数学杂志  2016, Vol. 36 Issue (5): 1040-1046   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
桑波
一类Z2对称五次微分系统的中心条件和极限环分支
桑波    
聊城大学数学科学学院, 山东 聊城 252059
摘要:本文研究了一类Z2对称五次微分系统的中心条件和小振幅极限环分支.通过前6阶焦点量的计算, 获得了原点为中心的充要条件, 并证明系统从原点分支出的小振幅极限环的个数至多为6.最后通过构造后继函数, 给出系统具有6个围绕原点的小振幅极限环的实例.
关键词五次系统    焦点量    极限环    后继函数    
CENTER CONDITIONS AND BIFURCATIONS OF LIMIT CYCLES FOR A CLASS OF QUINTIC DIFFERENTIAL SYSTEMS WITH Z2 SYMMETRY
SANG Bo    
School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China
Abstract: In this paper, the center conditions and bifurcations of small amplitude limit cycles for a class of quintic systems with Z2 symmetry are investigated. By the computations of the first six focal quantities, the necessary and sufficient conditions for the origin to be center are derived, and the maximal number of small amplitude limit cycles is proved to be 6. Finally, by constructing displacement function, a concrete example of quintic system is proved to have six small amplitude limit cycles around the origin.
Key words: quintic system     focal quantity     limit cycle     displacement function    
1 引言

考虑$n$次多项式微分系统

$ \begin{eqnarray} \left\{ \begin{aligned} \frac{{dx}}{{dt}}=\delta\, x-y+P_{n}(x, y, {{\mu}}), \\ \frac{{dy}}{{dt}}=x+\delta\, y+Q_{n}(x, y, {{\mu}}), \end{aligned} \right. \end{eqnarray} $ (1.1)

其中$\max{(\deg{(P_{n})}, \deg{(Q_{n})})}=n\geq 2, ~~ {\mu}=(\mu_{1}, \mu_{2}, \cdots, \mu_{m})\in \mathbf{R}^{m}, {0}\leq{\left|\delta\right|}\ll {1}$.当$\delta=0$时, 由于非线性项的影响, 系统(1.1) 以原点为中心或细焦点.如何区分称为中心焦点判定问题?

$\delta\neq {0}$时, 系统(1.1) 以原点为粗焦点, 其第$0$阶焦点量为$v_{0}=\delta$; 当$\delta={0}$时, 存在形式幂级数$F(x, y)=x^2+y^2+\sum\limits_{k=3}^{\infty}F_{k}(x, y)$, 使得

$ \left.\dfrac{dF}{dt}\right|_{(1.1)_{\delta=0}}= \sum\limits_{k=1}^{\infty} {v_{k}(\mu)\, (x^2+y^2)^{k+1}}, $

其中$v_{k}(\mu)$称为系统在原点的第$k$阶焦点量.

一方面, 当多项式系统在原点处的各阶焦点量都为零时, 系统以该点为中心; 另一方面由Hilbert有限基定理, 所有焦点量生成的有理数域上的多项式理想是有限生成的, 因此中心焦点问题可在有限步内解决.为了获得系统(1.1) 具有中心的充要条件, 首先需要计算系统(1.1) 的前面各阶非零焦点量并对它们进行零点分解, 从而得到中心的必要条件; 然后利用首次积分、形式首次积分、积分因子、时间可逆性等方法证明所得条件都是充分的.

Bautin解决了二次系统的中心焦点判定问题; Sibirskii解决了一类$Z_{{2}}$对称三次系统的中心判定问题; Sadovskii等[1]利用Cherkas方法解决了一类可约化为Liénard系统的三次系统的中心判定问题; 然而对于一般三次系统以及三次以上系统, 目前还没有彻底的结论.

近二十多年以来出现了很多焦点量算法, 比如借助奇点量算法[2, 3]、基于伪除的形式幂级数法[4]和基于摄动的标准形算法[5].但当$P_{n}, Q_{n}$为非齐次多项式时, 系统(1.1) 的焦点量非常复杂且难于约化, 为此作者[6]基于重新参数化法给出了焦点量的约化方法.

