指数和与著名的华林问题有着密切的联系, 它在华林问题的主项研究中起着重要的作用.许多著名的学者如华罗庚、Weil、高斯等对指数和的上界估计做出了重要的贡献[1-6].近些年来, 指数和高次均值的计算成了这一领域的热点, 相关研究成果丰硕[7-11, 13-17].
设$q, m, s, n, k, t$为整数, 且$q\ge 3$, 定义二项指数和与三项指数和如下:
其中$e(x)=e^{2\pi ix}$, $ \sum\limits_{a = 1}^q {'}$表示对所有满足$(a, q)=1$的整数a求和.
国内外众多学者对于二项指数和的各种性质做了深入细致的研究, 取得了众多的研究成果[7-11, 16, 17].但是关于三项指数和的各类性质, 国内外的相关研究尚不多见.
1972年, Mordel[12]利用三项指数和成功的研究$\mod p$剩余类的有理函数表示.
2012年, 陈华等人[13]研究了带Dirichlet特征的三项指数和四次均值的计算公式, 并给出了$\sum\limits_{t = 1}^q{'\sum\limits_{m = 1}^q} {\sum\limits_{\chi {\rm mod} q} {|\sum\limits_{a = 1}^q {'\chi (a)e(\frac{{m{a^k} + t{a^2} + na}}{q})} {|^4}} } $的精确计算公式.
2014年, 论文[14]给出了三项指数和的四次均值
在$k = 2t, (t, p -1) = 1, 2$时的精确计算公式, 主要结果如下:
命题1.1 设$p$为素数, 则对任意固定的满足条件$(n, p)=1$的正整数$n$, 有
本文将进一步深入讨论三项指数和四次均值的计算问题, 在命题1.1的条件下, 给出在$(t, p-1)=3, 4$时的精确计算公式, 本文主要结果见定理1.1.此外, 本文还将给出命题1.1和定理1.1的一个简化证明方法.
定理1.1 设$p$为奇素数, 则对任意固定的满足条件$(n, p)=1$的正整数$n$, 有
首先给出定理证明中需要用到的几个引理.
引理2.1 设$p \ge 3, t$是正整数, $(n, p)=1, $则有
其中
证 参见文献[14]中的引理3.
引理2.2 $\mathop {\sum\limits_{a = 2}^{p - 1} {\sum\limits_{c = 2}^{p - 1} 1 } }\limits_{\begin{array}{*{20}{c}} {{{\left( {a\bar c} \right)}^t} \equiv 1\left( {{\rm mod} \,p} \right)}\\ {\begin{array}{*{20}{c}} {{{\left[ {\left( {a - 1} \right)\overline {\left( {c - 1} \right)} } \right]}^t} \equiv 1\left( {\,{\rm mod} \,p} \right)}\\ {\;\;\;\,{c^t}\not \equiv 1\,\left( {{\rm mod} \,p} \right)} \end{array}} \end{array}} = \left\{ {\begin{array}{*{20}{c}} {p - 2,\quad \quad \quad \quad \quad \quad \left( {t,p - 1} \right) = 3;}\\ {\begin{array}{*{20}{l}} {p - 1,p\not |{{\left( { - 4} \right)}^{t/4}} - 1,\left( {t,p - 1} \right) = 4;}\\ {p - 5,p\left| {{{\left( { - 4} \right)}^{t/4}} - 1} \right.,\;{\mkern 1mu} \left( {t,p - 1} \right) = 4.} \end{array}} \end{array}} \right.$
证 易见$\mathop {\sum\limits_{a = 2}^{p -1} {\sum\limits_{c = 2}^{p -1} 1 } }\limits_{\begin{array}{*{20}{c}} {{{(a\overline c)}^t} \equiv 1~({\rm mod} p)}\\ {\scriptstyle{[(a-1)\overline {(c-1)}]^t} \equiv 1~({\rm mod} p)\atop \scriptstyle\quad {c^t}\not \equiv 1~({\rm mod} p)} \end{array}}$的值为如下同余方程组解的个数,
其中$2 \le a, c \le p -1.$
情形1 若$(t, p -1) = 3, $则${x^t} \equiv 1~({\rm mod} p)$有3个解, 分别记为$1, A, \overline A, $其中$ \overline A \equiv {A^2}({\rm mod} p), {A^3} \equiv 1~({\rm mod} p), $则(2.1) 等价于如下方程组:
(1) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv c~({\rm mod} p), \end{array}\\ {a -1 \equiv c -1~({\rm mod} p), } \end{array}} \right.$则$\left\{ {\begin{array}{*{20}{c}} {{c^t}\not \equiv 1~({\rm mod} p), }\\ {a \equiv c~~({\rm mod} p), } \end{array}} \right.$满足${c^t} \equiv 1~({\rm mod} p)$的$c$有$(t, p -1) = 3$个, 此种情形下共有$p -1 -3 = p -4$个解;
