数学杂志  2017, Vol. 37 Issue (1): 21-27   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
JIA Ling
CHEN Xiao-yuan
A MASCHKE TYPE THEOREM FOR PARTIAL π-COMODULES
JIA Ling1, CHEN Xiao-yuan2     
1. Department of Mathematics and Statistics, Ludong University, Yantai 264025, China;
2. Basic Department, Zhejiang Business College, Hangzhou 310053, China
Abstract: In this paper, we study the Maschke type theorems of partial group comodules. By the methods of weak Hopf group coalgebras, we obtain the classical Maschke type theorems of Hopf algebras, which generalized those of Hopf algebras and results of [8].
Key words: partial π-comodule     trace map     Maschke type theorem    
π-余模的Maschke型定理
贾玲1, 陈笑缘2     
1. 鲁东大学数学与统计科学学院, 山东 烟台 264025;
2. 浙江商业职业技术学院基础部, 浙江 杭州 310053
摘要:本文研究了偏群余模的Mashcke型定理.利用弱Hopf群余代数推广Hopf代数的方法,获得了偏群余模的Mashcke型定理.推广了Hopf代数理论中的Maschke型定理和[8]的相关结论.
关键词偏群余模    迹映射    Maschke型定理    
1 Introduction

Partial actions of groups as powerful tools have been introduced during the study of operator algebras by Exel [2]. With the further development many positive results have been proposed [3-6]. S.Caenepeel and the other authors developed a theory of partial actions of Hopf algebras [1] and introduced the notion of a partial entwining structure as a generalization of entwining structure (see [9]).

On other hand, the notion of a Hopf π-coalgebra which generalized that of a Hopf algebra was introduced and played an important role, consequently group entwining structures and group weak entwining structure were carefully studied. Motivated by this fact, we introduce the notion of a partial group comodule and give a Maschke type theorem for them. Because the "coassociativity" of a partial structure is destroyed, the generalization is not trivial and easy.

In this paper, we first recall basic definitions of partial group comodules and give some examples. Then we state a Maschke-type theorem of partial group Hopf modules which generalizes the relevant results of Hopf modules (see [7, 8]), entwined modules, group Hopf modules, etc..

The organization of the paper is as follows: First we introduce the notion of partial group comodules and then give our main result-Maschke type theorem.

Conventions   We work over a commutative ring $k$. We denote by $i$ the unit of the group $\pi$ and use the standard (co)algebra notation, i.e., $\Delta$ is a coproduct, $\varepsilon$ is a counit, $m$ is a product and $1$ is a unit. If $1$ appears more than once in the same expression, then we use different $1^{'}$. The identity map from any $k$-space $V$ to itself is denoted by ${id}_{V}$. Write $a_{\alpha}$ for any element in $A_{\alpha}$ and $[a]$ for an element in $\overline{A}=A/kerf$, where $f$ is a $k$-linear map. For a right $\pi$-$C$-comodule $M$, we write ${\rho}_{\alpha, \beta}(m)=\sum m_{([0], \alpha)}\otimes m_{([1], \beta)}$ for any $\alpha, \beta\in\pi$ and $m\in M_{\alpha\beta}$.

2 The Main Results

Deflnition 2.1  A $\pi$-coalgebra over $k$ is a family of $C={\{C_{\alpha}\}}_{\alpha\in \pi}$ of $k$-spaces endowed with a family $k$-linear maps $\Delta={\{{\Delta}_{\alpha, \beta}:C_{\alpha\beta}\rightarrow C_{\alpha}\otimes C_{\beta}\}}_{\alpha, \beta\in \pi}$ and a $k$-linear map $\varepsilon:C_{i}\rightarrow k$ such that for any $\alpha, \beta, \gamma\in \pi$,

(1) $({\Delta}_{\alpha, \beta}\otimes {id}_{{C}_{\gamma}}){\Delta}_{\alpha\beta, \gamma}=({id}_{{C}_{\alpha}}\otimes{\Delta}_{\beta, \gamma}){\Delta}_{\alpha, \beta\gamma}.$

(2) $({id}_{{C}_{\alpha}}\otimes\varepsilon){\Delta}_{\alpha, i}=(\varepsilon\otimes {id}_{{C}_{\alpha}}){\Delta}_{i, \alpha}={id}_ {C_{\alpha}}.$

Here we extend the Sweedler notation for comultiplication, we write

$ {\Delta _{\alpha, \beta }}({c_{\alpha \beta }}) = \sum {{c_{\alpha \beta 1\alpha }}} \otimes {c_{\alpha \beta 2\beta }}, \alpha, \beta \in \pi, c \in {C_{\alpha \beta }}. $

Remark  $(C_{i}, {\Delta}_{i, i}, \varepsilon)$ is a coalgebra in the usual sense.