一般来讲, 中心焦点问题的最终解决依赖于焦点量的计算, 但当计算量过大时, 可以通过增加条件的方法加以解决.例如:刘一戎等[2]定义基本李不变量, 给出了广义对称原理; Lloyd等[7]、Cozma[8]以Gröbner基为工具, 寻找双线性变换将一类多项式系统化为时间可逆系统, 从而确定中心条件.

$(\delta, \mu)=(0, \mu_{c})$时, 系统(1.1) 以原点为$M\geq {1}$阶细焦点, 则当参数$(\delta, \mu)$通过点$(0, \mu_{c})$时, 系统(1.1) 从原点分支出的小振幅极限环的最大个数$H_{0}(n)$至多为$M$, 其中$H_{0}(n)$也称为系统(1.1) 在原点处的环性.

关于小振幅极限环的构造, 一般总是利用焦点量三角化后解出主变元达到目的; 但当无法精确求解主变元时, 需要借助陆征一等[9]的实根分离算法实现构造.

对三次系统而言, Chen等[10]利用正则链理论和三角列分解方法证明了$H_{0}(3)\geq 9$; Yu等[11]证明$H_{0}(3)\geq 12$, 这是目前已知最好的结果.

引理1.1[12]  设系统$(1.1)$的前$k$阶焦点量依次为

$ v_{0}=\delta, v_{1}=v_{1}{({\mu})}, \cdots, v_{k}=v_{k}({\mu}). $

如果

(ⅰ)  当$\delta=0, \mu=\mu_{c}$时, $v_{0}=v_{1}=\cdots=v_{k-1}=0, v_{k}\neq {0};$

(ⅱ)  $\det\left[\dfrac{\partial\left(v_{0}, v_{1}, v_{2}, \cdots, v_{k-1}\right)}{\partial{\left(\delta, \mu_{1}, \mu_{2}, \cdots, \mu_{k-1}\right)}}\right]_{\delta=0, \mu=\mu_{c}} \neq 0, $

则对系统$(1.1)_{\delta=0, \mu=\mu_{c}}$进行适当的系数微扰, 相应系统在原点可分支出$k$个小振幅极限环.

考虑一类具有齐五次项的$Z_{2}$对称系统

$ \left\{ \begin{array}{l} \frac{{dx}}{{dt}} = \delta {\mkern 1mu} x - y + \left( {{a_0}{x^5} + {a_1}{x^4}y + {a_2}{x^3}{y^2} + {a_3}{x^2}{y^3} + {a_4}x{y^4} + {a_5}{y^5}} \right), \\ \frac{{dy}}{{dt}} = \;\;x + \delta {\mkern 1mu} y + \left( {{b_0}{x^5} + {b_1}{x^4}y + {b_2}{x^3}{y^2} + {b_3}{x^2}{y^3} + {b_4}x{y^4} + {b_5}{y^5}} \right). \end{array} \right. $

Chavarriga等[13]给出其在原点可积的若干充分条件; 为了简化计算, Fercec等[14]转而研究相应的复系统, 对四组仅有8个参数的特例给出了可积的充分条件; Chavarriga等[15]将中心条件的推导列为公开问题.

考虑一类特殊五次系统

$ \left\{ \begin{array}{l} \frac{{dx}}{{dt}} = \;\;\delta {\mkern 1mu} x - y + ({x^2} + {y^2}){\mkern 1mu} \left( {{a_0}{x^3} + {a_1}{x^2}y + {a_2}x{y^2} + {a_3}{y^3}} \right), \\ \frac{{dy}}{{dt}} = \;\;\;\;x + \delta {\mkern 1mu} y + ({x^2} + {y^2}){\mkern 1mu} \left( {{b_0}{x^3} + {b_1}{x^2}y + {b_2}x{y^2} + {b_3}{y^3}} \right). \end{array} \right. $ (1.2)

下面将给出系统(1.2) 以原点为中心的充要条件, 并证明其从原点至多可分支出6个小振幅极限环, 最后给出具有6个极限环的实例.