(2) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~ ({\rm mod} p), \\ a \equiv c~ ({\rm mod} p), \end{array}\\ {a -1 \equiv A(c -1)({\rm mod} p)} \end{array}} \right.$或$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~ ({\rm mod} p), \\ a \equiv c~ ({\rm mod} p), \end{array}\\ {a -1 \equiv \overline A(c -1)({\rm mod} p), } \end{array}} \right.$则$A, \overline A \equiv 1~({\rm mod} p), $与$A, \overline A \not \equiv 1~({\rm mod} p)$矛盾, 无解;
(3) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv Ac~({\rm mod} p), \end{array}\\ {a -1 \equiv (c -1)({\rm mod} p)} \end{array}} \right.$或$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv \overline A c~({\rm mod} p), \end{array}\\ {a -1 \equiv (c -1)({\rm mod} p), } \end{array}} \right.$则$A, \overline A \equiv 1~({\rm mod} p), $与$A, \overline A \not \equiv 1~({\rm mod} p)$矛盾, 无解;
(4) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv Ac~({\rm mod} p), \end{array}\\ {a -1 \equiv A(c -1)({\rm mod} p)} \end{array}} \right.$或$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv \overline A c~({\rm mod} p), \end{array}\\ {a -1 \equiv \overline A (c -1)({\rm mod} p), } \end{array}} \right.$则$A, \overline A \equiv 1~({\rm mod} p), $与$A, \overline A \not \equiv 1~({\rm mod} p)$矛盾, 无解;
(5) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv \overline A c~({\rm mod} p), \end{array}\\ {a -1 \equiv A(c -1)~({\rm mod} p), } \end{array}} \right.$则$\left\{ {\begin{array}{*{20}{c}} {{c^t}\not \equiv 1~({\rm mod} p), }\\ {c \equiv 1 + A~({\rm mod} p), } \end{array}} \right.$由${A^3} \equiv 1~({\rm mod} p)$可得$1 + A + {A^2} \equiv 0({\rm mod} p), $则$1 + A \equiv -{A^2}({\rm mod} p), {c^t} \equiv {(-{A^2})^t} \equiv {(-1)^t}{A^2}^t \equiv -1\not \equiv 1~({\rm mod} p), $保留此解;
(6) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^{2t}}\not \equiv 1~({\rm mod} p), \\ a \equiv Ac~({\rm mod} p), \end{array}\\ {a -1 \equiv \overline A (c -1)~({\rm mod} p), } \end{array}} \right.$则$\left\{ {\begin{array}{*{20}{c}} {{c^t}\not \equiv 1~({\rm mod} p), }\\ {c \equiv -A~({\rm mod} p), } \end{array}} \right.$同(5) 的情形, 保留此解.所以
情形2 若$(t, p -1) = 4, $则${x^t} \equiv 1~({\rm mod} p)$有4个解, 分别记为$ \pm 1, \pm A, $其中${A^2} \equiv -1~({\rm mod} p)$所以(2.1) 式等价于如下方程组:
且易见$-2\overline {(A -1)} \equiv A + 1~({\rm mod} p), {A^2} \equiv -1~({\rm mod} p), \overline A \equiv -A~({\rm mod} p), {A^4} \equiv 1~({\rm mod} p).$
(1) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv c~({\rm mod} p), \end{array}\\ {a -1 \equiv c -1~({\rm mod} p), } \end{array}} \right.$则$\left\{ {\begin{array}{*{20}{c}} {{c^t}\not \equiv 1~({\rm mod} p), }\\ {a \equiv c({\rm mod} p), } \end{array}} \right.$满足${c^t} \equiv 1~({\rm mod} p)$的$c$有$(t, p -1) = 4$个, 则此种情形下共有$p -1 -(t, p -1) = p -5$个解;
(2) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv -c~({\rm mod} p), \end{array}\\ {a -1 \equiv c -1~({\rm mod} p), } \end{array}} \right.$此种情形无解;
