数学杂志  2016, Vol. 36 Issue (6): 1209-1214   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZHANG Yan-hong
OPTIMAL EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR A FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEM
ZHANG Yan-hong    
School of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
Abstract: In this paper, we study a fourth-order singular boundary value problem. Using the Leggett-Williams fixed point theorem together with constructing a special cone, we establish optimal existence of symmetric positive solutions for a fourth-order singular boundary value problem under certain conditions, which generalizes optimal existence of symmetric positive solutions to singular boundary value problem.
Key words: symmetric positive solutions     boundary value problem     cone    
一类四阶奇异边值问题对称正解的最优存在性
张艳红    
福州大学数学与计算机科学学院, 福建 福州 350108
摘要:本文研究了一类四阶奇异边值问题.通过建立一个特定的锥, 利用Leggett-Williams不动点定理, 从而在一定的条件下得到一类四阶奇异边值问题对称正解的最优存在性, 推广了奇异边值问题对称正解的最优存在性的结果.
关键词对称正解    边值问题        
1 Introduction

We consider existence of symmetric positive solutions for a fourth-order singular boundary value problem:

$ \left\{\begin{array}{ll}x^{(4)}(t)+f(t, x(t))=0, \;0 < t < 1, \\ x(0)=x(1)=x^{'}(0)=x^{'}(1)=0, \end{array}\right. $ (1)

which describes the deformations of an elastic beam with both endpoints fixed, where $f:(0, 1)\times(0, +\infty)\rightarrow (0, +\infty)$ is conditions and $f(t, x)=f(1-t, x)$ for each $(0, 1)\times(0, +\infty).$ $f(t, x(t))$ may be singular at $t=0$ and/or $t=1.$

Here symmetric positive solutions for a fourth-order singular boundary value problem (1) satisfying $x(t)=x(1-t)$ and $x(t)>0, t\in(0, 1).$

Boundary value problems arise in a variety of different areas of applied mathematics and physics (see [1, 2] and the references therein). Recently many authors studied the existence of positive solutions for four-order singular boundary value problems for example [3-13] and the references therein. Most of these results are obtained via transforming the four-order boundary value problems into a second-order boundary value problems, and then applying the Leray-Schauder continuation method, the topologial degree theory, the fixed point theorems on cones, the critical point theory, or the lower and upper solution method. However results about the existence of symmetric positive solutions to singular boundary value problem (1) are few. Motivated by the results in [9, 11] we try to establish optimal existence of symmetric positive solutions to problem (1) by applying Leggett-Williams fixed point theorem.

2 Preliminary

We consider problem (1) in a Banach space $C[0, 1]$ equipped with the norm $\|x\|=\max\limits_{0\leq t\leq 1}|x(t)|$. A function $x(t)\in C[0, 1]$ is said to be a concave function if $x(\tau t_{1}+(1-\tau)t_{2})\geq \tau x(t_{1})+(1-\tau)x(t_{2})$ for all $t_{1}, t_{2}, \tau\in [0, 1].$ We denote

$ C^{+}[0, 1]=\{x\in C[0, 1]:x(t)\geq 0, t\in[0, 1]\}. $

Let $K$ be a cone of $C[0, 1]$ and $m, n$ be constants, $0 < m < n$. Define

$ \begin{eqnarray*} &&K_{r}=\{x\in K\mid \|x\| < r\}, \overline{K_{r}}=\{x\in K\mid \|x\|\leq r\}, \\ &&K(u, m, n)=\{x\in K\mid m\leq u(x), \|x\|\leq n\}.\end{eqnarray*} $

Let $G(t, s)$ be the Green's function of the corresponding boundary value problem (1), i.e.,

$ G(t, s)=\left\{\begin{array}{ll} \frac {1}{6}t^{2}(1-s)^{2}[(s-t)+2(1-t)s], \;\;\;\;&0\leq t\leq s\leq 1, \\ \frac {1}{6}s^{2}(1-t)^{2}[(t-s)+2(1-s)t], \;\;\;\;\;\;&0 \leq s \leq t\leq 1, \end{array}\right. $

and $G(\tau(s), s)=\max\limits_{0\leq t\leq 1}G(t, s)$, where

$ \tau(s)=\left\{\begin{array}{ll} \frac {1}{3-2s}, &0\leq s\leq \frac{1}{2}, \\ \frac {2s}{1+2s}, &\frac{1}{2}\leq s \leq 1.\end{array}\right. $

After a simple calculation, we get

(Ⅰ) $\displaystyle\int^{1}_{0}G(\tau(s), s)ds=\max\limits_{0\leq t\leq 1}\int^{1}_{0}G(t, s)ds=\max\limits_{0\leq t\leq 1}\frac{1}{24}t^{2}(1-t)^{2}=\frac{1}{384};$