2 系统(1.2)的中心条件

根据文[6]的计算方法, 系统$(1.2)_{\delta=0}$的前6阶非零约化焦点量(不计非零常数因子)为

$ v_{2}\;\;=\;\;{\dfrac{6}{5}}\, b_{{3}}+{\dfrac{2}{5}}\, b_{{1}}+{\dfrac{2}{5}}\, a_{{2}}+{\dfrac{6}{5}}\, a_{{0}}, \\ v_{4}\;\;=\;\;{\dfrac {16}{189}}\, \left( 3\, a_{{1}}-9\, a_{{3}}-9\, b_{{0}}+3\, b_{{2}} \right) a_{{0}}+{\dfrac {16}{189}}\, \left( 2\, a_{{1}}+2\, b_{{2}} \right) a_{{2}}\\ \;\;\;\;\;\;\;\;+{\dfrac {16}{189}}\, \left( -a_{{1}}-3\, a_{{3}}-3\, b_{ {0}}-b_{{2}} \right) b_{{1}}, \\ v_{6}\;\;=\;\;-{\dfrac {64}{143}}\, {a_{{0}}}^{2}b_{{1}}-{\dfrac {192}{143}}\, {a_{{0}}} ^{2}b_{{3}}-{\dfrac {64}{429}}\, a_{{0}}{b_{{1}}}^{2}-{\dfrac {128}{143}} \, a_{{0}}b_{{1}}b_{{3}}-{\dfrac {192}{143}}\, a_{{0}}{b_{{3}}}^{2}\\ \;\;\;\;\;\;\;\;-{\dfrac {64}{429}}\, {a_{{1}}}^{2}b_{{3}}+{\dfrac {64}{429}}\, a_{{1}}a_{{3 }}b_{{1}}-{\dfrac {64}{143}}\, a_{{1}}b_{{0}}b_{{3}}+{\dfrac {64}{429}}\, a_{{1}}b_{{1}}b_{{2}}+{\dfrac {64}{429}}\, a_{{1}}b_{{2}}b_{{3}}\\ \;\;\;\;\;\;\;\;+{\dfrac{64}{429}}\, a_{{3}}b_{{1}}b_{{2}}-{\dfrac {64}{143}}\, b_{{0}}b_{{2}}b_{ {3}}-{\dfrac {64}{429}}\, {b_{{1}}}^{2}b_{{3}}+{\dfrac {64}{429}}\, b_{{1} }{b_{{2}}}^{2}-{\dfrac {64}{143}}\, b_{{1}}{b_{{3}}}^{2}+{\dfrac {128}{ 429}}\, {b_{{2}}}^{2}b_{{3}}, \\ v_{8}\;\;=\;\;-{\dfrac {512}{12155}}\, b_{{0}}{b_{{1}}}^{2}b_{{3}}-{\dfrac {512}{36465} }\, b_{{0}}b_{{1}}{b_{{2}}}^{2}-{\dfrac {512}{36465}}\, {b_{{1}}}^{2}b_{{ 2}}b_{{3}}-{\dfrac {512}{12155}}\, {b_{{0}}}^{2}b_{{1}}b_{{2}}\\ \;\;\;\;\;\;\;\;-{\dfrac {512}{12155}}\, a_{{0}}{a_{{1}}}^{2}b_{{0}} -{\dfrac {512}{36465}}\, a_{{0} }{a_{{1}}}^{2}b_{{2}}-{\dfrac {1536}{12155}}\, a_{{0}}a_{{1}}{b_{{0}}}^{ 2}+{\dfrac {512}{36465}}\, a_{{0}}a_{{1}}{b_{{2}}}^{2}\\ \;\;\;\;\;\;\;\;-{\dfrac {512}{12155}}\, {a_{{1}}}^{2}b_{{0}}b_{{1}}-{\dfrac {512}{36465}}\, {a_{{1}}}^{ 2}b_{{1}}b_{{2}}-{\dfrac {3072}{12155}}\, {a_{{0}}}^{2}b_{{0}}b_{{1}}-{ \dfrac {4608}{12155}}\, {a_{{0}}}^{2}b_{{0}}b_{{3}}\\ \;\;\;\;\;\;\;\;-{\dfrac {1024}{12155}}\, {a_{{0}}}^{2}b_{{1}}b_{{2}}-{\dfrac {1536}{12155}}\, {a_{{0}}}^{2}b_{ {2}}b_{{3}}-{\dfrac {1536}{12155}}\, a_{{0}}{b_{{0}}}^{2}b_{{2}}-{\dfrac {512}{12155}}\, a_{{0}}b_{{0}}{b_{{1}}}^{2}\\ \;\;\;\;\;\;\;\;+{\dfrac {512}{12155}}\, a_{{0 }}b_{{0}}{b_{{2}}}^{2}-{\dfrac {512}{36465}}\, a_{{0}}{b_{{1}}}^{2}b_{{2 }}-{\dfrac {512}{12155}}\, a_{{1}}{b_{{0}}}^{2}b_{{1}}-{\dfrac {512}{ 36465}}\, a_{{1}}b_{{1}}{b_{{2}}}^{2}\\ \;\;\;\;\;\;\;\;-{\dfrac {4608}{12155}}\, {a_{{0}}}^ {3}b_{{0}}-{\dfrac {1536}{12155}}\, {a_{{0}}}^{3}b_{{2}}+{\dfrac {1024}{ 36465}}\, a_{{0}}{b_{{2}}}^{3}-{\dfrac {2048}{36465}}\, a_{{1}}b_{{0}}b_{ {1}}b_{{2}}\\ \;\;\;\;\;\;\;\;-{\dfrac {3072}{12155}}\, a_{{0}}b_{{0}}b_{{1}}b_{{3}}-{ \dfrac {1024}{12155}}\, a_{{0}}b_{{1}}b_{{2}}b_{{3}}, \\ v_{10}\;\;=\;\;v_{10}(a_{{0}}, a_{{1}}, a_{{3}}, b_{{0}}, b_{{1}}, b_{{2}}, b_{{3}}), \\ v_{14}\;\;=\;\;v_{14}(a_{{0}}, a_{{1}}, a_{{3}}, b_{{0}}, b_{{1}}, b_{{2}}, b_{{3}}), $