(3) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv c~ ({\rm mod} p), \end{array}\\ {a -1 \equiv -c + 1~({\rm mod} p), } \end{array}} \right.$则$\left\{ {\begin{array}{*{20}{c}} {{c^t}\not \equiv 1~({\rm mod} p), }\\ {a \equiv c \equiv 1~({\rm mod} p), } \end{array}} \right.$此种情形无解;
(4) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv -c~({\rm mod} p), \end{array}\\ {a -1 \equiv -c + 1~({\rm mod} p), } \end{array}} \right.$此种情形无解;
(5) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv c~({\rm mod} p), \end{array}\\ {a -1 \equiv \pm A(c -1)({\rm mod} p), } \end{array}} \right.$ $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv \pm Ac~({\rm mod} p), \end{array}\\ {a -1 \equiv c -1~({\rm mod} p), } \end{array}} \right.$或$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv \pm Ac~ ({\rm mod} p), \end{array}\\ {a -1 \equiv \pm A(c -1)({\rm mod} p), } \end{array}} \right.$则$A \equiv \pm 1~({\rm mod} p), $与$A\not \equiv \pm 1~({\rm mod} p)$矛盾, 无解;
(6) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv -c~({\rm mod} p), \end{array}\\ {a -1 \equiv \pm A(c -1)({\rm mod} p), } \end{array}} \right.$则$\left\{ {\begin{array}{*{20}{c}} {{c^t}\not \equiv 1\; \; ({\rm mod} p)}, \\ \begin{array}{l} a \equiv \mp A~({\rm mod} p), \\ c \equiv \pm A~({\rm mod} p), \end{array} \end{array}} \right.$此时${c^t} \equiv {A^t} \equiv 1~({\rm mod} p)$与条件${c^t}\not \equiv 1~({\rm mod} p)$矛盾, 无解;
(7) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv Ac~({\rm mod} p), \end{array}\\ {a -1 \equiv -c + 1~({\rm mod} p), } \end{array}} \right.$则$\left\{ {\begin{array}{*{20}{c}} {{c^t}\not \equiv 1\; \; ({\rm mod} p), }\\ \begin{array}{l} a \equiv A + 1~({\rm mod} p), \\ c \equiv 1 -A~({\rm mod} p), \end{array} \end{array}} \right.$此时
若$p\not |{( - 4)^{t/4}} - 1,$则${c^t} \equiv {(1 -A)^t} \equiv {(-4)^{t/4}}\not \equiv 1~({\rm mod} p), $此时$(a, c) = (A + 1, 1 -A)$是解.
若$p\left. \right|{(-4)^{t/4}} -1, $则${c^t} \equiv {(1 -A)^t} \equiv {(-4)^{t/4}} \equiv 1~({\rm mod} p), $此时$(a, c) = (A + 1, 1 -A)$不是解;
(8) 若$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv -Ac~({\rm mod} p), \end{array}\\ {a -1 \equiv -c + 1~({\rm mod} p)}, \end{array}} \right.$ $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv -Ac~({\rm mod} p), \end{array}\\ {a -1 \equiv A(c -1)({\rm mod} p), } \end{array}} \right.$或$\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} {c^t}\not \equiv 1~({\rm mod} p), \\ a \equiv Ac~ ({\rm mod} p), \end{array}\\ {a -1 \equiv -A(c -1)({\rm mod} p), } \end{array}} \right.$这三种情形类同(7).
所以
下面证明定理1.1.
在引理2.1中令$(t, p -1) = 3, $结合引理2.2可得
类似的, 在引理2.1中令$(t, p -1) = 4, $结合引理2.2可得
在命题1.1及定理1.1中令$t = 1, 2, 3, 4, $可得如下结论.
推论2.1 设$p$为素数, 则对任意固定的满足条件$(n, p)=1$的正整数$n$, 有
这一部分将给出三项指数和的四次均值
在$k=2t$时的简化证明方法.
当$k = 2t$时, 有
上式的计算可归结为求解同余方程组的问题, 经分析和计算亦可获得命题1.1及定理1.1中的结果, 此处不再展开讨论.
本文进一步深入研究了三项指数和四次均值
的计算问题, 获得了$k = 2t, (k, p -1) = 3, 4$时的精确计算公式, 推广了论文[14]中的结果.下一步将用本文提出的方法研究
的计算问题.本文所使用的思想和方法对于四项指数和与更多项指数和也有一定的借鉴作用, 但其算法复杂度大大增加.