Deflnition 2.2  A Hopf $\pi$-coalgebra(Hopf group coalgebra) is a family of algebras $H={\{H_{\alpha}\}}_{\alpha\in\pi}$ and also a $\pi$-coalgebra ${\{H_{\alpha}, \Delta=\{{\Delta}_{\alpha, \beta}\}, \varepsilon\}}_{\alpha, \beta\in\pi}$ endowed with a family $S={\{S_{{\alpha}^{-1}}:H_{\alpha}\rightarrow H_{{\alpha}^{-1}}\}}_{\alpha\in\pi}$ of $k$-linear maps called an antipode such that for any $\alpha\in \pi.$

(3) $\sum {{S_{{\alpha ^{ - 1}}}}} ({h_{1\alpha }}){h_{2{\alpha ^{ - 1}}}} = \varepsilon (h){1_{{\alpha ^{ - 1}}}},\sum {{h_{1\alpha }}} {S_\alpha }({h_{2{\alpha ^{ - 1}}}}) = \varepsilon (h){1_\alpha }.$

Deflnition 2.3  Let $H$ be a Hopf group coalgebra and ${A=\{A_{\alpha}\}}_{\alpha\in\pi}$ be a family of algebras endowed with a family of $k$-linear maps ${\{{\rho}_{\alpha, \beta}:A_{\alpha\beta}\rightarrow A_{\alpha}\otimes A_{\beta}\}}_{\alpha, \beta\in\pi}$. $A$ is called a right partial group comodule-algebra if the following conditions are satisfied:

(4) ${\rho _{\alpha ,\beta }}(ab) = {\rho _{\alpha ,\beta }}(a){\rho _{\alpha ,\beta }}(b),a,b \in {A_{\alpha \beta }}.$

(5) $({\rho _{\alpha ,\beta }} \otimes i{d_{{H_\gamma }}}){\rho _{\alpha \beta ,\gamma }}(c) = \sum {{c_{([0],\alpha )}}} {1_{([0],\alpha )}} \otimes {c_{([1],\beta \gamma )1\beta }}{1_{([1],\beta )}} \otimes {c_{([1],\beta \gamma )2\gamma }},c \in {A_{\alpha \beta \gamma }}.$

(6) $\sum \varepsilon ({d_{([1],i)}}){d_{([0],\alpha )}} = d,\;\;d \in {A_\alpha }.$

Example 1  Let $H$ ba a Hopf group coalgebra and $e={\{e_{\alpha}\}}_{\alpha\in\pi}$ be a central idempotent such that ${\Delta}_{\alpha, \beta}(e_{\alpha\beta})(e_{\alpha}\otimes 1_{\beta})=e_{\alpha}\otimes e_{\beta}$ and $\varepsilon(e_{i})=1$, then $H$ is a right partial group comodule-algebra.

Deflnition 2.4  Let $H$ ba a Hopf group coalgebra and $A$ be a right partial group comodule-algebra. An $A$-module $M={\{M_{\alpha}\}}_{\alpha\in\pi}$ with a family of $k$-linear maps

$ {\{ {\rho _{\alpha, \beta }}:{M_{\alpha \beta }} \to {M_\alpha } \otimes {H_\beta }\} _{\alpha, \beta \in \pi }} $

is called a partial $(H, A)$-Hopf module if the following conditions are verified for any $m \in {M_\alpha },m' \in {M_{\alpha \beta \gamma }},m'' \in {M_{\alpha \beta }},a \in {A_{\alpha \beta }}$:

(7) $\sum\varepsilon(m_{([1], i)})m_{([0], \alpha)}=m.$

(8) $({\rho}_{\alpha, \beta}\otimes{id}_{H_{\gamma}}){\rho}_{\alpha\beta, \gamma}(m^{'})=\sum m^{'}_{([0], \alpha)}\cdot 1_{([0], \alpha)}\otimes m^{'}_{([1], \beta\gamma)1\beta}1_{([1], \beta)}\otimes m^{'}_{([1], \beta\gamma)2\gamma}.$