其中$v_{10}, v_{14}$分别是五次多项式、七次多项式, 其项数分别为53项、64项.

定理2.1  系统$(1.2)_{\delta=0}$以原点为中心的充要条件是下列$6$组条件之一成立

(ⅰ) $ a_{{2}}=-3\, b_{{3}}-b_{{1}}-3\, a_{{0}}, a_{{3}}={\dfrac {C_{1}}{ \left( b_{{2}}+a_{{1}} \right) \left( 3\, a_{{0}}+b_{{1}} \right) }}, b_{{0}}=-{\dfrac {C_{2}}{ \left( b_{{2}}+a_{{1}} \right) \left( 3\, a_{{0}}+b_{{1}} \right) }};$

(ⅱ) $ a_{{2}}=-3\, b_{{3}}, b_{{1}}=-3\, a_{{0}}, b_{{2}}=-a_{{1}};$

(ⅲ) $ a_{{2}}=-b_{{1}}, a_{{3}}=-b_{{0}}, b_{{2}}=-a_{{1}}, b_{{3}}=-a_{{0}};$

(ⅳ) $ a_{{0}}=0, a_{{2}}=-{\dfrac {a_{{1}}a_{{3}}+a_{{1}}b_{{0}}+a_{{3}}b_{{0}}+{b_{{0}}}^{2}+{b_{{3}}}^{2}}{b_{{3}}}}, \\$

$ \;\;\;\;\;\;b_{{1}}={\dfrac {a_{{1}}a_{{3}}+a_{{1}}b_{{0}}+a_{{3}}b_{{0}}+{b_{{0}}}^{2}-2\, {b_{{3}}}^{2 }}{b_{{3}}}}, $

$\\ \;\;\;\;\;\;b_{{2}}=-{\dfrac {{a_{{1}}}^{2}+a_{{1}}a_{{3}}+2\, a_{{1}}b _{{0}}+a_{{3}}b_{{0}}+{b_{{0}}}^{2}-2\, {b_{{3}}}^{2}}{b_{{0}}+a_{{1}}} };$

