缺少了某些元素的算子矩阵称为缺项算子矩阵.算子矩阵的谱补问题旨在讨论缺项算子矩阵中所缺的元素对整个算子矩阵谱的影响, 在换位提升理论, 插值理论, 以及系统控制理论中具有重要应用.算子矩阵的谱扰动属于谱补问题的研究范畴, 它是当所缺的元素跑遍特定的集合时整个算子矩阵谱的稳定的组成部分.
设 $\mathcal H_{1}$, $\mathcal H_{2}$, $\mathcal H_{3}$为无穷维复可分Hilbert空间.以 $\mathcal{B}(\mathcal H_{i}, \mathcal H_{j})$表示从 $\mathcal H_{i}$到 $\mathcal H_{j}$的所有有界(线性)算子构成的集合, $\mathcal{B}(\mathcal H_{i}, \mathcal H_{i})$简记为 $\mathcal{B}(\mathcal H_{i})$, 其中 $i, j=1, 2, 3$.给定 $A\in\mathcal{B}(\mathcal H_{1}), B\in \mathcal{B}(\mathcal H_{2}), C\in \mathcal{B}(\mathcal H_{3})$, 记
其中
为待定的未知算子.显然, $M_{D, E, F}$是 $\mathcal H_{1}\oplus \mathcal H_{2}\oplus \mathcal H_{3}$上的缺项上三角算子矩阵.为叙述方便, 对于给定算子 $A\in \mathcal{B}(\mathcal H_{1}), B\in \mathcal{B}(\mathcal H_{2}), $以 $M_{D}$表示缺项 $2\times 2$阶上三角算子矩阵
其中 $ D\in\mathcal{B}(\mathcal H_{2}, \mathcal H_{1})$待定.
经过近二十年的积累, $2\times 2$阶上三角算子矩阵的谱扰动研究已日臻完善, 涌现出诸如谱, 点谱, 剩余谱, 连续谱, 近似点谱, 亏谱, 本质谱, Weyl谱, 以及Browder谱等的扰动结果[2, 3, 5-8, 10-18].例如, 文[15]研究了上三角算子矩阵 $M_{D}$的点谱和剩余谱扰动, 得到如下结果
最近, 文[4, 18]分别研究了上三角算子矩阵 $M_{D, E, F}$的左(右)本质谱, 以及点谱, 剩余谱和连续谱的扰动; 文[9]给出了 $M_{D, E, F}$的点谱, 连续谱和剩余谱之并集的描述.本文在文[15]的基础上探讨了 $3\times 3$阶情形, 得到
的完全描述.
对于有界算子 $T$, 分别以 $T^{*}$, $\mathcal{N}(T)$和 $\mathcal{R}(T)$表示 $ T$的共轭算子, 零空间和值域; 以 $n(T)$, $d(T)$分别表示 $ \mathcal{N}(T)$, $ \mathcal{N}(T^{*})$的维数, 即 $ n(T)=\dim \mathcal{N}(T)$, $d(T)=\dim \mathcal{N}(T^{*})$.下面给出文中涉及的一些基本概念和辅助引理.
定义1.1[1] 设 $T$为Banach空间 $X$中的有界线性算子, 则 $T$的预解集 $\rho(T)$定义为
并称集合 $\sigma(T)=\mathbb{C}\setminus \rho(T)$为 $T$的谱.
由闭图象定理, $\lambda\in\rho(T)$当且仅当 $T-\lambda$是双射.显然, $\sigma(T)$可分成下述互不相交的组成部分 $\sigma(T)=\sigma_{p}(T)\cup\sigma_{r}(T)\cup\sigma_{c}(T), $其中
分别为 $T$的点谱, 剩余谱和连续谱.类似于文[1], 可对点谱和剩余谱进一步细分为
此外, 称集合
为 $T$的亏谱.为叙述方便, 记
如所熟知, $\lambda\in\rho_{m}(T)$当且仅当 $\mathcal{R}(T- \lambda)$闭; $ \lambda\in\rho_{l}(T)$当且仅当 $T-\lambda$为具有闭值域的单射.显然, $\sigma_{p, 1}(T)=\sigma_{p}(T)\cap\rho_{\rm co}(T)$, $\sigma_{p, 2}(T)=\sigma_{p}(T)\cap\sigma_{\rm co}(T)$, $\sigma_{r, 1}(T)=\sigma_{r}(T)\cap\rho_{m}(T)$, $\sigma_{r, 2}(T)=\sigma_{r}(T)\cap\sigma_{m}(T)$.