(9) ${\rho}_{\alpha, \beta}(m^{''}\cdot a)=\sum m^{''}_{([0], \alpha)}\cdot a_{([0], \alpha)}\otimes m^{''}_{([1], \beta)}a_{([1], \beta)}.$

We define the coinvariants of $M$ as

$ {M^{COH}} = \{ m = {\{ {m_\alpha }\} _{\alpha \in \pi }}\mid {\rho _{\alpha, \beta }}({m_{\alpha \beta }}) = \sum {{m_\alpha }} \cdot {1_{([0], \alpha )}} \otimes {1_{([1], \beta )}}\} $

and denote $M_{A}^{\pi-H}$ the category of partial $(H, A)$-Hopf modules.

Example 2  Let $H$ ba a Hopf group coalgebra and $A$ be a right partial group comodule-algebra. It is easy to prove that $A$ is a partial $(H, A)$-Hopf module with the multiplications as $A$-actions.

Deflnition 2.5  Let $H$ ba a Hopf group coalgebra and $A$ be a right partial group comodule-algebra. A right partial $\pi-H$-comodule map $\theta={\{{\theta}_{\alpha}:{H}_{\alpha}\rightarrow {A}_{\alpha}\}}_{\alpha\in\pi}$ such that $\sum 1_{([0], \alpha)}{\theta}_{\alpha}(S_{\alpha}(1_{([1], {\alpha}^{-1})}))=1_{\alpha}$ is called a right total integral of $A$.

Deflnition 2.6  Let $M\in M_{A}^{\pi-H}$ and $\text{tr}={\{\text{tr}_{\alpha}:M_{i}\rightarrow M_{\alpha}\}}_{\alpha\in\pi}$ be a family of $k$-linear maps such that $\text{tr}_{\alpha}(m)=\sum m_{([0], \alpha)}{\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})}))$. Then $\text{tr}$ is called a trace map of $M$.

We define $\widehat {\text{tr}}:\prod {{M_\alpha }} \to \prod {{M_\alpha }} ,\widehat {\text{tr}}({({m_\alpha })_{\alpha \in \pi }}) = {({\text{t}}{{\text{r}}_\alpha }\}({m_i}))_{\alpha \in \pi }}$.

In the following parts we always suppose that

$ \sum {{1_{([0], \alpha )}}} a \otimes {1_{([1], \beta )}}b = \sum a {1_{([0], \alpha )}} \otimes b{1_{([1], \beta )}} $

for any $a\in A_{\alpha}$ and $b\in H_{\beta}$.

Proposition 2.7  $m={(m_{\alpha})}_{\alpha\in\pi}$ is a coinvariant of $M$ if and only if $\text{tr}(m)=m$.

Proof  If $m={(m_{\alpha})}_{\alpha\in\pi}\in M^{COH}$, then

$ \widehat {\text{tr}}(m) = \sum {{m_{([0], \alpha )}}} \cdot {\theta _\alpha }({S_\alpha }({m_{([1], {\alpha ^{ - 1}})}})) = \sum {{m_\alpha }} \cdot {1_{([0], \alpha )}}{\theta _\alpha }({S_\alpha }({1_{([1], {\alpha ^{ -1}})}})) = {m_\alpha }. $

Conversely, if $\hat{\text{tr}}(m)=m$, we have

$ \begin{array}{l} \;\;\;\;\;{\rho _{\alpha, \beta }}({\text{t}}{{\text{r}}_{\alpha \beta }}(m))\\ = \sum {m_{([0], \alpha \beta )([0], \alpha )}} \cdot {\theta _\alpha }({S_\alpha }({m_{([1], {{(\alpha \beta )}^{ - 1}})2{\alpha ^{ - 1}}}})) \otimes {m_{([0], \alpha \beta )([1], \beta )}}{S_\beta }({m_{([1], {{(\alpha \beta )}^{ - 1}})1{\beta ^{ - 1}}}})\\ = \sum {{m_{([0], \alpha )}}} \cdot {1_{([0], \alpha )}}{\theta _\alpha }({S_\alpha }({m_{([1], {\alpha ^{ - 1}})2{\beta ^{ - 1}}{\alpha ^{ - 1}}2{\alpha ^{ - 1}}}}))\\ \;\;\;\;\; \otimes {m_{([1], {\alpha ^{ - 1}})1\beta }}{1_{([1], \beta )}}{S_\beta }({m_{([1], {\alpha ^{ - 1}})2{\beta ^{ - 1}}{\alpha ^{ - 1}}1{\beta ^{ - 1}}}})\\ = \sum {{m_{([0], \alpha )}}} \cdot {1_{([0], \alpha )}}{\theta _\alpha }({S_\alpha }({m_{([1], {\alpha ^{ - 1}})}})) \otimes {1_{([1], \beta )}} = \sum {{m_\alpha }} \cdot {1_{([0], \alpha )}} \otimes {1_{([1], \beta )}}. \end{array} $