(ⅴ) $ a_{{0}}=a_{{2}}=b_{{1}}=b_{{3}}=0;$

(ⅵ) $ a_{{0}}=b_{{3}}=0, a_{{2}}=-b_{{1}}, a_{{3}}=-3\, a_{{1}}, b_{{0}}=-a_{{1}}, b_{{2}}=3\, a_{{1}}, $

其中

$ C_{1}\;\;=\;\;9\, {a_{{0}}}^{3}+6\, {a_{{0}}}^{2}b_{{1}}+9\, {a_{{0}}}^{2}b_{{3}}-3\, a_ {{0}}a_{{1}}b_{{2}}+a_{{0}}{b_{{1}}}^{2}+6\, a_{{0}}b_{{1}}b_{{3}}\\ \;\;\;\;\;\;\;\;-3\, a_{{0}}{b_{{2}}}^{2}-2\, {a_{{1}}}^{2}b_{{3}}-a_{{1}}b_{{1}}b_{{2}}-4\, a _{{1}}b_{{2}}b_{{3}}+{b_{{1}}}^{2}b_{{3}}-b_{{1}}{b_{{2}}}^{2}-2\, {b_{ {2}}}^{2}b_{{3}}, \\ C_{2}\;\;=\;\;9\, {a_{{0}}}^{3}+6\, {a_{{0}}}^{2}b_{{1}}+9\, {a_{{0}}}^{2}b_{{3}}+a_{{0 }}{a_{{1}}}^{2}-a_{{0}}a_{{1}}b_{{2}}+a_{{0}}{b_{{1}}}^{2}+6\, a_{{0}}b _{{1}}b_{{3}}\\ \;\;\;\;\;\;\;\;-2\, a_{{0}}{b_{{2}}}^{2}+{a_{{1}}}^{2}b_{{1}}+a_{{1}}b_{{ 1}}b_{{2}}+{b_{{1}}}^{2}b_{{3}}. $

  必要性:通过求解多项式集$G=\left\{v_{{2}}, v_{{4}}, v_{{6}}, v_{{8}}, v_{{10}}, v_{{14}}\right\}$, 共得到定理中的6组独立系数条件, 从而必要性得证.

充分性:当条件(ⅰ)成立时, 系统$(1.2)_{\delta=0}$的向量场关于直线

$ \left( 3\, a_{{0}}+b_{{1}} \right) x+ \left( a_{{1}}+b_{{2}}+\sqrt {9 \, {a_{{0}}}^{2}+6\, a_{{0}}b_{{1}}+{a_{{1}}}^{2}+2\, a_{{1}}b_{{2}}+{b_{ {1}}}^{2}+{b_{{2}}}^{2}} \right) y=0 $

对称, 因此它以原点为中心.

当条件(ⅱ)成立时, 系统$(1.2)_{\delta=0}$

$ \mu(x, y)=\exp\left(\dfrac{1}{2}\, b_{{0}}{x}^{4}-2\, a_{{0}}{x}^{3}y-a_{{1}}{x}^{2}{y}^{2} +2\, b_{{3}}x{y}^{3}-\dfrac{1}{2}\, a_{{3}}{y}^{4}\right) $

为积分因子, 因此它以原点为中心.

当条件(ⅲ)成立时, 系统$(1.2)_{\delta=0}$的向量场关于直线$x+y=0$对称, 因此它以原点为中心.

当条件(ⅳ)成立时, 系统$(1.2)_{\delta=0}$的向量场关于直线

$ \left( b_{{0}}+a_{{1}} \right) x+ \left( -b_{{3}}+\sqrt {{a_{{1}}}^{2 }+2\, a_{{1}}b_{{0}}+{b_{{0}}}^{2}+{b_{{3}}}^{2}} \right) y=0 $

对称, 因此它以原点为中心.

当条件(ⅴ)成立时, 系统$(1.2)_{\delta=0}$的向量场关于$y$轴对称, 因此它以原点为中心.

当条件(ⅵ)成立时, 系统$(1.2)_{\delta=0}$是Hamilton系统, 因此它以原点为中心.定理证毕.

