数学杂志  2017, Vol. 37 Issue (2): 239-246   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
MO Hui-xia
YU Dong-yan
SUI Xin
BOUNDEDNESS OF TOEPLITZ OPERATORS GENERATED BY THE CAMPANATO-TYPE FUNCTIONS AND RIESZ TRANSFORMS ASSOCIATED WITH SCHÖDINGER OPERATORS
MO Hui-xia, YU Dong-yan, SUI Xin     
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract: In the paper, we study the boundedness of the Toeplitz operators generated by the Campanato-type functions and Riesz transforms associated with the Schrödinge operators.Using the sharp maximal function estimate, we establish the boundedness of the Toeplitz operator Θb on the Lebesgue space, which extend the previous results about the comutators.
Key words: Commutator     Campanato-type functions     Riesz transform     Schrödinger operator    
由Campanato型函数和与薛定谔算子相关的Riesz变换生成的Toeplitz算子的有界性
默会霞, 余东艳, 隋鑫     
北京邮电大学理学院, 北京 100876
摘要:本文研究了由Campanato型函数及与Schrödinger算子相关的Riesz变换生成的Toeplitz算子的有界性.利用Sharp极大函数估计得到了Toeplitz算子Θb在Lebesgue空间的有界性,拓广了已有交换子的结果.
关键词交换子    Campanato型函数    Riesz变换    Schrödinger算子    
1 Introduction

Let $\mathfrak{L}=-\triangle+V$ be a Schr\"{o}dinger operator on $\mathbb{R}^{n}(n>3), $ where $\triangle$ is the Laplacian on $\mathbb{R}^{n}$ and $V\neq 0$ is a nonnegative locally integrable function. The problems about the Schr\"{o}dinger operators $\mathfrak{L}$ have been well studied(see [1-3] for example). Especially, Fefferman [1], Shen [2] and Zhong [3] developed some basic results.

The commutators generated by the Riesz transforms associated with the Schrödinger operators and BMO functions or Lipschitz functions also attract much attention(see[4-6] for example). Chu [7], consider the boundedness of commutators generalized by the $\rm{BM}{{\rm{O}}_{\mathfrak{L}}}$ functions and the Riesz transform $\nabla(-\triangle+V)^{-1/2}$ on Lebesgue spaces. Mo et al. [8] established the boundedness of commutators generated by the Campanato-type functions and the Riesz transforms associated with Schrödinger operators.

First, let us introduce some notations. A nonnegative locally $L^{q}(\mathbb{R}^{n})$ integrable function $V$ is said to belong to $B_{q}(1<q<\infty)$ if there exists $C=C(q, V)>0$ such that the reverse Hölder's inequality

$\biggl(\dfrac{1}{|B|}\int_{B}V(x)^{q}dx\biggr)^{1/q}\leq C\biggl(\dfrac{1}{|B|}\int_{B}V(x)dx\biggr)$ (1.1)

holds for every ball $B$ in $\mathbb{R}^{n}$.

Let $T_{j, 1}=\nabla(-\triangle+V)^{-1/2}$ or $T_{j, 1}=\pm I$ and $\mathrm{T}_{j, 2}$ be a linear operator which is bounded on $\mathrm{L} ^{p}(\mathbb{R}^{n})$ space, for $j=1, 2, \dots, m$. Let $M_{b}f=bf$, where $b$ is a locally integrable function on $\mathbb{R}^{n}$, then the Toeplitz operator is defined by

$\Theta^{b}=\sum\limits_{j=1}^{m}T_{j, 1}M_{b}T_{j, 2}.$

About the Toeplitz operator, there are some results. Mo et al. [9] established the boundedness of the Toeplitz operator generalized by the singular integral operator with nonsmooth kernel and the generalized fractional. Liu et al. [11] investigated the boundness of the Toeplitz operator related to the generalized fractional integral operator.

The commutator $[b, T](f)=bT(f)-T(bf)$ is a particular case of the Toeplitz operators. Inspired by [7-10], we will consider the boundedness of the Toeplitz operators generated by the Campanato-type functions and Riesz transforms associated with Schödinger operators.