Given $M\in M_{A}^{\pi-H}$, we define

$ {\omega _\alpha }:{M_i} \otimes {H_\alpha } \to {M_i} \otimes {H_\alpha }, {\omega _\alpha }(m \otimes h) = \sum m \cdot {1_{([0], i)}} \otimes h{1_{([1], \alpha )}}, m \in {M_i}, h \in {H_\alpha }. $

It is trivial to prove that ${\omega}_{\alpha}^{2}={\omega}_{\alpha}$, so we can define

$ \overline {{M_i} \otimes {H_\alpha }} = ({M_i} \otimes {H_\alpha })/ker{\omega _\alpha } $

as a $k$-space.

We claim that $\overline{M_{i}\otimes H}={\{\overline{M_{i}\otimes H_{\alpha}}\}}_{\alpha\in\pi}\in M_{A}^{\pi-H}$ with the actions given by

$ {\rm{[}}m \otimes {h_a}] \cdot {a_\alpha } = \sum {{\rm{[}}m \cdot {a_{(\left[ 0 \right],i)}} \otimes {h_\alpha }{a_{(\left[ 1 \right],\alpha )}}]} $

and the partial coactions given by

$ {\rho _{\alpha ,\beta }}({\rm{[}}m \otimes {h_{a\beta }}]){\rm{ = }}\sum {{\rm{[}}m \cdot {1_{(\left[ 0 \right],i)}} \otimes {h_{a\beta 1\alpha }}{1_{(\left[ 1 \right],\alpha \beta )1\alpha }}]} \otimes {h_{a\beta 2\beta }}{1_{(\left[ 1 \right],\alpha \beta )2\beta .}} $

It is easy to prove that the actions are well-defined. We only have to show the coactions are well-defined. In fact, we have

