3 Conformable Nabla Fractional Derivative
Definition 3.1 Let $\mathbb{T}$ be a time scale and $\alpha\in(0, 1]$. A function $f:\mathbb{T}\rightarrow \mathbb{R}$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t\in \mathbb{T}_{k}$ if there exists a number $\mathbf{T}_{\alpha}(f^{\nabla})(t)$ such that, for each $\varepsilon>0$, there exists a neighborhood $U$ of $t$ such that
$|(f(\rho(t))-f(s))\rho(t)^{1-\alpha}-\mathbf{T}_{\alpha}(f^{\nabla})(t)(\rho(t)-s)|\leq \epsilon|\rho(t)-s|$ |
for all $s\in U$. We call $\mathbf{T}_{\alpha}(f^{\nabla})(t)$ the conformable $\nabla$-fractional derivative of $f$ of order $\alpha$ at $t$ and we say that $f$ is conformable $\nabla$-fractional differentiable if $f$ is conformable $\nabla$-fractional differentiable for all $t\in \mathbb{T}_{k}$.
Theorem 3.2 Let $\mathbb{T}$ be a time scale, $t\in \mathbb{T}_{k}$ and $\alpha\in(0, 1]$. Then we have the following:
(ⅰ) If $f$ is conformal $\nabla$-fractional differentiable of order $\alpha$ at $t$, then $f$ is continuous at $t$.
(ⅱ) If $f$ is continuous at $t$ and $t$ is left-scattered, then $f$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t$ with $\mathbf{T}_{\alpha}(f^{\nabla})(t)=-\frac{f(\rho(t))-f(t)}{\eta(t)}\rho(t)^{1-\alpha}.$
(ⅲ) If $t$ is left-dense, then $f$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t$ if and only if the limit $\lim\limits_{s\rightarrow t}\frac{f(t)-f(s)}{t-s}t^{1-\alpha}$ exists as a finite number. In this case,
$\mathbf{T}_{\alpha}(f^{\nabla})(t)=\lim_{s\rightarrow t}\frac{f(t)-f(s)}{t-s}t^{1-\alpha}.$ |
(ⅳ) If $f$ is conformal $\nabla$-fractional differentiable of order $\alpha$ at $t$, then
$f(\rho(t))=f(t)-\eta(t)\mathbf{T}_{\alpha}(f^{\nabla})(t)\rho(t)^{\alpha-1}.$ |
Proof (ⅰ) The proof is easy and will be omitted.
(ⅱ) Assume that $f$ is continuous at $t$ and $t$ is left-scattered. By continuity,
$\mathop {\lim }\limits_{s \to t} \frac{{f(\rho (t)) - f(s)}}{{\rho (t) - s}}\rho {(t)^{1 - \alpha }} = \frac{{f(\rho (t)) - f(t)}}{{\rho (t) - t}}\rho {(t)^{1 - \alpha }} = \frac{{f(\rho (t)) - f(t)}}{{ - \eta (t)}}\rho {(t)^{1 - \alpha }}.$ |
Hence given $\varepsilon>0$, there exists a neighborhood $U$ of $t$ such that
$\left|\frac{f(\rho(t))-f(s)}{\rho(t)-s}\rho(t)^{1-\alpha}-\frac{f(\rho(t))-f(s)}{-\eta(t)}\rho(t)^{1-\alpha}\right|\leq \epsilon$ |
for all $s\in U$. It follows that
$\left|\left(f(\rho(t))-f(s)\right)\rho(t)^{1-\alpha}-\frac{f(\rho(t))-f(s)}{-\eta(t)}\left(\rho(t)-s\right)\rho(t)^{1-\alpha}\right|\leq \epsilon|\rho(t)-s|$ |
for all $s\in U$. Hence we get the desired result $\mathbf{T}_{\alpha}(f^{\nabla})(t)=-\frac{f(\rho(t))-f(t)}{\eta(t)}\rho(t)^{1-\alpha}.$
(ⅲ) Assume that $f$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t$ and $t$ is right-dense. Then for each $\varepsilon>0$, there exists a neighborhood $U$ of $t$ such that
$|(f(\rho(t))-f(s))\rho(t)^{1-\alpha}-\mathbf{T}_{\alpha}(f^{\nabla})(t)(\rho(t)-s)|\leq \epsilon|\rho(t)-s|$ |
for all $s\in U$. Since $\rho(t)=t$ we have that $|(f(t)-f(s))t^{1-\alpha}-\mathbf{T}_{\alpha}(f^{\nabla})(t)(t-s)|\leq \epsilon|t-s|$ for all $s\in U$. It follows that $\left|\frac{f(t)-f(s)}{t-s}t^{1-\alpha}-\mathbf{T}_{\alpha}(f^{\nabla})(t)\right|\leq \epsilon$ for all $s\in U$, $s\neq t$. Hence we get the desired result.