引理1.1[9] 设 $X$, $Y$为Banach空间, $T\in \mathcal{B}(X, Y)$.若 $\mathcal{R}(T)$不闭, 则存在无穷维子空间 $M\subset \overline{\mathcal{R}(T)}$使得
引理1.2 设 $X$, $Y$为Banach空间, $T\in \mathcal{B}(X, Y)$.下述结论显然成立.
(ⅰ)若 $S\in \mathcal{B}(X, Y)$为有限秩算子, 则 $\mathcal{R}(T)$闭当且仅当 $\mathcal{R}(T+S)$闭;
(ⅱ)若 $U\in \mathcal{B}(Y), V\in \mathcal{B}(X)$为可逆算子, 则 $\mathcal{R}(T)$闭当且仅当 $\mathcal{R}(UTV)$闭.
引理1.3 设 $A\in \mathcal{B}(\mathcal{H}_{1}), B\in \mathcal{B}(\mathcal{H}_{2}), C\in \mathcal{B}(\mathcal{H}_{3})$为给定算子, 则任给 $D, E, F$均有 $\lambda\in\rho_{\rm in}( M_{D, E, F})$的充要条件为 $\lambda\in\rho_{\rm in}(A)\cap\rho_{\rm in}(B)\cap\rho_{\rm in}(C).$
引理1.4 设 $A\in \mathcal{B}(\mathcal{H}_{1}), B\in \mathcal{B}(\mathcal{H}_{2}), C\in \mathcal{B}(\mathcal{H}_{3})$为给定算子, 则任给 $ D, E, F $均有 $\lambda\in\rho_{\rm co}( M_{D, E, F})$的充要条件为 $\lambda\in\rho_{\rm co}(A)\cap\rho_{\rm co}(B)\cap\rho_{\rm co}(C).$
引理1.1的证明见[9, 推论1];引理1.2是熟知的, 引理1.3, 1.4是显然的, 证明从略.
本节给出本文的主要结果和证明.为便于叙述, 以下记
分别为 $\mathcal{N}(B-\lambda), \mathcal{N}(C-\lambda), \mathcal{R}(A-\lambda)^{\perp}, \mathcal{R}(B-\lambda)^{\perp}, \mathcal{H}_1, \mathcal{H}_2$的规范正交基, 其中 $A\in \mathcal{B}(\mathcal{H}_{1}), B\in \mathcal{B}(\mathcal{H}_{2}), C\in \mathcal{B}(\mathcal{H}_{3})$.
定理2.1 设 $A\in \mathcal{B}(\mathcal{H}_{1}), B\in \mathcal{B}(\mathcal{H}_{2}), C\in \mathcal{B}(\mathcal{H}_{3})$为给定算子, 则
证 记 $\Sigma=\bigcap\limits_{D, E, F}\sigma_{p, 1}(M_{D, E, F})$, $\Sigma_{1}, \Sigma_{2}, \Sigma_{3} $依次为式(2.1) 等号右端的集合.先证 $\Sigma\supset\Sigma_1\cup\Sigma_2\cup\Sigma_3$.设 $\lambda\in\Sigma_1\cup\Sigma_2\cup\Sigma_3$, 由引理1.4可知任给 $D, E, F$均有 $ \lambda\in\rho_{\rm co}(M_{D, E, F}) $, 下面只须证还有 $\lambda\in\sigma_{p}(M_{D, E, F})$.