$ \begin{eqnarray*}&&{\rho}_{\alpha, \beta}(m\otimes h_{\alpha\beta}-m\cdot 1_{([0], i)}\otimes h_{\alpha\beta}a_{([1], \alpha\beta)})\\&=&\sum m\cdot 1_{([0], i)}\otimes h_{\alpha\beta1\alpha}1_{([1], \alpha\beta)1\alpha}\otimes h_{\alpha\beta2\beta}1_{([1], \alpha\beta)2\beta}\\&&-m\cdot 1_{([0], i)}1_{([0], i)}^{'}\otimes h_{\alpha\beta1\alpha}1_{([1], \alpha\beta)1\alpha}1_{([1], \alpha\beta)1\alpha}^{'}\otimes h_{\alpha\beta2\beta}1_{([1], \alpha\beta)2\beta}1_{([1], \alpha\beta)2\beta}^{'}=0.\\&&\sum {[m\otimes h_{\alpha\beta\gamma}]}_{([0], \alpha)}\cdot 1_{([0], \alpha)}\otimes {[m\otimes h_{\alpha\beta\gamma}]}_{([1], \beta\gamma)1\beta}1_{([1], \beta)}\otimes {[m\otimes h_{\alpha\beta\gamma}]}_{([1], \beta\gamma)2\gamma} \\ &=&\sum [m\cdot 1_{([0], i)}^{'}1_{([0], i)}1_{([0], i)}^{''}\otimes h_{\alpha\beta\gamma1\alpha}1_{([1], \alpha\beta\gamma)1\alpha}^{'}1_{([1], \alpha\beta)1\alpha}1_{([1], \alpha)1\alpha}^{''}]\\ &&\otimes h_{\alpha\beta\gamma2\beta\gamma1\beta}1_{([1], \alpha\beta\gamma)2\beta\gamma1\beta}^{'}1_{([1], \alpha\beta)2\beta}\otimes h_{\alpha\beta\gamma2\beta\gamma2\gamma}1_{([1], \alpha\beta\gamma)2\beta\gamma2\gamma}^{'} \\&=&\sum [m\cdot 1_{([0], i)}^{'}1_{([0], i)}\otimes h_{\alpha\beta\gamma1\alpha\beta1\alpha}1_{([1], \alpha\beta\gamma)1\alpha\beta1\alpha}^{'}1_{([1], \alpha\beta)1\alpha} \\ &&\otimes h_{\alpha\beta\gamma1\alpha\beta2\beta}1_{([1], \alpha\beta\gamma)1\alpha\beta2\beta}^{'}1_{([1], \alpha\beta)2\beta}\otimes h_{\alpha\beta\gamma2\gamma}1_{([1], \alpha\beta\gamma)2\gamma}^{'} \\&=&({\rho}_{\alpha, \beta}\otimes {id}_{H_{\gamma}}){\rho}_{\alpha\beta, \gamma}([m\otimes h_{\alpha\beta\gamma}]). \\ &&\sum\varepsilon({[m\otimes h_{\alpha}]}_{([1], i)}){[m\otimes h_{\alpha}]}_{([0], \alpha)} =\sum\varepsilon(h_{\alpha2i} 1_{([1], \alpha)2i})[m\cdot 1_{([0], i)}\otimes h_{\alpha1\alpha} 1_{([1], \alpha)1\alpha})]\\&=&[m\otimes h_{\alpha}]. \\&&{\rho}_{\alpha, \beta}([m\otimes h_{\alpha\beta}]\cdot a_{\alpha\beta})=\sum{\rho}_{\alpha, \beta}([m\cdot a_{\alpha\beta([0], i)}\otimes h_{\alpha\beta}a_{\alpha\beta([1], \alpha\beta)}])\\& =&\sum [m\cdot a_{\alpha\beta([0], i)}1_{([0], i}\otimes h_{\alpha\beta1\alpha}a_{\alpha\beta([1], \alpha\beta)1\alpha}1_{([1], \alpha\beta)1\alpha}]\otimes h_{\alpha\beta2\beta}a_{\alpha\beta([1], \alpha\beta)2\beta}1_{([1], \alpha\beta)2\beta} \\&=&\sum{[m\otimes h_{\alpha\beta}]}_{([0], \alpha)}\cdot a_{\alpha\beta([0], \alpha)}\otimes {[m\otimes h_{\alpha\beta}]}_{([1], \beta)}a_{\alpha\beta([1], \beta)}. \end{eqnarray*} $

We define $\xi={\{{\xi}_{\alpha}:\overline{M_{i}\otimes H_{\alpha}}\rightarrow M_{\alpha}\}}_{\alpha\in\pi}$, where

$ {\xi _\alpha }([m \otimes h]) = \sum {{m_{([0],\alpha )}}} {\theta _\alpha }({S_\alpha }({m_{([1],{\alpha ^{ - 1}})}})h),m \in {M_i},h \in {H_\alpha }. $

Then we claim that ${\xi}_{\alpha}$ is well-defined for any $\alpha\in\pi$. Indeed, for any $m \in {M_i},h \in {H_\alpha }, $

$ \begin{array}{l} \;\;{\xi _\alpha }(m \otimes h - m \cdot {1_{([0],i)}} \otimes h{1_{([1],\alpha )}})\\ {\rm{ = }}\sum {{m_{([0],\alpha )}}} \cdot {\theta _\alpha }({S_\alpha }({m_{([1],{\alpha ^{ - 1}})}})h) - {(m \cdot {1_{([0],i)}})_{([0],\alpha )}}{\theta _\alpha }({S_\alpha }({(m \cdot {1_{([0],i)}})_{([1],{\alpha ^{ - 1}})}})h{1_{([1],\alpha )}})\\ {\rm{ = }}\sum {{m_{([0],\alpha )}}} \cdot {\theta _\alpha }({S_\alpha }({m_{([1],{\alpha ^{ - 1}})}})h) - {m_{([0],\alpha )}} \cdot {1_{([0],i)([0],\alpha )}}{\theta _\alpha }({S_\alpha }({m_{([1],{\alpha ^{ - 1}})}}{1_{([0],i)([1],{\alpha ^{ - 1}})}})h{1_{([1],\alpha )}})\\ {\rm{ = }}\sum {{m_{([0],\alpha )}}} \cdot {\theta _\alpha }({S_\alpha }({m_{([1],{\alpha ^{ - 1}})}})h) - {m_{([0],\alpha )}} \cdot {1_{([0],\alpha )}}{\theta _\alpha }({S_\alpha }({m_{([1],{\alpha ^{ - 1}})}}{1_{([0],i)1{\alpha ^{ - 1}}}})h{1_{([1],i)2\alpha }}) = 0. \end{array} $

Lemma 2.8  For any $\alpha \in \pi ,{\xi _\alpha }^\circ {p_\alpha }^\circ \rho _{i,\alpha }^M = i{d_{{M_\alpha }}}$, where $p_{\alpha}:M_{i}\otimes H_{\alpha}\rightarrow\overline{M_{i}\otimes H_{\alpha}}$ is a canonical map.