Definition 1.1  Let $f\in L_{loc}(\mathbb{R}^{n})$, then the sharp maximal function associated with $\mathfrak{L}=-\triangle+V$ is defined by

$\begin{array}{cl} M_{\mathfrak{L}}^{\#}(f)(x)=\left\{\begin{array}{ll} \sup\limits_{x\in B}\dfrac{1}{|B|} \int_{B(x, s)}|f(y)-f_{B(x, s)}|dy, \;\; & \mbox{when } s<\rho(x), \\ \sup\limits_{x\in B}\dfrac{1}{|B(x, s)|} \int_{B(x, s)}|f(y)|dy, \;\; & \mbox{when }s\geq\rho(x).\\ \end{array}\right.\\ \end{array}$

Where $\rho$ is define by

$\rho(x)=\sup\biggl\{r>0:\dfrac{1}{r^{n-2}}\int_{B(x, r)}V\leq 1\biggr\}.$

Definition 1.2 [12, 13]  Let $\mathfrak{L}=-\triangle+V$, $p\in(0, \infty)$ and $\beta\in\mathbb{R}$. A function $f\in L_{loc}^{p}(\mathbb{R}^{n})$ is said to be in $\Lambda_{\mathfrak{L}}^{\beta, p}(\mathbb{R}^{n})$, if there exists a nonnegative constant $C$ such that for all $x\in\mathbb{R}^{n}$ and $0<s<\rho(x)\leq r, $

$\biggl\{\dfrac{1}{|B(x, s)|^{1+p\beta}} \int_{B(x, s)}|f(y)-f_{B(x, s)}|^{p}dy\biggr\}^{1/p}+\biggl\{\dfrac{1}{|B(x, r)|^{1+p\beta}} \int_{B(x, r)}|f(y)|^{p}dy\biggr\}^{1/p}\leq C, $

where $f_{B}=\frac{1}{|B|}\int_{B}f(y)dy$ for any ball $B.$ Moreover, the minimal constant $C$ as above is defined for the norm of $f$ in the space $\Lambda_{\mathfrak{L}}^{\beta, p}(\mathbb{R}^{n})$ and denote by $\|f\|_{\Lambda_{\mathfrak{L}}^{\beta, p}(\mathbb{R}^{n})}.$

Remak 1.1 [12]   When $p\in[1, \infty), $ $\Lambda_{\mathfrak{L}}^{0, p}(\mathbb{R}^{n})=BMO_{\mathfrak{L}}(\mathbb{R}^{n}).$ And, when $0\leq\beta<\infty$ and $p_1, p_2\in[1, \infty)$, $\Lambda_{\mathfrak{L}}^{\beta, p_1}(\mathbb{R}^{n})=\Lambda_{\mathfrak{L}}^{\beta, p_2}(\mathbb{R}^{n})$ and $\|f\|_{\Lambda_{\mathfrak{L}}^{\beta, p_1}(\mathbb{R}^{n})}\sim\|f\|_{\Lambda_{\mathfrak{L}}^{\beta, p_2}(\mathbb{R}^{n})}.$ For simplicity, we denote $\Lambda_{\mathfrak{L}}^{\beta, p}(\mathbb{R}^{n})$ by $\Lambda_{\mathfrak{L}}^{\beta}(\mathbb{R}^{n}).$

Lemma 1.1 (see [2, 7])  Suppose that $V\in B_q (n/2\leq q<n)$ satisfies the condition

$\begin{array}{cl} \int_{B(x, R)}\frac{V(y)}{|x-y|^{n-1}}dy\leq\frac{1}{R^{n-1}}\int_{B(x, R)}V(y)dy, \end{array}$ (1.2)

then the kernel $K(x, y)$ of operator $\nabla(-\triangle+V)^{-1/2}$ satisfies the following estimates: there exists a constant $\delta>0$ such that for any nonnegative integrate $i, $

$|K(x, y)|\leq \dfrac{C_i}{\{|1+m(x, V)|x-y|\}^i}\dfrac{1}{|x-y|^{n}}, $ (1.3)
$|K(x+h, y)-K(x, y)|\leq C\dfrac{|h|^{\delta}}{|x-y|^{n+\delta}}, $ (1.4)

for $0<|h|<\frac{|x-y|}{2}.$

Hence, $\nabla(-\triangle+V)^{-1/2}$ is boundedness on $ L^{p}(\mathbb R^n)$ space for $1<p\leq p_{0}, $ where $1/p_{0}=1/q-1/n.$

Throughout this paper, the letter C always remains to denote a positive constant that may vary at each occurrence but is independent of the essential variable.