若 $\lambda\in\Sigma_{1}$, 则 $\lambda\in\sigma_p(A)$, 显然任给 $D, E, F$均有 $\lambda\in\sigma_{p}(M_{D, E, F})$.若 $\lambda\in\Sigma_{2}\setminus\Sigma_{1}$, 则 $\lambda\in\rho(A)\cap\sigma_{p, 1} (B)\cap\rho_{\rm co}(C)$, 所以任给 $D, E, F$均存在可逆算子 $V$使得
注意到 $\lambda\in\sigma_{p}(B)$和 $V$的可逆性, 显然任给 $D, E, F$均有 $\lambda\in\sigma_{p}(M_{D, E, F})$.若 $\lambda\in\Sigma_{3}\setminus (\Sigma_{1}\cup\Sigma_{2})$, 则 $\lambda\in\rho(A)\cap\rho(B)\cap\sigma_{p, 1}(C)$, 同上讨论即可, 不再赘述.
下面证明 $\Sigma\subset\Sigma_1\cup\Sigma_2\cup\Sigma_3$.为此, 只须证若 $\lambda\notin\Sigma_1\cup\Sigma_2\cup\Sigma_3 $必有 $\lambda\notin\Sigma$, 可分以下4种情形讨论.
情形1 $\lambda\in\sigma_{co}(A) \cup\sigma_{co}(B)\cup\sigma_{co}(C) $.此时, 取 $D, E, F$均为零算子, 显然 $\overline{\mathcal{R}(M_{D, E, F}-\lambda)}\neq\mathcal{H}_{1}\oplus\mathcal{H}_{2}\oplus \mathcal{H}_{3}$, 因此 $\lambda\notin\Sigma.$
情形2 $\lambda\in\rho_{\rm co}(A) \cap\rho_{\rm co}(B)\cap\rho_{\rm co}(C)\cap\rho_{\rm in}(A)\cap\sigma_{m}(A) $.此时, 由引理1.1, 存在无穷维子空间 $ M\subset \overline{\mathcal{R}(A-\lambda)}$使得 $ M \cap \mathcal{R}(A-\lambda)= \{0\}$.记 $M$的某个含有无穷多元素的规范正交集为 $ \{g_{i}^{(1)}\}_{i=1}^{\infty}$.定义 $ F=0$,
则 $M_{D, E, F}-\lambda $为单射, 显然 $\lambda\notin\Sigma.$
情形3 $\lambda\in\rho_{\rm co}(A) \cap\rho_{\rm co}(B)\cap\rho_{\rm co}(C)\cap\rho_{\rm in}(A) \cap\rho_{\rm in}(B)\cap \sigma_{m}(B) $.此时, 类似于情形2, 存在无穷维子空间 $ N\subset \overline{\mathcal{R}(B-\lambda)}$使得 $ N \cap \mathcal{R}(B-\lambda)=\{0\}$.记 $N$的某个含有无穷多元素的规范正交集为 $ \{g_{i}^{(2)}\}_{i=1}^{\infty}$.取 $D, E$均为零算子, 并定义
显然 $M_{D, E, F}-\lambda $为单射, 因此 $\lambda\notin\Sigma .$
情形4 $\lambda\in\rho_{\rm co}(A) \cap\rho_{\rm co}(B)\cap\rho_{\rm co}(C)\cap\rho_{\rm in}(A) \cap\rho_{\rm in}(B)\cap\rho_{\rm in}(C) $.此时, 由引理1.3, 取 $D, E, F$均为零算子便有 $M_{D, E, F}-\lambda $为单射, 因此 $\lambda\notin\Sigma.$
定理2.2 设 $A\in \mathcal{B}(\mathcal{H}_{1}), B\in \mathcal{B}(\mathcal{H}_{2}), C\in \mathcal{B}(\mathcal{H}_{3})$为给定算子, 则
证 记 $\Sigma=\bigcap\limits_{D, E, F}\sigma_{p, 2}(M_{D, E, F})$, $\Sigma_{11}, \Sigma_{12}, \Sigma_{13} $依次为 $\Sigma_{1}$等号右端的集合.先证 $\Sigma\supset\Sigma_1\cup\Sigma_2\cup\Sigma_3$.