Proof  In fact, for any $m\in M_{\alpha}$ we have

$ \begin{eqnarray*}&&{\xi}_{\alpha}\circ p_{\alpha}\circ {\rho}^{M}_{i, \alpha}(m)=\sum m_{([0], i)([0], \alpha)}\cdot{\theta}_{\alpha}(S_{\alpha}(m_{([0], i)([1], {\alpha}^{-1})})m_{([1], \alpha)}) \\&=&\sum m_{([0], \alpha)}\cdot1_{([0], \alpha)}{\theta}_{\alpha}(S_{\alpha}(m_{([0], i)1{\alpha}^{-1}} 1_{([1], {\alpha}^{-1})})m_{([1], i)2\alpha})=m. \end{eqnarray*} $

Lemma 2.9  If for any $\alpha \in \pi ,h \in {H_\alpha },a \in {A_\alpha }, $

$ \sum {{a_{([0], \alpha )}}} {\theta _\alpha }({S_\alpha }({a_{([0], i)1{\alpha ^{ - 1}}}})h{a_{([1], i)2\alpha }}) = {\theta _\alpha }(h)a, $

then ${\xi}_{\alpha}$ is a right $A_{\alpha}$-linear map.

Proof  Indeed for any $\alpha \in \pi ,h \in {H_\alpha },a \in {A_\alpha }$ we have

$ \begin{eqnarray*}&&{\xi}_{\alpha}([m\otimes h]\cdot a)= {(m\cdot a_{([0], i)})}_{([0], \alpha)}{\theta}_{\alpha}(S_{\alpha}({(m\cdot a_{([0], i)})}_{([1], {\alpha}^{-1})})h a_{([1], \alpha)}) \\&=&m_{([0], \alpha)}\cdot a_{([0], i)([0], \alpha)}{\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} a_{([0], i)([1], {\alpha}^{-1})})h a_{([1], \alpha)}) \\&=&m_{([0], \alpha)}\cdot a_{([0], \alpha)}1_{([0], \alpha)}^{'}{\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} a_{([0], i)1{\alpha}^{-1}}1_{([1], {\alpha}^{-1})}^{'})h a_{([1], i)2\alpha}) \\&=&m_{([0], \alpha)}\cdot a_{([0], \alpha)}{\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} a_{([0], i)1{\alpha}^{-1}})h a_{([1], i)2\alpha}) \\&=&m_{([0], \alpha)}\cdot {\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} )h)a={\xi}_{\alpha}([m\otimes h])\cdot a. \end{eqnarray*} $

Lemma 2.10  Let $H$ ba a Hopf group coalgebra and $A$ be a right partial group comodule-algebra. If the condition in Lemma 2.9 is satisfied, then $\xi=\{{\xi}_{\alpha}\}\in M_{A}^{\pi-H}$.

Proof  It is sufficed to prove that $\xi$ is right partial $\pi-H$-colinear. In fact, for any $\alpha ,\beta \in \pi ,h \in {H_{\alpha \beta }},m \in {M_i}, $ on one hand,