On the other hand, if the limit $\lim\limits_{s\rightarrow t}\frac{f(t)-f(s)}{t-s}t^{1-\alpha}$ exists as a finite number and is equal to $J$, then for each $\varepsilon>0$, there exists a neighborhood $U$ of $t$ such that
$|(f(t)-f(s))t^{1-\alpha}-J(t-s)|\leq \epsilon|t-s|$ |
for all $s\in U$. Since $t$ is right-dense, we have that
$|(f(\rho(t))-f(s))\rho(t)^{1-\alpha}-J(\rho(t)-s)|\leq \epsilon|\rho(t)-s|.$ |
Hence $f$ is conformable $\nabla$-fractional differentiable at $t$ and $\mathbf{T}_{\alpha}(f^{\nabla})(t)=\lim\limits_{s\rightarrow t}\frac{f(t)-f(s)}{t-s}t^{1-\alpha}.$
(ⅳ) If $t$ is left-dense, then $\eta(t)=0$ and we have that
$f(\rho(t))=f(t)=f(t)+\eta(t)\mathbf{T}_{\alpha}(f^{\nabla})(t)\rho(t)^{\alpha-1}.$ |
If $t$ is left-scattered, then $\rho(t)<t$, then by (ⅱ)
$f(\rho(t))=f(t)+\eta(t)\frac{f(\rho(t))-f(t)}{\eta(t)}= f(t)-\eta(t)\mathbf{T}_{\alpha}(f^{\nabla})(t)\rho(t)^{\alpha-1}.$ |
Corollary 3.3 Again we consider the two cases $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{Z}$.
(ⅰ) If $\mathbb{T}=\mathbb{R}$, then $f:\mathbb{R}\rightarrow\mathbb{R}$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t\in\mathbb{R}$ if and only if the limit $\lim\limits_{s\rightarrow t}\frac{f(t)-f(s)}{t-s}t^{1-\alpha}$ exists as a finite number. In this case,
${{\bf{T}}_\alpha }({f^\nabla })(t) = \mathop {\lim }\limits_{s \to t} \frac{{f(t) - f(s)}}{{t - s}}{t^{1 - \alpha }}.$ |
If $\alpha=1$, then we have that $\mathbf{T}_{\alpha}(f^{\nabla})(t)=f^{\nabla}(t)=f'(t).$
(ⅱ) if $\mathbb{T}=\mathbb{Z}$, then $f:\mathbb{Z}\rightarrow\mathbb{R}$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t\in\mathbb{Z}$ with
$\mathbf{T}_{\alpha}(f^{\nabla})(t)=-\frac{f(t-1)-f(t)}{1}(t-1)^{1-\alpha}=(t-1)^{1-\alpha}\left(f(t)-f(t-1)\right).$ |
If $\alpha=1$, then we have that $\mathbf{T}_{\alpha}(f^{\nabla})(t)=f(t)-f(t-1)=\nabla f(t), $ where $\nabla$ is the usual backward difference operator.
Example 3.4 If $f:\mathbb{T}\rightarrow\mathbb{R}$ is defined by $f(t)=C$ for all $t\in\mathbb{T}$, where $C\in\mathbb{R}$ is constant, then $\mathbf{T}_{\alpha}(f^{\nabla})(t)\equiv0$.