若 $\lambda\in\Sigma_{11}$, 则 $\lambda\in\sigma_p(A)$且 $\overline{\mathcal{R}(C-\lambda)}\neq\mathcal{H}_3$.显然 $\lambda\in\Sigma$.现设 $\lambda\in\Sigma_{12}$.由 $\lambda\in\rho_\delta(C)$可知任给 $D, E, F$算子矩阵 $M _{D, E, F}-\lambda$均有如下分块表示
其中 $(C-\lambda)_1$为可逆算子.因此存在可逆算子 $U$使得
注意到 $d(B-\lambda)> n(C-\lambda)$可知无论如何选取 $D, E, F$均有 $F_{22} $具有闭值域且不是满射, 进而由 $U$的可逆性得到 $\lambda\in\sigma_{co} (M_{D, E, F})$.再由 $\lambda\in\sigma_{p}(A)$, 显然 $\lambda\in\Sigma$.以下假设 $\lambda\in\Sigma_{13}$.由于 $\lambda\in\rho_\delta(C)\cap \rho_m(B)$, 所以任给 $D, E, F$均有
其中 $(B-\lambda)_1$, $(C-\lambda)_1$为可逆算子.因此存在可逆算子 $U$使得
其中 $ E_{12}^{\prime}=E_{12}-D_{11}(B-\lambda)_{1}^{-1}F_{12}, E_{22}^{\prime}=E_{22}-D_{21}(B-\lambda)_{1}^{-1}F_{12}.$由
易知无论如何选取 $D, E, F$均有 $ \left(\begin{smallmatrix} D_{22}&E_{22}^{\prime}\\ 0&F_{22} \end{smallmatrix}\right) $具有闭值域且不是满射, 结合 $\lambda\in\sigma_{p}(A)$便有 $\lambda\in\Sigma$.于是 $\Sigma\supset\Sigma_1$.
设 $\lambda\in\Sigma_{2} $.由于 $\lambda\in\rho_{l}(A) $, 所以任给 $D, E, F$均有
其中 $(A-\lambda)_1$为可逆算子.因此存在可逆算子 $V$使得
注意到 $n(B-\lambda)> d(A-\lambda)$, 显然无论如何选取 $D, E, F$均有 $D_{22}$不是单射, 进而由式(2.2) 便知 $\lambda\in\sigma_{p}(M_{D, E, F})$.这样, 若 $\lambda\in\sigma_{co}(C), $则任给 $D, E, F$均有 $\lambda\in\sigma_{co}(M_{D, E, F})$, 显然 $\lambda\in\Sigma$; 若 $\lambda\in\rho_{\delta}(C)$且 $d(B-\lambda)>n(C-\lambda)$, 则由 $\Sigma_{12}$的证明可知任给 $D, E, F$均有 $\lambda\in\sigma_{co}(M_{D, E, F})$, 从而 $\lambda\in\Sigma$.于是 $\Sigma\supset\Sigma_2$.
现设 $\lambda\in\Sigma_{3}$.由 $\lambda\in\rho_l(A)\cap \rho_m(B)$可知任给 $D, E, F$均有
其中 $(A-\lambda)_1$, $(B-\lambda)_1$均为可逆算子, $(C-\lambda)_1$为单射.因此存在可逆算子 $U, V$使得
其中 $ E_{21}^{\prime}= E_{21}-D_{21}(B-\lambda)_{1}^{-1}F_{11}, E_{22}^{\prime}= E_{22}-D_{21}(B-\lambda)_{1}^{-1}F_{12}$.由
易知无论如何选取 $D, E, F$均有 $ \left(\begin{smallmatrix} D_{22} & E_{22}^{\prime}\\ 0 & F_{22} \end{smallmatrix}\right) $不是单射, 进而由式(2.3) 可有 $\lambda\in\sigma_{p}(M_{D, E, F})$.注意到 $\lambda\in \sigma_{p, 2}(C)$, 则任给 $D, E, F$均有 $\lambda\in\sigma_{co}(M_{D, E, F})$, 显然 $\lambda\in\Sigma$.于是 $\Sigma\supset\Sigma_3$.综上可知 $\Sigma\supset\Sigma_1\cup\Sigma_2\cup\Sigma_3$.