$ \begin{eqnarray*}&&{\rho}_{\alpha, \beta}^{M}{\xi}_{\alpha\beta}([m\otimes h]) \\&=&\sum m_{([0], \alpha\beta)([0], \alpha)}\cdot {{\theta}_{\alpha\beta}(S_{\alpha\beta}(m_{([1], {(\alpha\beta)}^{-1})} )h)}_{([0], \alpha)}\\ && \otimes m_{([0], \alpha\beta)([1], \beta)} {{\theta}_{\alpha\beta}(S_{\alpha\beta}(m_{([1], {(\alpha\beta)}^{-1})} )h)}_{([1], \beta)} \\&=&\sum m_{([0], \alpha\beta)([0], \alpha)}\cdot {\theta}_{\alpha}(S_{\alpha}(m_{([1], {(\alpha\beta)}^{-1})2{\alpha}^{-1}} )h_{1\alpha}) \otimes m_{([0], \alpha\beta)([1], \beta)} S_{\beta}(m_{([1], {(\alpha\beta)}^{-1})1{\beta}^{-1}} )h_{2\beta} \\&=&\sum m_{([0], \alpha)}\cdot 1_{([0], \alpha)} {\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})2{(\alpha\beta)}^{-1}2{\alpha}^{-1}} )h_{1\alpha}) \otimes m_{([1], {\alpha}^{-1})1\beta}1_{([1], \beta)} \\&&S_{\beta}(m_{([1], {\alpha}^{-1})2{(\alpha\beta)}^{-1}1{\beta}^{-1}} )h_{2\beta} =\sum m_{([0], \alpha)}\cdot 1_{([0], \alpha)} {\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} )h_{1\alpha}) \otimes1_{([1], \beta)}h_{2\beta}. \end{eqnarray*} $

On the other hand,

$ \begin{eqnarray*}&&({\xi}_{\alpha}\otimes{id}_{H_{\beta}}){\rho}_{\alpha, \beta}^{\overline{M_{i}\otimes H_{\alpha\beta}}}([m\otimes h])\\&=&\sum {(m\cdot 1_{([0], i)})}_{([0], \alpha)}\cdot {\theta}_{\alpha}(S_{\alpha}({(m\cdot 1_{([0], i)})}_{([1], {\alpha}^{-1})})h_{1\alpha}1_{([1], \alpha\beta)1\alpha}) \otimes h_{2\beta}1_{([1], \alpha\beta)2\beta} \\&=&\sum m_{([0], \alpha)}\cdot 1_{([0], i)([0], \alpha)}{\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} 1_{([0], i)([1], {\alpha}^{-1})})h_{1\alpha}1_{([1], \alpha\beta)1\alpha}) \otimes h_{2\beta}1_{([1], \alpha\beta)2\beta} \\&=&\sum m_{([0], \alpha)}\cdot 1_{([0], \alpha)}1_{([0], \alpha)}^{'}{\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} 1_{([1], \beta)1{\alpha}^{-1}}1_{([1], {\alpha}^{-1})}^{'})h_{1\alpha}1_{([1], \beta)2\alpha\beta1\alpha})\\ &&\otimes h_{2\beta}1_{([1], \beta)2\alpha\beta2\beta} \\&=&\sum m_{([0], \alpha)}\cdot 1_{([0], \alpha)([0], \alpha)}{\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} 1_{([1], i)1{\alpha}^{-1}})h_{1\alpha}1_{([1], i)2\alpha}) \otimes h_{2\beta}1_{([1], \beta)} \\&=&\sum m_{([0], \alpha)}\cdot 1_{([0], \alpha)} {\theta}_{\alpha}(S_{\alpha}(m_{([1], {\alpha}^{-1})} )h_{1\alpha}) \otimes1_{([1], \beta)}h_{2\beta}. \end{eqnarray*} $

Therefore we complete the proof. Now we can give our main result.

Theorem 2.11  Let $H$ ba a Hopf group coalgebra and $A$ be a right partial group comodule-algebra with a total integral $\theta$, and $M, N\in M_{A}^{\pi-H}$. Supposing the condition in Lemma 2.9 is satisfied, if $f_{i}:M_{i}\rightarrow N_{i}$ splits as $A_{i}$-module map, then $f={\{f_{\alpha}:M_{\alpha}\rightarrow N_{\alpha}\}}_{\alpha\in\pi}$ splits as partial $\pi-H$-comodule map.

Proof  Assume that there exits an $A_{i}$-module map $g_{i}:N_{i}\rightarrow M_{i}$ such that $g_{i}f_{i}={id}_{M_{i}}$. We define

$ \bar g = {\{ \overline {{g_\alpha }} :{N_\alpha } \to {M_\alpha }, \overline {{g_\alpha }} (n) = \sum {{\xi _\alpha }} ([{g_i}({n_{([0], i)}}) \otimes {n_{([1], \alpha )}}]), n \in {N_\alpha }\} _{\alpha \in \pi }}. $

First we claim that $\overline {{g_\alpha }} $ is right $A_{\alpha}$-linear. In fact, for any $\alpha \in \pi ,n \in {N_\alpha },a \in {A_\alpha }$,

