in(0.T_{0}], x\in\Omega}|p|, $$

and the Banach space $B$ as

$$ B=\{q|q\in C((0, T_{0}]\times\Omega)\} $$

with norm

$$ \|q\|=\max_{t\in(0.T_{0}], x\in\Omega}|q|. $$

From the hypotheses we may show that the condition

$$ \|L^{-1}[g]\|\leq l^{-1}\|g\|, \ \ \forall g\in B $$

of the fixed point theorem [1, 2] is fulfilled where $l^{-1}$ is independent of $\varepsilon$ and $\mu$, i.e., $L^{-1}$ is continuous. The Lipschitz condition of the fixed point theorem become

$\begin{eqnarray*} & & \|\Psi[p_{2}]-\Psi[p_{1}]\|\\ & < & C_{1}\max_{t\in(0, T_{0}], x\in\Omega}\{(|p|_{1}+|p|_{2})|p_{2}-p_{1}|\} +C_{2}\max_{t\in(0, T_{0}], x\in\Omega}\{|p^{2}|\cdot|p_{2}-p_{1}|\}\\ & < & C_{3}t\|p_{2}-p_{1}\|, \end{eqnarray*}$

where $C_{1}, C_{2}$ and $C_{3}$ are constants independent of $\varepsilon$ and $\mu$, this inequality is valid for all $p_{1}, p_{2}$ in a ball $K_{N}(r)$ with $\|r\|\leq 1$. Finally, we obtain the result that the remainder term exists and moreover

$$ \max_{t\in(0, T_{0}], x\in\Omega}|R(t, x)|=O(\lambda^{m+1}), \ \ \lambda=\max(\varepsilon, \mu, \sigma). $$

From eq. (6.1), we have

$\begin{eqnarray*} \overline{u} & \equiv & U_{00}+\sum^{m}_{i, j=0, i+j\neq 0}U_{ij}\varepsilon^{i}\mu^{j} +\sum^{m}_{i, j=0}(v_{1ij}(t, x)+v_{2ij}(t, x))\sigma^{i}\mu^{j}\\ & & +\sum^{m}_{i, j=0}w_{ij}(\tau, x)\varepsilon^{i}\mu^{j}+O(\lambda^{m+1}), \ \ 0<\varepsilon, \mu, \sigma., \ \ \lambda=\max(\varepsilon, \mu, \sigma). \end{eqnarray*}$

The proof of the theorem is completed.

References
[1] de Jager E M, Jiang Furu. The theory of singular perturbation[M]. Amsterdam: North-Holland Publishing Co., 1996.
[2] Barbu L, Morosanu G. Singularly perturbed boundary-value problems[M]. Basel: Birkhauserm Verlag AG, 2007.
[3] Hovhannisyan G, Vulanovic R. Stability inequalities for one-dimensional singular perturbation problems[J]. Nonl. Stud., 2008, 15(4): 297–322.
[4] Graef J R, Kong L. Solutions of second order multi-point boundary value problems[J]. Math. Proc. Camb. Philos. Soc., 2008, 145(2): 489–510.
[5] Barbu L, Cosma E. Elliptic regularizations for the nonlinear heat equation[J]. J. Math. Anal. Appl., 2009, 351(2): 392–399.
[6] Bonfoh A, Grassrlli M, Miranville A. Intertial manifolds for a singular perturbation of the viscous Cahn-Hilliiard-Gurtin equation[J]. Topol. Meth. Nonl. Anal., 2010, 35(1): 155–185.
[7] Faye L, Frenod E, Seck D. Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[J]. Discrete Contin. Dyn. Syst., 2011, 29(3): 1001–1030.
[8] Samusenko P F. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations[J]. J. Math. Sci., 2013, 189(5): 837–847.
[9] Mo Jiaqi. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Sci. China, Ser. A, 1989, 32(11): 1306–1315.
[10] Mo Jiaqi, Lin Wantao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. J. Sys. Sci. Compl., 2008, 20(1): 119–128.
[11] Mo Jiaqi. A class of singulaely perturbed differential-difference reaction diffusion equations[J]. Adv. Math., 2009, 38(2): 227–230.
[12] Mo Jiaqi. Approximate solution of homotopic mapping to solitary for generalized nonlinear KdV system[J]. Chin. Phys. Lett., 2009, 26(1): 010204-1–010204-4.
[13] Mo Jiaqi. A variational iteration solving method for a class of generalized Boussinesq equations[J]. Chin Phys. Lett., 2009, 26(6): 060202-1–60202-3.
[14] Mo Jiaqi. Homotopic mapping solving method for gain fluency of laser pulse amplifier[J]. Sci. China, Ser. G, 2009, 39(5): 568–661.
[15] Mo Jiaqi, Lin Wantao. Asymptotic solution for a class of sea-air oscillator model for El-Nino southern oscillation[J]. Chin. Phys., 2008, 17(2): 370–372. DOI:10.1088/1674-1056/17/2/002
[16] Mo Jiaqi. A class of homotopic solving method for ENSO mpdel[J]. Acta Math. Sci., 2009, 29(1): 101–109. DOI:10.1016/S0252-9602(09)60011-4
[17] Mo Jiaqi, Chen Huaijun. The corner layer solution of Robin problem for semilinear equation[J]. Math. Appl., 2012, 25(1): 1–4.
[18] Mo Jiaq, Lin Yihua, Lin Wantao, Chen Lihua. Perturbed solving method for interdecadal sea-air oscillator model[J]. Chin. Geogr. Sci., 2012, 22(1): 42–47. DOI:10.1007/s11769-011-0464-2
[19] Mo Jiaqi, Yao Jingsun. A class of singularly perturbed nonlinear reaction diffusion equations with two parameters[J]. J. Math., 2011, 31(2): 341–346.
[20] Ouyang Cheng, Cheng Lihua, Mo Jiaqi. Solving a class of burning disturbed problem with shock layers[J]. Chin. Phys. B, 2012, 21(5): 050203. DOI:10.1088/1674-1056/21/5/050203
[21] Ouyang Cheng, Lin Wantao, Cheng Rongjun, Mo Jiaqi. A class of asymptotic solution of El Nino sea-Air time delay oscillator[J]. Acta. Phys. Sinica, 2013, 62(6): 060201.
[22] Ouyang Cheng, Shi Janfang, Lin Wantao, Mo Jiaqi. Perturbation method of travelling solution for (2+1) dimensional disturbed time delay breaking solitary wave equation[J]. Acta. Phys. Sinica, 2013, 62(17): 170202.
[23] Ouyang Cheng, Yao Jingsun, Shi Janfang, Mo Jiaqi. The solitary wave solution for a class of dusty plasma[J]. Acta. Phys. Sinica, 2013, 63(11): 110203.
[24] Chen Lihua, Yao Jingsun, Wen Zhaohui, Mo Jiaqi. Shock wave solution for the nonlinear reaction diffusion problem[J]. J. Math., 2013, 33(3): 381–387.