(ⅱ) if $f:\mathbb{T}\rightarrow\mathbb{R}$ is defined by $f(t)=t$ for all $t\in\mathbb{T}$, then $\mathbf{T}_{\alpha}(f^{\nabla})(t)=\rho(t)^{1-\alpha}$. If $\alpha=1$, then $\mathbf{T}_{\alpha}(f^{\nabla})(t)\equiv1$.
Example 3.5 If $f:\mathbb{T}\rightarrow\mathbb{R}$ is defined by $f(t)=t^{2}$ for all $t\in\mathbb{T}:=\{\frac{n}{2}:n\in\mathbb{N}_{0}\}$, then from Theorem 3.2 (ⅱ) we have that $f$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t\in\mathbb{T}$ with
$\mathbf{T}_{\alpha}(f^{\nabla})(t)=\left(2t-\frac{1}{2}\right)\left(t-\frac{1}{2}\right)^{1-\alpha}.$ |
Theorem 3.6 Assume $f, g:\mathbb{T}\rightarrow\mathbb{R}$ are conformable $\nabla$-fractional differentiable of order $\alpha$ at $t\in\mathbb{T}_{k}$, then
(ⅰ) for any constant $\lambda_{1}, \lambda_{2}$, the sum $\lambda_{1} f+\lambda_{2} g:\mathbb{T}\rightarrow\mathbb{R}$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t$ with $\mathbf{T}_{\alpha}((\lambda_{1} f+\lambda_{2} g)^{\nabla})(t)=\lambda_{1} \mathbf{T}_{\alpha}(f^{\nabla})(t)+\lambda_{2} \mathbf{T}_{\alpha}(g^{\nabla})(t);$
(ⅱ) if $f$ and $g$ are continuous, then the product $fg:\mathbb{T}\rightarrow\mathbb{R}$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t$ with
$\mathbf{T}_{\alpha}(fg)^{\nabla}(t)=\mathbf{T}_{\alpha}(f^{\nabla})(t)g(t)+f(\rho(t))\mathbf{T}_{\alpha}(g^{\nabla})(t)=f(t)\mathbf{T}_{\alpha}(g^{\nabla})(t)+\mathbf{T}_{\alpha}(f^{\nabla})(t)g(\rho(t));$ |
(ⅲ) if $f(t)f(\rho(t))\neq 0$, then $\frac{1}{f}$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t$ with
$\mathbf{T}_{\alpha}\left(\frac{1}{f}\right)^{\nabla}(t)=-\frac{\mathbf{T}_{\alpha}(f^{\nabla})(t)}{f(t)f(\rho(t))};$ |
(ⅳ) if $g(t)g(\rho(t))\neq 0$, then $\frac{f}{g}$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t$ with
$\mathbf{T}_{\alpha}\left(\frac{f}{g}\right)^{\nabla}(t)=\frac{\mathbf{T}_{\alpha}(f^{\nabla})(t)g(t)-f(t)\mathbf{T}_{\alpha}(g^{\nabla})(t)}{g(t)g(\rho(t))}.$ |
Proof (ⅰ) The proof is easy and will be omitted.
(ⅱ) Let $0<\varepsilon<1$. Define
$\epsilon^{\ast}=\frac{\epsilon}{1+|g(\rho(t))|+|f(t)|+|\mathbf{T}_{\alpha}(g^{\nabla})(t)|}, $ |
then $0<\epsilon^{\ast}<1$. $f, g:\mathbb{T}\rightarrow\mathbb{R}$ are conformable $\nabla$-fractional differentiable of order $\alpha$ at $t$. Then there exists neighborhoods $U_{1}$ and $U_{2}$ of $t$ with
$|(f(\rho(t))- f(s))\rho(t)^{1-\alpha}-\mathbf{T}_{\alpha}(f^{\nabla})(t)(\rho(t)-s)|\leq \epsilon^{\ast}|\rho(t)-s|$ |
for all $s\in U_{1}$ and
$|g(\rho(t))-g(s))\rho(t)^{1-\alpha}-\mathbf{T}_{\alpha}(g^{\nabla})(t)(\rho(t)-s)|\leq \epsilon^{\ast}|\rho(t)-s|$ |
for all $s\in U_{2}$.