$ \begin{eqnarray*} &&\overline{g_{\alpha}}(n\cdot a)=\sum {\xi}_{\alpha}([g_{i}(n_{([0], i)}\cdot a_{([0], i)})\otimes n_{([1], \alpha)}a_{([1], \alpha)}])\\ &=&\sum {\xi}_{\alpha}([g_{i}(n_{([0], i)})\cdot a_{([0], i)}\otimes n_{([1], \alpha)}a_{([1], \alpha)}])=\sum {\xi}_{\alpha}([g_{i}(n_{([0], i)})\otimes n_{([1], \alpha)}])\cdot a =\overline{g_{\alpha}}(n)\cdot a. \end{eqnarray*} $

Second we prove that $\overline{g}$ is right partial $\pi-H$-colinear. Indeed, for any $n\in N_{\alpha\beta}$,

$ \begin{eqnarray*}&&(\overline{g_{\alpha}}\otimes{id}_{H_{\beta}}){\rho}_{\alpha, \beta}^{N}(n) =\sum {\xi}_{\alpha}([g_{i}(n_{([0], \alpha)([0], i)})\otimes n_{([0], \alpha)([1], \alpha)}])\otimes n_{([1], \beta)} \\&=&\sum {\xi}_{\alpha}([g_{i}(n_{([0], i)})\cdot 1_{([0], i)}\otimes n_{([1], \alpha\beta)1\alpha}1_{([1], \alpha)}])\otimes n_{([1], \alpha\beta)2\beta}\\&=&\sum{\rho}_{\alpha, \beta}^{M}{\xi}_{\alpha}([g_{i}(n_{([0], i)})\otimes n_{([1], \alpha\beta)}])={\rho}_{\alpha, \beta}^{M}\overline{g_{\alpha\beta}}(n). \end{eqnarray*} $

Finally we have to show $\overline{g}f={id}_{M}$. In fact, for any $\alpha \in \pi ,m \in {M_\alpha }$ we have,

$ \begin{eqnarray*}&&\overline{g_{\alpha}}f_{\alpha}(m)=\sum {\xi}_{\alpha}([g_{i}({f_{\alpha}(m)}_{([0], i)})\otimes {f_{\alpha}(m)}_{([1], \alpha)}])\\&=&\sum {\xi}_{\alpha}([g_{i}(f_{i}(m_{([0], i)}))\otimes m_{([1], \alpha)}])=\sum {\xi}_{\alpha}([m_{([0], i)}\otimes m_{([1], \alpha)}])\\&=&{\xi}_{\alpha}\circ{p}_{\alpha}\circ{\xi}_{i, \alpha}(m)=m. \end{eqnarray*} $

Hence we complete the proof.

References
[1] Caenepeel S, Janssen K. Partial (co)actions of hopf algebras and partial Hopf-Galois theory[J]. Comm. Algebra, 2008, 36(8): 2923–2946. DOI:10.1080/00927870802110334
[2] Dokuchaev M, Exel R, Piccione P. Partia representations and partial group algebras[J]. J. Algebra, 2000, 226: 251–268.
[3] Dokuchaev M, Exel R. Associativity of crossed products by partial actions enveloping actions and partial representations[J]. Trans. Amer. Math. Soc., 2005, 357: 1931–1952. DOI:10.1090/S0002-9947-04-03519-6
[4] Dokuchaev M, Ferrero M, Pacques A. Partial galois theory of commutative rings[J]. J. Pure. Appl. Algebra, to appear.
[5] Dokuchaev M, Zhukavets N. On finite degree partial representations of group[J]. J. Algebra, 2004, 274: 309–334. DOI:10.1016/S0021-8693(03)00533-7
[6] Exel R. Twisted partial actions:a classification of regular C*-algebra bundels[J]. Proc. London Math. Soc., 1997, 74: 417–443. DOI:10.1112/S0024611597000154
[7] Doi Y. Hopf Extensions of algebras and maschke type theorems[J]. Israel J. Math., 1990, 72(1-2): 99–108. DOI:10.1007/BF02764613
[8] Jia Ling. A Maschke-type theorem for a partial entwining structure[J]. Taiwanese J. Math., 2010, 14(4): 1571–1576.
[9] Guo Jingjing, Zhao Wenzheng. Relative Hopf modules and generalized cleft extensions[J]. J. Math., 2011, 31(3): 21–29.