2 Theorems and lemmas

Theorems 2.1   Let $V\in B_q$ satisfy (1.2) for $n/2\leq q<n$. Let $0\leq\beta<1, $ $b\in\Lambda_{\mathfrak{L}}^{\beta}(\mathbb{R}^{n})$, $1<\tau<\infty$ and $1<s<p_{0}$, where $1/p_{0}=1/q-1/n.$ Suppose that $\Theta^{1}f=0$ for any $f\in L^{r}(\mathbb{R}^n)$ $(1<r<\infty), $ then there exists a constant $C>0$ such that

$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x)\leq C\sum\limits_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n \beta}(T_{j, 2}f)(x).$

Theorems 2.2   Let $V\in B_q$ satisfy(1.2) for $n/2\leq q<n$ and $1<p_0<\infty$ satisfy $1/p_{0}=1/q-1/n.$ Suppose that $\Theta^{1}f=0$ for any $f\in L^{\tau}(\mathbb{R}^n)$ $(1<\tau<\infty), $ $0<\beta<1, $ and $b\in\Lambda_{\mathfrak{L}}^{\beta}(\mathbb{R}^{n})$. Then for $1<r<\min\{1/\beta, p_0\}$ and $1/p=1/r-\beta, $ there exists a constant $C>0$, such that

$\|\Theta^{b}f\|_{L^{p}}\leq C\sum\limits_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\|f\|_{L^{r}}.$

Theorems 2.3   Let $V\in B_q$ satisfy (1.2) for $n/2\leq q<n$ and $1<p_0<\infty$ satisfy $1/p_{0}=1/q-1/n.$ Suppose that $\Theta^{1}f=0$ for any $f\in L^{\tau}(\mathbb{R}^n)$ $(1<\tau<\infty)$ and $b\in BMO_{\mathfrak{L}}(\mathbb{R}^{n})$, then for $1<p<p_0, $ there exists a constant $C>0$, such that

$\|\Theta^{b}f\|_{L^{p}}\leq C\sum\limits_{j=1}^{m}\|b\|_{BMO_{\mathfrak{L}}}\|f\|_{L^{p}}.$

To prove the theorems, we need the following lemmas.

Lemma 2.1 (see [7])  Let $0<p_0<\infty, $ $p_0\leq p<\infty$ and $\delta>0.$ If $f$ satisfies the condition $M(|f|^{\delta})^{1/\delta}\in L^{p_0}, $ then exists a constant $C>0$ such that

$\|M(|f|^{\delta})^{1/\delta}\|_{L^{p}}\leq C\|M_{\mathfrak{L}}^{\#}(|f|^{\delta})^{1/\delta}\|_{L^{p}}.$

Lemma 2.2 (see [14])   For $1\leq\gamma<\infty$ and $\beta>0, $ let

$M_{\gamma, \beta}(f)(x)=\sup_{B\ni x}\biggl(\dfrac{1} {|B|^{1-\beta\gamma/n}}\int_{B}|f(y)|^{\gamma}dy\biggr)^{1/\gamma}.$

Suppose that $\gamma<p<n/\beta$ and $1/q=1/p-\beta/n, $ then $\|M_{\gamma, \beta}(f)\|_{L^{q}}\leq C\|f\|_{L^{p}}.$

Remark 2.1  When $\beta=0$, we denote $M_{\gamma, \beta}=M_{r}.$ And, it is easy to see that $M_{r}$ is boundedness on $L^{p}(\mathbb{R}^{n}), $ for $1<r<p.$

Lemma 2.3 (see [8])   Let $B=B(x, r)$ and $0<r<\rho(x)$, then

$|b_{2^{k}B}-b_{B}|\leq C k|2^{k}B|^{\beta}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}, \;\mbox{for}\; k=1, 2, \cdots .$
3 Proofs of Theorem 2.1-2.2

Firstly, let us prove Theorem 2.1.