下面证明相反的包含关系.为此只须证若 $\lambda\notin\Sigma_1\cup\Sigma_2\cup\Sigma_3 $必有 $\lambda\notin\Sigma$, 可分以下6种情形讨论.
情形1 $\lambda\in\rho_{\rm in}(A)\cap\sigma_{m}(A)$.此时, 取定理2.1中情形2的 $D, E, F$便有 $M_{D, E, F}-\lambda $为单射, 因此 $\lambda\notin\Sigma$.
情形2 $\lambda\in\rho_{l}(A)\cap \sigma_{m}(B)$且 $d(A-\lambda)\geq n(B-\lambda)$.此时, 取定理2.1中情形3的集合 $N$, $\{g_{i}^{(2)}\}_{i=1}^{\infty}$和算子 $E, F$, 并定义
则 $M_{D, E, F}-\lambda $为单射, 显然 $\lambda\notin\Sigma$.
情形3 $\lambda\in\rho_{l}(A)\cap \rho_{m}(B)$, $d(A-\lambda)\geq n(B-\lambda) $且 $d(A-\lambda)+ d(B-\lambda)\geq n(B-\lambda)+n(C-\lambda)$.此时, 定义
若 $d(B-\lambda)\geq n(C-\lambda)$, 则定义 $E=0$,
若 $d(B-\lambda) < n(C-\lambda)$, 由 $d(A-\lambda)+ d(B-\lambda)\geq n(B-\lambda)+n(C-\lambda)$可知
则定义
容易验证 $M_{D, E, F}-\lambda $为单射, 显然 $\lambda\notin\Sigma$.
情形4 $\lambda\in\rho_{\rm co}(C)\cap\sigma_{m}(C)$.此时, 注意到 $\lambda\in\sigma_{m}(C)$当且仅当 $\overline{ \lambda}\in\sigma_{m}(C^{*})$.由引理1.1, 存在无穷维子空间 $Z\subset \overline{\mathcal{R}(C^{*}-\overline{\lambda})}=\mathcal{N}(C-\lambda)^{\perp} $使得 $ Z\cap \mathcal{R}(C^{*}-\overline{\lambda})= \{0\}$.记 $Z$的某个含有无穷多元素的规范正交集为 $ \{g_{i}^{(3)}\}_{i=1}^{\infty}$.定义 $ D=0$,
则 $E^*\in\mathcal{B}(\mathcal{H}_1, \mathcal{H}_3), F^*\in\mathcal{B}(\mathcal{H}_2, \mathcal{H}_3)$均为单射, 而且 $\mathcal{R}(E^*)=\mathcal{R}(F^*)=\mbox{span}\{g_{i}^{(3)}:i=1, 2, \cdots\}$.注意到 $ Z\cap \mathcal{R}(C^{*}-\overline{\lambda})= \{0\}$和 $\lambda\in\rho_{\rm co}(C)$, 所以立即得到 $M_{D, E, F}^*-\overline{\lambda}$是单射.即 $M_{D, E, F}-\lambda $具有稠值域, 从而 $ \lambda\notin\Sigma$.
情形5 $\lambda\in\sigma_{m}(B)\cap \rho_{\delta}(C)$且 $d(B-\lambda)\leq n(C-\lambda)$.此时, 类似于情形4, 存在无穷维子空间 $W\subset \overline{\mathcal{R}(B^{*}-\overline{\lambda})}=\mathcal{N}(B-\lambda)^{\perp} $使得 $W \cap \mathcal{R}(B^{*}-\overline{\lambda}) =\{0\}$.记 $W$的某个含有无穷多元素的规范正交集为 $ \{g_{i}^{(4)}\}_{i=1}^{\infty}$.定义 $ E=0$,
显然, $M_{D, E, F}-\lambda $具有稠值域, 因此 $\lambda\notin\Sigma$.