From Theorem 3.2 (ⅰ), there exists neighborhoods $U_{3}$ of $t$ with $|f(t)-f(s)|\leq \epsilon^{\ast}$ for all $s\in U_{3}$.
Let $U=U_{1}\cap U_{2}\cap U_{3}$. Then we have for all $s\in U$
$\begin{eqnarray*} &&|[f(\rho(t))g(\rho(t))-f(s)g(s)]\rho(t)^{1-\alpha}-[\mathbf{T}_{\alpha}(f^{\nabla})(t)g(\rho(t))+f(t)\mathbf{T}_{\alpha}(g^{\nabla})(t)](\rho(t)-s)|\\ &\leq&|[(f(\rho(t))-f(s))\rho(t)^{1-\alpha}-\mathbf{T}_{\alpha}(f^{\nabla})(t)(\rho(t)-s)]g(\rho(t))| \\ &&+|[(g(\rho(t))-g(s))\rho(t)^{1-\alpha}-\mathbf{T}_{\alpha}(g^{\nabla})(t)(\rho(t)-s)]f(t)|\\ &&+|[(g(\rho(t))-g(s))\rho(t)^{1-\alpha}-\mathbf{T}_{\alpha}(g^{\nabla})(t)(\rho(t)-s)](f(s)-f(t))|\\ &&+|\mathbf{T}_{\alpha}(g^{\nabla})(t)(\rho(t)-s)](f(s)-f(t))|\\ &\leq&\epsilon^{\ast}|\rho(t)-s|\cdot\left(|g(\rho(t))|+|f(t)|+\epsilon^{\ast}+|\mathbf{T}_{\alpha}(g^{\nabla})(t)|\right)\\ &\leq&\epsilon|\rho(t)-s|. \end{eqnarray*}$ |
Thus $\mathbf{T}_{\alpha}(fg)^{\nabla}(t)=f(t)\mathbf{T}_{\alpha}(g^{\nabla})(t)+\mathbf{T}_{\alpha}(f^{\nabla})(t)g(\rho(t)).$ The other product rule formula follows by interchanging the role of functions $f$ and $g$.
(ⅲ) From Example 3.4, we have that $\mathbf{T}_{\alpha}\left(f\cdot\frac{1}{f}\right)^{\nabla}(t)=\mathbf{T}_{\alpha}(1)^{\nabla}(t)=0.$ Therefore
$\mathbf{T}_{\alpha}\left(\frac{1}{f}\right)^{\nabla}(t)f(\rho(t))+\mathbf{T}_{\alpha}(f^{\nabla})(t)\frac{1}{f(t)}=0$ |
and consequently $\mathbf{T}_{\alpha}(\frac{1}{f})^{\nabla}(t)=-\frac{\mathbf{T}_{\alpha}(f^{\nabla})(t)}{f(t)f(\rho(t))}.$
(ⅳ) We use (ⅱ) and (ⅲ) to calculate
$\begin{eqnarray*} \mathbf{T}_{\alpha}\left(\frac{f}{g}\right)^{\nabla}(t)&=&f(t)\mathbf{T}_{\alpha}\left(\frac{1}{g}\right)^{\nabla}(t)+\mathbf{T}_{\alpha}(f^{\nabla})(t)\frac{1}{g(\rho(t))}\\ &=&-f(t)\frac{\mathbf{T}_{\alpha}(g^{\nabla})(t)}{g(t)g(\rho(t))}+\mathbf{T}_{\alpha}(f^{\nabla})(t)\frac{1}{g(\rho(t))}\\ &=&\frac{\mathbf{T}_{\alpha}(f^{\nabla})(t)g(t)-f(t)\mathbf{T}_{\alpha}(g^{\nabla})(t)}{g(t)g(\rho(t))}. \end{eqnarray*}$ |
Theorem 3.7 Let $c$ be constant and $m\in\mathbb{N}$.