Fix a ball $B=B(x, r_0)$ and let $2B=B(x, 2r_0).$ We need only to estimate

$\dfrac{1}{|B|}\int_{B}|\Theta^{b}f(y)-(\Theta^{b}f)_{B}|dy.$

Case Ⅰ When $0<r_0 <\rho(x), $ using the condition $\Theta^{1}f=0$, then we have

$\begin{align} & \quad \frac{1}{|B|}\int_{B}{|{{\Theta }^{b}}f(y)-{{({{\Theta }^{b}}f)}_{B}}|dy} \\ & \le \sum\limits_{j=1}^{m}{\frac{1}{|B|}(\int_{B}{|{{T}_{j,1}}{{M}_{(b-{{b}_{B}})}}{{T}_{j,2}}f(y)-{{({{T}_{j,1}}{{M}_{(b-{{b}_{B}})}}{{T}_{j,2}}f)}_{B}}|dy})}. \\ \end{align}$

If $T_{j, 1}=\nabla(-\triangle+V)^{-1/2}, $ then

$\begin{array}{cl} & \dfrac{1}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})}T_{j, 2}f(y)-(T_{j, 1}M_{(b-b_{B})}T_{j, 2}f)_{B}|dy\\ & \leq\dfrac{2}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})}T_{j, 2}f(y)- T_{j, 1}M_{(b-b_{B})\chi_{R^{n}\backslash 2B}}T_{j, 2}f(x)|dy\\ & \leq\dfrac{2}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})\chi_{2B}}T_{j, 2}f(y)|dy+\dfrac{2}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})\chi_{R^{n}\backslash 2B}}T_{j, 2}f(y)-T_{j, 1}M_{(b-b_{B})\chi_{R^{n}\backslash 2B}}T_{j, 2}f(x)|dy\\ & =:I_{1}+I_{2}.\end{array}$

Let $\tau$ and $s$ be as in Theorem 2.1. Then using Hölder's inequality and the $L^{s}$ boundedness of $T_{j, 1}$(Lemma 1.1), we have

$\begin{array}{cl} I_{1} & \leq C\biggl(\dfrac{1}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})\chi_{2B}}T_{j, 2}f(y)|^{s}dy\biggr)^{\frac{1}{s}}\\ & \leq C\biggl(\dfrac{1}{|2B|^{1+\beta s\tau'}}\int_{2B}|b(y)-b_{B}|^{s\tau^{'}}dy\biggr)^{\frac{1}{s\tau^{'}}} \biggl(\dfrac{1}{|2B|^{1-\beta s\tau}}\int_{2B}|T_{j, 2}f(y)|^{s\tau}dy\biggr)^{\frac{1}{s\tau}}\\ & \leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n\beta}(T_{j, 2}f)(x).\end{array}$

Let's estimate $I_{2}.$ From (1.4), it follows that

$\begin{align} & \quad |{{T}_{j,1}}[(b-{{b}_{B}}){{\chi }_{{{R}^{n}}\backslash 2B}}{{T}_{j,2}}f](y)-{{T}_{j,1}}[(b-{{b}_{B}}){{\chi }_{{{R}^{n}}\backslash 2B}}{{T}_{j,2}}f](x)| \\ & =\left| \int_{{{\left( 2B \right)}^{c}}}{(b(z)-{{b}_{B}}){{T}_{j,2}}f(z)(K(y,z)-K(x,z))dz} \right| \\ & \le C\sum\limits_{k=1}^{\infty }{\int_{2k_{{{r}_{0}}<\left| z-x \right|\le {{2}^{k+{{1}_{{{r}_{0}}}}}}}^{k}}{\frac{|y-x{{|}^{\delta }}}{|z-x{{|}^{n+\delta }}}|b(z)-{{b}_{B}}||{{T}_{j,2}}f(z)|dz}} \\ & \le C\sum\limits_{k=1}^{\infty }{\frac{r_{0}^{\delta }}{{{({{2}^{k}}{{r}_{0}})}^{n+\delta }}}\int_{|z-x|\le {{2}^{k+1}}{{r}_{0}}}{|b(z)-{{b}_{{{2}^{k+1}}B}}||{{T}_{j,2}}f(z)|dz}} \\ & \quad +C\sum\limits_{k=1}^{\infty }{\frac{r_{0}^{\delta }}{{{({{2}^{k}}{{r}_{0}})}^{n+\delta }}}}\int_{|z-x|\le {{2}^{k+1}}{{r}_{0}}}{|{{b}_{{{2}^{k+1}}B}}-{{b}_{B}}||{{T}_{j,2}}f(z)|dz} \\ & \text{=:}\quad {{H}_{1}}+{{H}_{2}}. \\ \end{align}$