由系统$(1.2)_{\delta=0}$的焦点量结构和定理2.1, 可得

推论2.1  系统(1.2) 在原点邻近至多存在$6$个小振幅极限环.

3 系统(1.2)的小振幅极限环分支

下面总设$a_{0}=1, a_{3}=b_{0}=-1$.通过计算得到

$ \det \left[\dfrac{\partial(v_{0}, v_{2}, v_{4}, v_{6}, v_{8}, v_{10})}{\partial(\delta\;, a_{{2}}, b_{{1}}, b_{{3}}, a_{{1}}, b_{{2}})}\right]=J(a_{{1}}, a_{{2}}, b_{{1}}, b_{{2}}, b_{{3}}), $

其中$J$是十次多项式, 长达1171项.

定理3.1  设系统(1.2) 的系数满足

$ \delta=0, a_{0}=1, a_{3}=b_{0}=-1, a_{{1}}=b_{{2}}=-a_{{2}}=3, b_{{1}}=-21+12\, \sqrt {2}, b_{{3}}=7-4\, \sqrt {2}, $

则系统以原点为$14$阶细焦点; 对其进行适当的系数扰动, 从原点可分支出$6$个小振幅极限环.

  在定理的系数条件下, 通过计算可得系统$(1.2)$的前14阶焦点量和$J$依次为

$ v_{0}\;\;=\;\;v_{1}=v_{2}=\cdots=v_{13}=0, \\ v_{14}\;\;=\;\;{\frac {64156073984}{2107575}}-{\frac {45365592064}{2107575}}\, \sqrt {2}\neq {0}, \\ \;\;J\;\;=\;\;-{\dfrac {7097673012735901696}{3218662682235}}+{\frac { 3584865303386914816}{2299044773025}}\, \sqrt {2}\neq {0}, $

从而满足引理1.1的条件, 故定理得证.

定理3.2  假设系统(1.2) 满足

$ a_{0}\;\;=\;\;1, a_{3}=b_{0}=-1, \\ \delta\;\;=\;\;305690112000000\, \left( {\frac {128312147968}{2107575}}-{ \frac {90731184128}{2107575}}\, \sqrt {2} \right) {\epsilon}^{28}, \\ a_{1}\;\;=\;\;3+ \left( {\frac {6197677378207744}{14877}}-{\frac {1458277030166528}{4959}}\, \sqrt {2} \right) {\epsilon}^{12}\\ \;\;\;\;\;\;\;\;+ \left( -{\frac {933090642866077696}{8265}}+{\frac {3732362571464310784}{46835}}\, \sqrt {2} \right) {\epsilon}^{16}, \\ a_{2}\;\;=\;\;-3+ \left( {\frac {15395995607290281984}{46835}}-{\frac { 6531634500062543872}{28101}}\, \sqrt {2} \right) {\epsilon}^{16}\\ \;\;\;\;\;\;\;\;+ \left( -{\frac {14614788922249979101184}{13775}}\, \sqrt {2} +{\frac {20668251789454112456704}{13775}} \right) {\epsilon}^{20}\\ \;\;\;\;\;\;\;\;+ \left( -{\frac {470983147592297050275840}{9367}}+{\frac { 333038292648946449776640}{9367}}\, \sqrt {2} \right) {\epsilon}^{24}, \\ b_{1}\;\;=\;\;-21+12\, \sqrt {2}+ \left( {\frac {144912465152}{145}}\, \sqrt {2} -{\frac {204582303744}{145}} \right) {\epsilon}^{8}\\ \;\;\;\;\;\;\;\;+ \left( -{\frac {15395995607290281984}{46835}}+{\frac {6531634500062543872}{28101}}\, \sqrt {2} \right) {\epsilon}^{16}\\ \;\;\;\;\;\;\;\;+ \left( {\frac {14614788922249979101184}{13775}}\, \sqrt {2}-{\frac { 20668251789454112456704}{13775}} \right) {\epsilon}^{20}, \\ b_{2}\;\;=\;\;3+ \left( -{\frac {6197677378207744}{14877}}+{\frac {1458277030166528} {4959}}\, \sqrt {2} \right) {\epsilon}^{12}, \\ b_{3}\;\;=\;\;7-4\, \sqrt {2}+ \left( {\frac {68194101248}{145}}-{\frac {144912465152 }{435}}\, \sqrt {2} \right) {\epsilon}^{8}, $