(Ⅱ) $G(1-t, 1-s)=G(t, s);$

(Ⅲ) $\min\limits_{0\leq c\leq 1}\displaystyle\frac{G(\frac{1}{4}, c)}{G(\frac{1}{2}, c)}=\frac{1}{4};$

(Ⅳ)(see [9]) $q(t)G(\tau(s), s)\leq G(t, s)\leq G(\tau(s), s), q(t)=\min\{t^{2}, (1-t)^{2}\}, t\in [0, 1].$

Lemma 2.1 (see [14])  Let $A:K\rightarrow K$ be a completely continuous operator, $u$ be a nonnegative continuous concave function on $K$, and satisfies $u(x)\leq \|x\|$ for all $x\in \overline{K_{r}}$. In addition, assume that there exist $0 < d < m < n\leq r$ satisfy the following conditions:

(ⅰ) $\{x\in K(u, m, n)\mid u(x)>m\}\neq\varnothing$, and $u(Ax)>m$ for $x\in K(u, m, n)$;

(ⅱ) $\|Ax\|\leq d$ for $x\in \overline{K_{d}}$;

(ⅲ) $u(Ax)>m$ for $x\in K(u, m, r)$ and $\|Ax\|>n$;

then $A$ has at least three fixed points $x_{1}, x_{2}, x_{3}$ on $\overline{K_{r}}$ satisfy $\|x_{1}\| < d, m < u(x_{2})$, and $\|x_{3}\|>d$ for $u(x_{3}) < m.$

3 Main Results

Theorem 3.1  Suppose the following conditions hold:

(H1) $f\in C((0, 1)\times[0, +\infty), [0, +\infty)), f(t, x)\leq g(t)h(x), g\in C((0, 1), [0, +\infty)),\\ h\in C( [0, +\infty), [0, +\infty));$

(H2) $0 < \displaystyle\int^{1}_{0}G(\tau(s), s)g(s)ds < +\infty;$

(H3) There exist $ 0 < d < m < \frac{r}{2}$ such that

1) $h(x)\leq d[\displaystyle\int^{1}_{0}G(\tau(s), s)g(s)ds]^{-1}$ for $0\leq x\leq d;$

2) $f(t, x)>16m[\displaystyle\int^{1}_{0}G(\tau(s), s)ds]^{-1}=6144m$ for $m\leq x\leq 2m;$

3) $h(x) < r[\displaystyle\int^{1}_{0}G(\tau(s), s)g(s)ds]^{-1}$ for $0\leq x\leq r;$

then problem(1) has triple symmetric positive solutions $x_{1}, x_{2}, x_{3}$ satisfy $\|x_{1}\| < d, m < u(x_{2})$, and $\|x_{3}\|>d$ for $u(x_{3}) < m.$

Proof Denote $K=\{x\in C^{+}[0, 1]:x(t)$is convex function and $x(t)=x(1-t), t\in [0, 1]\}$, then $K$ is a cone of $C^{+}[0, 1].$

Let $u(x)=\min\limits_{\frac{1}{4}\leq t\leq \frac{3}{4}}x(t)$ for $x\in K.$ then $u(x)=x(\frac{1}{4})\leq x(\frac{1}{2})=\|x\|$. It is well known that $x(t)$ is a positive solution of problem (1) if only if $x(t)$ is a positive solution of the equation $x(t)=\displaystyle\int^{1}_{0}G(t, s)f(s, x(s))ds$.

Define operator $A:K\rightarrow K$ by $Ax(t)=\displaystyle\int^{1}_{0}G(t, s)f(s, x(s))ds$. Obviously $Ax(t)\geq 0, (Ax)^{''}(t) < 0$ for $0 < t < 1, $ and for $x\in K$,

$ \begin{eqnarray*} &&Ax(1-t) =\int^{1}_{0}G(1-t, s)f(s, x(s))ds\\ &=&\int^{1-t}_{0}G(1-t, s)f(s, x(s))ds+\int^{1}_{1-t}G(1-t, s)f(s, x(s))ds\\ &=&-\int^{t}_{1}G(1-t, 1-r)f(1-r, x(1-r))dr-\int^{0}_{t}G(1-t, 1-r)f(1-r, x(1-r))dr\\ &=&\int^{1}_{t}G(t, r)f(r, x(r))dr+\int^{t}_{0}G(t, r)f(r, x(r))dr =Ax(t)\end{eqnarray*} $

consequently $Ax\in K$, that is $A:K\rightarrow K.$ By Arzela-Ascoli theorem, we can prove $A:K\rightarrow K$ is completely continuous.