For $H_{1}, $ since $\delta >0, $ by Hölder's inequality, we have

$\begin{array}{cl} H_{1} & \leq C\sum\limits_{k=1}^{\infty}2^{-k\delta}\biggl(\dfrac{1}{|2^{k+1}B|^{1+\beta (s\tau)'}} \int_{2^{k+1}B}|b(y)-b_{2^{k+1}B}|^{(s\tau)'}dy\biggr)^{1/(s\tau)'}\\ & \quad\times \biggl(\dfrac{1}{|2^{k+1}B|^{1-\beta s\tau}}\int_{2^{k+1}B}|T_{j, 2}f(y)|^{s\tau}dy\biggr)^{1/s\tau}\\&\leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n\beta}(T_{j, 2}f)(x).\end{array}$

From Lemma 2.3 and Hölder's inequality, it follows that

$\begin{array}{cl} H_{2} & \leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\sum\limits_{k=1}^{\infty}k2^{-k\delta} \dfrac{1}{|2^{k+1}B|^{1-\beta}}\int_{2^{k+1}B}|T_{j, 2}f(y)|dy\\ & \leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\sum\limits_{k=1}^{\infty}k2^{-k\delta} \biggl(\dfrac{1}{|2^{k+1}B|^{1-\beta s\tau}}\int_{2^{k+1}B}|T_{j, 2}f(y)|^{s\tau}dy\biggr)^{\frac{1}{s\tau}}\\ & \leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n\beta}(T_{j, 2}f)(x).\end{array}$

Thus

$\begin{array}{cl} I_2 \leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n\beta}(T_{j, 2}f)(x).\end{array}$

So when $T_{j, 1}=\nabla(-\triangle+V)^{-1/2}, $ we conclude that

$\begin{array}{cl} & \dfrac{1}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})}T_{j, 2}f(y)-(T_{j, 1}M_{(b-b_{B})}T_{j, 2}f)_{B}|dy\leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n\beta}(T_{j, 2}f)(x).\end{array}$

If $T_{j, 1}=\pm I, $ it is obvious that

$\dfrac{2}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})\chi_{R^{n}\backslash 2B}}T_{j, 2}f(y)|dy=0.$

Thus using the above formula and Hölder's inequality, we conclude

$\begin{array}{cl} & \dfrac{1}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})}T_{j, 2}f(y)-(T_{j, 1}M_{(b-b_{B})}T_{j, 2}f)_{B}|dy\\ & \leq\dfrac{2}{|B|}\int_{B}|T_{j, 1}M_{(b-b_{B})\chi_{2B}}T_{j, 2}f(y)|dy\\ & \leq C\biggl(\dfrac{1}{|B|^{1+\beta (s\tau)'}}\int_{B}|b(y)-b_{B}|^{(s\tau)^{'}}dy\biggr)^{\frac{1}{(s\tau)^{'}}} \biggl(\dfrac{1}{|B|^{1-\beta s\tau}}\int_{B}|T_{j, 2}f(y)|^{s\tau}dy\biggr)^{\frac{1}{s\tau}}\\ & \leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n\beta}(T_{j, 2}f)(x). \end{array}$

Thus for $0<r_0 <\rho(x), $ we conclude that

$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x)\leq C\sum\limits_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n \beta}(T_{j, 2}f)(x), $

Case Ⅱ When $r_0 >\rho(x), $ we have

$\frac{1}{|B|}\int_{B}{|}{{\Theta }^{b}}f(y)|dy\le \sum\limits_{j=1}^{m}{(}\frac{1}{|B|}\int_{B}{|}{{T}_{j,1}}{{M}_{b{{\chi }_{2B}}}}{{T}_{j,2}}f(y)|dy+\frac{1}{|B|}\int_{B}{|}{{T}_{j,1}}{{M}_{b{{\chi }_{{{R}^{n}}\backslash 2B}}}}{{T}_{j,2}}f(y)|dy).\text{ }$

If $T_{j, 1}=\nabla(-\triangle+V)^{-1/2}, $ then for $1<\tau<\infty$ and $1<s<p_{0}$ are as in Theorem 2.1, we have