则当$0<\vert{\epsilon}\vert\ll {1}$时, 在原点充分小的邻域内, 系统$(1.2)$恰有$6$个小振幅极限环, 其位置分别在圆$x^2+y^2=k^2{\epsilon}^2$附近, $k=1, 2, \cdots, 6$.

  当$0<\vert{\epsilon}\vert\ll {1}$时, 系统(1.2) 的第0阶至第14阶焦点量依次为

$ \;v_{0}(2\, \pi)\;\;=\;\;611380224000000\, \left( {\frac {128312147968}{2107575}}-{\frac {90731184128}{2107575}}\, \sqrt {2} \right)\pi\, {\epsilon}^{28}+o(\epsilon^{28}), \\ \;v_{1}(2\, \pi)\;\;=\;\;0, \\ \;v_{2}(2\, \pi)\;\;=\;\;-660708809798400\, \left( {\frac {128312147968}{2107575}}-{\frac { 90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {\epsilon}^{24}+o(\epsilon^{24}), \\ \;v_{3}(2\, \pi)\;\;=\;\;0, \\ \;v_{4}(2\, \pi)\;\;=\;\;50072216862304\, \left( {\frac {128312147968}{2107575}}-{\frac { 90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {\epsilon}^{20}+o(\epsilon^{20}), \\ \;v_{5}(2\, \pi)\;\;=\;\;0, \\ \;v_{6}(2\, \pi)\;\;=\;\;-746739508515\, \left( {\frac {128312147968}{2107575}}-{\frac { 90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {\epsilon}^{16}+o(\epsilon^{16}), \\ \;v_{7}(2\, \pi)\;\;=\;\;0, \\ \;v_{8}(2\, \pi)\;\;=\;\;3112103720\, \left( {\frac {128312147968}{2107575}}-{\frac { 90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {\epsilon}^{12}+o(\epsilon^{12}), \\ \;v_{9}(2\, \pi)\;\;=\;\;0, \\ v_{10}(2\, \pi)\;\;=\;\;-3659110\, \left( {\frac {128312147968}{2107575}}-{\frac {90731184128} {2107575}}\, \sqrt {2} \right) \pi \, {\epsilon}^{8}+o(\epsilon^{8}), \\ v_{11}(2\, \pi)\;\;=\;\;v_{12}(2\, \pi)=v_{13}(2\, \pi)=0, \\ v_{14}(2\, \pi)\;\;=\;\; \left( {\frac {128312147968}{2107575}}-{\frac {90731184128}{2107575}} \, \sqrt {2} \right) \pi+O(\epsilon^{2}), $