From (H1) and 3) in (H3), for any $x\in \overline{K_{r}}, $ we know that

$ \begin{eqnarray*} \|Ax\|&\leq& \int^{1}_{0}G(\tau(s), s)g(s)h(x(s))ds\\ &\leq& \int^{1}_{0}G(\tau(s), s)g(s)ds\cdot r[\int^{1}_{0}G(\tau(s), s)g(s)ds]^{-1}=r.\end{eqnarray*} $

So $A(\overline{K_{r}})\subset \overline{K_{r}}.$ Choose $x(t)=2m, 0 < t < 1, $ then $x(t)\in K(u, m, 2m), $ and $u(x)=u(2m)>m.$ Then $\{x\in K(u, m, 2m)\mid u(x)>m\}\neq\varnothing$. And for $x\in K(u, m, 2m), u(x)=x(\frac{1}{4})\geq m$. Hence $m\leq x(s)\leq 2m, \frac{1}{4}\leq s \leq \frac{3}{4}.$ Thus for any $x\in K(u, m, 2m), $ from 2) in (H3), we obtain

$ \begin{eqnarray*} u(Ax)&=&\min\limits_{\frac{1}{4}\leq t\leq \frac{3}{4}}Ax(t)=\min\limits_{\frac{1}{4}\leq t\leq \frac{3}{4}}\int^{1}_{0}G(t, s)f(s, x(s))ds\\ &\geq& \min\limits_{\frac{1}{4}\leq t\leq \frac{3}{4}}\int^{1}_{0}q(t)G(\tau(s), s)f(s, x(s))ds\\ &\geq& \frac{1}{16}\int^{1}_{0}G(\tau(s), s)f(s, x(s))ds\\ &\geq& \frac{1}{16}\cdot 6144m \int^{1}_{0}G(\tau(s), s)ds=m.\end{eqnarray*} $

Thus condition (ⅰ) of Lemma 2.1 holds.

Next from (H1) and 1) in (H3), for any $x\in \overline{K_{d}}, $ we have

$ \begin{eqnarray*} \|Ax\|&\leq& \max\limits_{0\leq t\leq 1}\int^{1}_{0}G(t, s)g(s)h(x(s))ds\\ &\leq& \int^{1}_{0}G(\tau(s), s)g(s)ds\cdot d[\int^{1}_{0}G(\tau(s), s)g(s)ds]^{-1}=d.\end{eqnarray*} $

So $A:\overline{K_{d}}\rightarrow \overline{K_{d}}.$ Thus condition (ⅱ) of Lemma 2.1 follows.

Finally we prove $u(Ax)>m$ for $x\in K(u, m, r)$ and $\|Ax\|>4m.$

From 2) in (H3), for $x\in K(u, m, r)$ and $\|Ax\|>4m$, we know that

$ \begin{eqnarray*} u(Ax)&=&Ax(\frac{1}{4})=\int^{1}_{0}G(\frac{1}{4}, s)f(s, x(s))ds\\ &=&\int^{1}_{0}\frac{G(\frac{1}{4}, s)}{G(\frac{1}{2}, s)}G(\frac{1}{2}, s)f(s, x(s))ds\\ &\geq& \min\limits_{0\leq c\leq 1}\frac{G(\frac{1}{4}, c)}{G(\frac{1}{2}, c)}\int^{1}_{0}G(\frac{1}{2}, s)f(s, x(s))ds\\ &=&\frac{1}{4}Ax(\frac{1}{2})=\frac{1}{4}\|Ax\|>m.\end{eqnarray*} $

Therefore condition (ⅲ) of Lemma 2.1 holds too. The proof is completed.

Remark Theorem 3.1 also holds when nonlinearity $f(t, x(t))$ is nonsingular at $t=0$ and $t=1$.

4 Example

Example 4.1 The following boundary value problem:

$ \left\{\begin{array}{ll} x^{(4)}(t)+\frac{h(x)}{t^{2}(1-t)^{2}}=0, \;0 < t < 1, \\ x(0)=x(1)=x^{'}(0)=x^{'}(1)=0\end{array}\right. $ (2)

has triple symmetric positive solutions, where

$ h(x)=\left\{\begin{array}{ll} 4x^{2}, &0\leq x < 2, \\ \frac {5760}{2x-1}, &x \geq 2.\end{array}\right. $

Proof  Let $f(t, x)=h(x)g(t), g(t)=\frac{1}{t^{2}(1-t)^{2}}.$ Obviously $g(t)$ is signular at $t=0$ and $t=1$. $h(x)\in C[0, +\infty)$. So (H1) holds.

Since

$ \begin{eqnarray*} G(\tau(s), s)&=&\left\{\begin{array}{ll}\frac{2s^{2}(1-s)^{3}}{3(3-2s)^{2}}, &0\leq s\leq \frac{1}{2}, \\ \frac{2s^{3}(1-s)^{2}}{3(1+2s)^{2}}, &\frac{1}{2}\leq s \leq 1.\end{array}\right.\\ \int^{1}_{0}G(\tau(s), s)g(s)ds&=&\frac{2}{3}\int^{\frac{1}{2}}_{0}\frac{1-s}{(3-2s)^{2}}ds+\frac{2}{3}\int^{1}_{\frac{1}{2}}\frac{s}{(1+2s)^{2}}ds \\ &=&\frac{1}{3}(\ln3-\ln2)-\frac{1}{12}\approx0.05 >0, \end{eqnarray*} $

then (H2) holds.