$\begin{array}{cl} & \dfrac{1}{|B|}\int_{B}|T_{j, 1}M_{b\chi_{2B}}T_{j, 2}f(y)|dy\\ & \leq C\biggl(\dfrac{1}{|B|}\int_{B}|T_{j, 1}b\chi_{2B}T_{j, 2}f(y)|^{s}dy\biggr)^{\frac{1}{s}}\\ & \leq\biggl(\dfrac{1}{|B|}\int_{2B}|b(y)|^{s}|T_{j, 2}f(y)|^{s}dy\biggr)^{\frac{1}{s}}\\ & \leq C\biggl(\dfrac{1}{|2B|^{1+\beta s\tau'}}\int_{2B}|b(y)|^{s\tau^{'}}dy\biggr)^{\frac{1}{s\tau^{'}}} \biggl(\dfrac{1}{|2B|^{1-\beta s\tau}}\int_{2B}|T_{j, 2}f(y)|^{s\tau}dy\biggr)^{\frac{1}{s\tau}}\\ & \leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n \beta}(T_{j, 2}f)(x).\end{array}$

Since, when $y\in 2B$ and $z\in 2^{k+1}B\backslash 2^kB, $ we have $|x-z|\sim|y-z|.$ Then, taking $s, \tau$ as above, we get

$\begin{array}{cl} & |T_{j, 1}M_{b\chi_{R^{n}\backslash 2B}}T_{j, 2}f(y)|\\ & \leq \int_{(2B)^{c}}|b(z)||T_{j, 2}f(z)||K(y, z)|dz\\ & \leq C\sum\limits_{k=1}^{\infty}\int_{2^k r_0<|z-x|\leq 2^{k+1}r_0} \dfrac{C_i}{\{1+|z-x|m(x, V)\}^{i}|z-x|^{n}}|b(z)||T_{j, 2}f(z)|dz\\ & \leq C\sum\limits_{k=1}^{\infty}\dfrac{1}{2^{ki}}\biggl(\dfrac{1}{|2^{k+1}B|^{1+\beta (s\tau)'}} \int_{2^{k+1}B}|b(y)|^{(s\tau)'}dy\biggr)^{1/(s\tau)'} \biggl(\dfrac{1}{|2^{k+1}B|^{1-\beta s\tau}}\int_{2^{k+1}B}|T_{j, 2}f(y)|^{s\tau}dy\biggr)^{1/s\tau}\\ & \leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n\beta}(T_{j, 2}f)(x).\end{array}$

Thus

$\dfrac{1}{|B|}\int_{B}|T_{j, 1}M_{b\chi_{R^{n}\backslash 2B}}T_{j, 2}f(y)|dy\leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n\beta}(T_{j, 2}f)(x).$

If $T_{j, 1}=\pm I, $ then by Hölder's inequality, we obtain

$\begin{array}{cl} & \dfrac{1}{|B|}\int_{B}|T_{j, 1}M_{b\chi_{2B}}T_{j, 2}f(y)|dy\\ & \leq C\biggl(\dfrac{1}{|B|^{1+\beta(s\tau)'}}\int_{B}|b(y)|^{(s\tau)^{'}}dy\biggr)^{\frac{1}{(s\tau)^{'}}} \biggl(\dfrac{1}{|B|^{1-\beta s\tau}}\int_{B}|T_{j, 2}f(y)|^{s\tau}dy\biggr)^{\frac{1}{s\tau}}\leq C\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n \beta}(T_{j, 2}f)(x).\end{array}$

And

$\dfrac{1}{|B|}\int_{B}|T_{j, 1}M_{b\chi_{R^{n}\backslash 2B}}T_{j, 2}(f)(y)|dy=0.$

Thus for $r_0 >\rho(x), $

$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x)\leq C\sum\limits_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n \beta}(T_{j, 2}f)(x) .$

So whenever $0<r_0 <\rho(x)$ or $r_0 >\rho(x), $ we have

$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x)\leq C\sum\limits_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}M_{s\tau, n \beta}(T_{j, 2}f)(x).$

Now, let us turn to prove Theorem 2.2.