所以系统(1.2) 在原点邻域的拟后继函数为

$ L(h)\;\;=\;\;\left( {\frac {128312147968}{2107575}}-{\frac {90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {h}^{28}\\ \;\;\;\;\;\;\;\;\;\;\;\;-3659110\, \left( {\frac {128312147968}{2107575}}-{\frac {90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {h}^{20}{\epsilon}^{8}\\ \;\;\;\;\;\;\;\;\;\;\;\;+3112103720\, \left( {\frac { 128312147968}{2107575}}-{\frac {90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {h}^{16}{\epsilon}^{12}\\ \;\;\;\;\;\;\;\;\;\;\;\;-746739508515\, \left( {\frac {128312147968}{2107575}}-{\frac {90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {h}^{12}{\epsilon}^{16}\\ \;\;\;\;\;\;\;\;\;\;\;\;+50072216862304\, \left( {\frac {128312147968}{2107575}}-{\frac {90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {h}^{8}{\epsilon}^{20}\\ \;\;\;\;\;\;\;\;\;\;\;\;-660708809798400\, \left( {\frac {128312147968}{2107575}}-{\frac {90731184128}{2107575}}\, \sqrt {2} \right) \pi \, {h}^{4}{\epsilon}^{24}\\ \;\;\;\;\;\;\;\;\;\;\;\;+611380224000000\, \left( {\frac {128312147968}{2107575}}-{\frac {90731184128}{2107575}}\, \sqrt { 2} \right) \pi {\epsilon}^{28}\\ \;\;\;\;\;\;=\;\;-{\frac {536870912}{2107575}}\, \pi \, \left( 16\, {\epsilon}^{2}+{h}^{2 } \right) \left( 25\, {\epsilon}^{2}+{h}^{2} \right) \left( 4\, { \epsilon}^{2}+{h}^{2} \right) \left( 36\, {\epsilon}^{2}+{h}^{2} \right) \\ \;\;\;\;\;\;\;\;\;\;\;\;\left( 9\, {\epsilon}^{2}+{h}^{2} \right) \left( {\epsilon}^ {2}+{h}^{2} \right) \left( 2275\, {\epsilon}^{4}+{h}^{4} \right) \left( 169\, \sqrt {2}-239 \right) \prod\limits _{k=1}^{6}{(h^2-k^2\epsilon^2)}. $

从而由文[3]知系统(1.2)在原点的充分小邻域内恰有$6$个小振幅极限环, 其位置分别在圆$x^2+y^2=k^2{\epsilon}^2$附近, $k=1, 2, \cdots, 6$.

参考文献
[1] Sadovskii A P, Shcheglova T V. Solutions of the center focus problem for a nine-parameter cubic system[J]. Differ. Equa., 2011, 47(2): 208–223. DOI:10.1134/S0012266111020078
[2] 刘一戎, 李继彬. 论复自治系统的奇点量[J]. 中国科学A辑:数学, 1989, 19(3): 245–255.
[3] 刘一戎, 李继彬. 平面向量场的若干经典问题[M]. 北京: 科学出版社, 2010.
[4] Wang D M. Mechanical manipulation for a class of differential systems[J]. J. Symb. Comput., 1991, 12(2): 233–254. DOI:10.1016/S0747-7171(08)80127-7
[5] Yu P. Computation of normal forms via a perturbation technique[J]. J. Sound Vib., 1998, 211(1): 19–38. DOI:10.1006/jsvi.1997.1347
[6] 桑波, 朱思铭. 一类微分系统的非退化中心问题[J]. 系统科学与数学, 2013, 33(5): 599–606.
[7] Lloyd N G, Pearson J M. Symmetry in planar dynamical systems[J]. J. Symb. Comput., 2002, 33(3): 357–366. DOI:10.1006/jsco.2001.0502
[8] Cozma D. Darboux integrability and rational reversibility in cubic systems with two invariant straight lines[J]. Electronic J. Differ. Equa., 2013, 2013(23): 1–19.
[9] 陆征一, 何碧, 罗勇. 多项式系统的实根分离算法及其应用[M]. 北京: 科学出版社, 2004.
[10] Chen C, Corless R M, Maza M M. An application of regular chain theory to the study of limit cycles[J]. Int. J. Bifur. Chaos, 2013, 23(9): 1350154 (21 pages).
[11] Yu P, Tian Y. Twelve limit cycles around a singular point in a planar cubic-degree polynomial system[J]. Communi. Nonl. Sci. Numer. Simul., 2014, 19(7): 2294–2308. DOI:10.1016/j.cnsns.2013.11.019
[12] Han M A. Bifurcation theory of limit cycles[M]. Beijing: Science Press, 2013.
[13] Chavarriga J, Giné J. Integrability of a linear center perturbed by a fifth degree homogeneous polynomial[J]. Publicacions Matemàtiques, 1997, 41(2): 335–356.
[14] Ferčec B, Chen X W, Romanovski V G. Integrability conditions for complex systems with homogeneous quintic nonlinearities[J]. J. Appl. Anal. Comput., 2011, 1(1): 9–20.
[15] Chavarriga J, Grau M. Some open problems related to 16b Hilbert problem[J]. Scientia Series A: Math. Sci., 2003, 9(1): 1–26.