情形6 $\lambda\in\rho_{m}(B)\cap\rho_{\delta}(C)$, $d(B-\lambda)\leq n(C-\lambda) $且 $d(A-\lambda)+d(B-\lambda)\leq n(B-\lambda)+ n(C-\lambda)$.此时, 定义
若 $d(A-\lambda)\leq n(B-\lambda)$, 则定义 $E=0$,
否则注意到 $ d(A-\lambda)-n(B-\lambda)\leq n(C-\lambda)-d(B-\lambda), $定义
不难看出 $M_{D, E, F}-\lambda$是满射, 从而 $\lambda\notin\Sigma$.
定理2.3 设 $A\in \mathcal{B}({\cal H}_{1}), B\in \mathcal{B}({\cal H}_{2}), C\in \mathcal{B}({\cal H}_{3})$为给定算子, 则
证 记 $\Sigma=\bigcap\limits_{D, E, F}\sigma_{r, 1}(M_{D, E, F})$, $\Sigma_{1}, \Sigma_{2}, \Sigma_{3} $依次为式(2.4) 右端的集合.先证 $\Sigma\supset\Sigma_1\cup\Sigma_2\cup\Sigma_3$.设 $\lambda\in\Sigma_1\cup\Sigma_2\cup\Sigma_3$, 显然 $\lambda\in\rho_l(A)\cap\rho_l(B)\cap\rho_l(C)$, 所以任给 $D, E, F$均有
其中 $(A-\lambda)_1$, $(B-\lambda)_1$, $(C-\lambda)_1$均为可逆算子.因此存在可逆算子 $U$使得
注意到 $d(A-\lambda), d(B-\lambda), d(C-\lambda)$至少有一个大于零, 由式(2.5) 可知无论如何选取 $D, E, F $均有 $M_{D, E, F}- \lambda$左可逆且 $ \overline{\mathcal{R}(M_{D, E, F}- \lambda)}\neq \mathcal{H}_{1}\oplus \mathcal{H}_{2}\oplus \mathcal{H}_{3}$.因此 $\lambda\in\Sigma. $于是 $\Sigma\supset\Sigma_1\cup\Sigma_2\cup\Sigma_3$.
再证相反的包含关系.本文断言: $\lambda\in\Sigma $蕴含 $\lambda\in\rho_l(A)\cap\rho_l(B)\cap\rho_l(C)$.若不然, 取 $D, E, F$皆为零算子便有 $\lambda\in \sigma _{l}(M_{D, E, F})$, 这与 $\lambda\in\Sigma$矛盾.因此只须证若 $\lambda\in(\rho_l(A)\cap\rho_l(B)\cap\rho_l(C))\setminus(\Sigma_1\cup\Sigma_2\cup\Sigma_3) $便有 $\lambda\notin\Sigma$.这是显然的, 因为 $\lambda\in\Sigma_1\cup\Sigma_2\cup\Sigma_3$蕴含 $\lambda\in\rho_l(A)\cap\rho_l(B)\cap\rho_l(C)$且 $ A-\lambda, B-\lambda, C-\lambda$至少有一个值域不稠, 从而若 $\lambda\in(\rho_l(A)\cap\rho_l(B)\cap\rho_l(C)) \setminus(\Sigma_1\cup\Sigma_2\cup\Sigma_3)$便有 $\lambda\in\rho(A)\cap\rho(B)\cap\rho(C)$.