Let $s, \tau$ be as in Theorem 2.1 and satisfy $1<s\tau<p.$ Then applying Theorem 2.1, Lemma 2.1 and Lemma 2.2, we know that

$\begin{array}{cl} \|\Theta^{b}f\|_{L^{p}} & \leq C\|M_{\mathfrak{L}}^{\#}(\Theta^{b}f) \|_{L^{p}}\leq C\sum\limits_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\|M_{s\tau, n \beta}(T_{j, 2}f)\|_{L^{p}}\\ & \leq C\sum\limits_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\|T_{j, 2}f\|_{L^{r}}\leq C\sum\limits_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\|f\|_{L^{r}}.\end{array}$

Thus we complete the proof of Theorem 2.1-2.1.

4 Proof of Theorem 2.3

It is obvious that $\Lambda_{\mathfrak{L}}^{0}=BMO_{\mathfrak{L}}.$ Thus from the proof of Theorem 2.1, we have

$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x)\leq C\sum\limits_{j=1}^{m}\|b\|_{BMO_{\mathfrak{L}}}M_{s\tau}(T_{j, 2}f)(x).$

Since $M_{s\tau}$ is boundedness on $L^{p}(\mathbb{R}^{n}), $ then

$\begin{array}{cl} \|\Theta^{b}f\|_{L^{p}} & \leq C\|M_{\mathfrak{L}}^{\#}(\Theta^{b}f)\|_{L^{p}}\leq C\sum\limits_{j=1}^{m} \|b\|_{BMO_{\mathfrak{L}}}\|M_{s\tau}(T_{j, 2}f)\|_{L^{p}}\leq C\sum\limits_{j=1}^{m}\|b\|_{BMO_{\mathfrak{L}}}\|f\|_{L^{p}}.\end{array}$

Therefore, we complete the proof of Theorem 2.3.

References
[1] Fefferman C. The uncertainty principle[J]. Bull. Amer. Math. Soc., 1983, 9: 129–206. DOI:10.1090/S0273-0979-1983-15154-6
[2] Shen Z. Lp estimates for Schrödinger operators with certain potentials[J]. Ann. Inst. Fourier, 1995, 45(2): 513–546. DOI:10.5802/aif.1463
[3] Zhong J. Harmonic analysis for some Schrödinger type operators[D]. New Jersey: Princeton Univ. , 1993.
[4] Guo Z, Li P, Peng L. Lp boundedness of commutators of Riesz transforms associated to Schrödinger operator[J]. J. Math. Anal. Appl., 2008, 341: 421–32. DOI:10.1016/j.jmaa.2007.05.024
[5] Liu Y. Weighted Lp boundedness of commutators of Schrödinger type operators[J]. Acta Math. Sinica (Chinese Series), 2009, 6: 1091–1100.
[6] Bongioanni B, Harboure E, Salinas O. Commutators of Riesz transforms related to Schrödinger operators[J]. J. Fourier Anal. Appl., 2011, 17: 115–134. DOI:10.1007/s00041-010-9133-6
[7] Chu T. Boundedness of commutators associated with schrödinger operator and fourier multiplier[D]. Changsha: Hunan Univ. , 2006.
[8] Mo H, Zhou H, Yu D. Boundedness of commutators generated by the Campanato-type functions and Riesz transform associated with Schrödinger operators[J]. Comm. Math. Res., accepted..
[9] Lu S, Mo H. Toeplitz type operators on Lebesgue spaces[J]. Acta Math. Scientia, 2009, 29: 140–150. DOI:10.1016/S0252-9602(09)60014-X
[10] Zhang L, Zheng Q. Boundedness of commutators for singular integral operators with oscillating kernels on weighted Morrey spaces[J]. J. Math., 2014, 34(4): 684–690.
[11] Huang C, Liu L. Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator[J]. Publ. Inst. Math., 2012, 92(106): 165–176. DOI:10.2298/PIM1206165H
[12] Jiang Y. Some properties of Riesz potential associated with Schrödinger operators[J]. Appl. Math. J. Chineses Univ., 2012, 7(1): 59–68.
[13] Yang D, Zhou Y. Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators[J]. Potential Anal., 2009, 30: 271–300. DOI:10.1007/s11118-009-9116-x
[14] Chanillo S. A note on commutators[J]. Indiana Univ. Math. J., 1982, 31: 7–16. DOI:10.1512/iumj.1982.31.31002