(ⅰ) For $f$ defined by $f(t)=(t-c)^{m}$, we have that
$\mathbf{T}_{\alpha}(f^{\nabla})(t)=\rho(t)^{1-\alpha}\sum^{m-1}_{i=0}(\rho(t)-c)^{i}(t-c)^{m-1-i}.$ |
(ⅱ) For $g$ defined by $g(t)=\frac{1}{(t-c)^{m}}$, we have that
$\mathbf{T}_{\alpha}(g^{\nabla})(t)=-\rho(t)^{1-\alpha}\sum^{m-1}_{i=0}\frac{1}{(\rho(t)-c)^{m-i}(t-c)^{i+1}}$ |
provided $(\rho(t)-c)(t-c)\neq 0$.
Proof (ⅰ) We prove the first formula by induction. If $m=1$, then $f(t)=t-c$, and clearly $\mathbf{T}_{\alpha}(f^{\nabla})(t)=\rho(t)^{1-\alpha}$ holds by Example 3.4 and Theorem 3.6(ⅰ). Now we assume that
$\mathbf{T}_{\alpha}(f^{\nabla})(t)=\rho(t)^{1-\alpha}\sum^{m-1}_{i=0}(\rho(t)-c)^{i}(t-c)^{m-1-i}$ |
holds for $f(t)=(t-c)^{m}$ and let $F(t)=(t-c)^{m+1}=(t-c)f(t)$. We use Theorem 3.6 (ⅱ) to obtain
$\begin{eqnarray*} \mathbf{T}_{\alpha}(F)^{\nabla}(t)&=&\rho(t)^{1-\alpha}f(\rho(t))+(t-c)\mathbf{T}_{\alpha}(f^{\nabla})(t)\\ &=&\rho(t)^{1-\alpha}(\rho(t)-c)^{m}+(t-c)\rho(t)^{1-\alpha}\sum^{m-1}_{i=0}(\rho(t)-c)^{i}(t-c)^{m-1-i}\\ &=&\rho(t)^{1-\alpha}\sum^{m}_{i=0}(\rho(t)-c)^{i}(t-c)^{m-i}. \end{eqnarray*}$ |
Hence part (ⅰ) holds.
(ⅱ) For $g(t)=\frac{1}{(t-c)^{m}}$, we use Theorem 3.6 (ⅲ) to obtain
$\begin{eqnarray*} \mathbf{T}_{\alpha}(g)^{\nabla}(t)&=&-\frac{\mathbf{T}_{\alpha}(f^{\nabla})(t)}{f(t)f(\rho(t))}\\ &=&-\frac{\rho(t)^{1-\alpha}\sum^{m-1}_{i=0}(\rho(t)-c)^{i}(t-c)^{m-1-i}}{(\rho(t)-c)^{m}(t-c)^{m}}\\ &=&-\rho(t)^{1-\alpha}\sum^{m-1}_{i=0}\frac{1}{(\rho(t)-c)^{m-i}(t-c)^{i+1}} \end{eqnarray*}$ |
provided $(\rho(t)-c)(t-c)\neq 0$.
Example 3.8 If $f:\mathbb{T}\rightarrow\mathbb{R}$ is defined by $f(t)=\frac{1}{t^{2}}$ for all $t\in\mathbb{T}:=\{\sqrt{n}:n\in\mathbb{N}_{0}\}$, then we have that $f$ is conformable $\nabla$-fractional differentiable of order $\alpha$ at $t\in\mathbb{T}$ with
$\mathbf{T}_{\alpha}(f^{\nabla})(t)=-\rho(t)^{1-\alpha}\left(\frac{1}{(\rho(t))^{2}t}+\frac{1}{\rho(t)t^{2}}\right)=-(\sqrt{t^{2}-1})^{-\alpha}\left(\frac{1}{t\sqrt{t^{2}-1}}+\frac{1}{t^{2}}\right).$ |