1) In (H3) followings from $[\displaystyle\int^{1}_{0}G(\tau(s), s)g(s)ds]^{-1}\approx 20$, we may take $d=\frac{1}{4}$ then

$ h(x)= 4x^{2}\leq 4d^{2}=\frac{1}{4} < d[\displaystyle\int^{1}_{0}G(\tau(s), s)g(s)ds]^{-1}\approx\frac{20}{4}\ \ {\rm for}\ \ 0\leq x \leq d=\frac{1}{4}. $

2) In (H3) is immediate, since we may take $m=2$ then

$ \begin{eqnarray*} f(t, x)&=&h(x)g(t)=\frac{1}{t^{2}(1-t)^{2}}\frac {5760}{2x-1}\\ &\geq& 16 \frac {5760}{2x-1}>16h(4)> 2\times 6144=6144m, \;\;2\leq x\leq 4, 0 < t < 1.\end{eqnarray*} $

3) In (H3) is immediate, since we may take $r=100>2m=4$ then

$ \begin{align} & \underset{0\le x\le 100}{\mathop{\max }}\, h(x)\le h(2)=\frac{5760}{3} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ < 100{{[\int_{0}^{1}{G}(\tau (s), s)g(s)ds]}^{-1}}\approx 2000, \ \ 0\le x\le r=100. \\ \end{align} $

Thus from Theorem 3.1, we know that problen (2) has triple symmetric positive solutions $x_{1}, x_{2}, x_{3}$ satisfy $\|x_{1}\ |< \frac{1}{4}, \;2 < u(x_{2})$, and $\|x_{3}\|>\frac{1}{4}$ for $u(x_{3}) < 2.$

References
[1] Davis J M, Erbe L H, Henderson J. Multiplicity of positive solutions for higher order Sturm-Liouville problems[J]. Rocky Mountain J. Math., 2001, 31: 169–184. DOI:10.1216/rmjm/1008959675
[2] Liu L S, Sun Y. Positive solutions of singular boundary value problems for difierential equations[J]. Acta Math. Sci. Ser. A. Chin. Ed., 2005, 25(4): 554–563.
[3] Tang Rongrong. A class of fourth-order nonlinear boundary layer solution of singular perturbation boundary value equation[J]. J. Math., 2007, 27(4): 385–390.
[4] Alves E, Ma T F, Pelicer M L. Monotone positive solutions for a fourth order equation with nonlinear boundary conditions[J]. Nonl. Anal. TMA, 2009, 71: 3834–3841. DOI:10.1016/j.na.2009.02.051
[5] Graef J R, Yang B. Positive solutions of a nonlinear fourth order boundary value problem[J]. Comm. Appl. Nonl. Anal., 2007, 14(1): 61–73.
[6] Ma H L. Symmetric positive solutions for nonlocal boundary value problems of fourth order[J]. Nonl. Anal., 2008, 68: 645–651. DOI:10.1016/j.na.2006.11.026
[7] Liu B. Positive solutions of fourth-order two-point boundary value problems[J]. Appl. Math. Com put., 2004, 148: 407–420. DOI:10.1016/S0096-3003(02)00857-3
[8] Ma R, Wang H. On the existence of positive solutions of fourth-order ordinary difierential equa tions[J]. Appl. Anal., 1995, 59: 225–231. DOI:10.1080/00036819508840401
[9] Pei M, Chang S K. Monotone iterative technique and symmetric positive solutions for a fourth-order boundary value problem[J]. Math. Comput. Model., 2010, 51: 1260–1267. DOI:10.1016/j.mcm.2010.01.009
[10] Yang B. Positive solutions for the beam equation under certain boundary conditions, electron[J]. J. Difi. Equ., 2005, 78: 1–8.
[11] Yao Q. Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J]. Appl. Math. Lett., 2004, 17: 237–243. DOI:10.1016/S0893-9659(04)90037-7
[12] Zhang X P. Existence and iteration of monotone positive solutions for an elastic beam with a corner[J]. Nonl. Anal. RWA, 2009, 10: 2097–2103. DOI:10.1016/j.nonrwa.2008.03.017
[13] Jankowski T, Jankowski R. Multiple solutions of boundary-value problems for fourth-order difier ential equations with deviating arguments[J]. J. Optim. The. Appl., 2010, 146: 105–115. DOI:10.1007/s10957-010-9658-5
[14] Guo D J, Lakashmikantham V. Nonlinear problems in abstract cones[M]. New York: Academic Press, 1988.