定理2.4 设 $A\in \mathcal{B}(H_{1}), B\in \mathcal{B}(H_{2}), C\in \mathcal{B}(H_{3})$为给定算子, 则
证 记 $\Sigma=\bigcap\limits_{D, E, F}\sigma_{r, 2}(M_{D, E, F}) .$先证 $\Sigma\supset\Sigma_{1}\cup\Sigma_{2}$.设 $\lambda\in\Sigma_{1}\cup\Sigma_{2}$.因为 $\lambda\in\Sigma_{2}$蕴含 $\lambda\in\sigma_{r}(C), $显然任给 $D, E, F$均有 $\Sigma_{2}\subset \sigma_{co}(M_{D, E, F})$; 注意到 $\lambda\in\Sigma_{1}$蕴含 $\lambda\in(\sigma_r(B)\cap\rho(C))\cup(\sigma_r(A)\cap\rho(B)\cap\rho(C))$, 容易证明任给 $D, E, F$均有 $\Sigma_{1}\subset\sigma_{co}(M_{D, E, F})$.此外, 由引理1.3易知任给 $D, E, F$均有 $M_{D, E, F}-\lambda$为单射.以下只须证还有 $\lambda\in\sigma_{m}(M_{D, E, F})$.
现记 $\Sigma_{i}$的表达式中等号右端的集合依次为 $\Sigma_{i1}, \Sigma_{i2}, \Sigma_{i3}\ (i=1, 2)$.若 $\lambda\in\Sigma_{11}\cup\Sigma_{12}\cup\Sigma_{21}, $则必有 $\lambda\in\sigma_{m}(A).$显然任给 $D, E, F$均有 $\lambda\in\sigma_{m}(M_{D, E, F}).$若 $\lambda\in\Sigma_{13}, $则任给 $D, E, F$均有
其中 $C-\lambda$可逆.因此存在可逆算子 $U$使得
结合 $d(A-\lambda) < \infty$, 应用引理1.2可有 $\lambda\in\sigma_{m}(M_{D, E, F})$当且仅当
的值域不闭.这样若 $\lambda\in\sigma_{m}(A), $同前述讨论可知, 任给 $D, E, F$均有 $\lambda\in \sigma_{m}(M_{D, E, F});$若 $\lambda\notin\sigma_{m}(A)$, 则 $(A-\lambda)_1$为可逆算子, 注意到 $\lambda\in\sigma_{r, 2}(B)$容易得到任给 $D, E, F$均有 $\lambda\in\sigma_{m}(M_{D, E, F})$.类似地, 容易证明若 $\lambda\in\Sigma_{22}\cup\Sigma_{23}, $则任给 $D, E, F$仍有 $\lambda\in\sigma_{m}(M_{D, E, F}).$
再证 $\Sigma\subset\Sigma_{1}\cup\Sigma_{2}$.注意到任给 $D, E, F$均有 $ \sigma_{r, 2}(M_{D, E, F})\subset\sigma_{m}(M_{D, E, F})$.所以要证 $\lambda\notin\Sigma_{1} \cup\Sigma_{2}$蕴含 $\lambda\notin \Sigma$, 只须考虑如下3种情形即可.
情形1 $\lambda\in\sigma_{c}(C)$, $d(A-\lambda) < \infty$且 $d(B-\lambda) < \infty$.此时, 注意到 $\lambda\in\sigma_{m}(C)$, 取形如定理2.2中情形4的 $D, E, F$可知 $M_{D, E, F}-\lambda $具有稠值域, 显然 $\lambda\notin\Sigma$.
情形2 $\lambda\in\sigma_{r, 1}(A)\cap\sigma_{c}(B)\cap\rho(C)$且 $d(A- \lambda) < \infty$.此时, 取 $E, F$均为零算子并定义 $D(h_{i}^{(2)})=h_{i}^{(1)}$, 显然 $M_{D, E, F}-\lambda $具有稠值域, 从而 $ \lambda\notin\Sigma$.
情形3 $\lambda\in(\rho(A)\cap\sigma_{c}(B)\cap\rho(C)) \cup(\sigma_{c}(A)\cap(\rho(B)\cup\sigma_{c}(B))\cap\rho(C)) \cup(\sigma_{c}(A)\cap \sigma_{c}(B)\cap\rho(C))$.此时, 取 $D, E, F$均为零算子, 显然 $M_{D, E, F}-\lambda $具有稠值域, 因此 $ \lambda\notin\Sigma$.
注 由上述定理, 文[15]的结果可描述为