数学杂志  2016, Vol. 36 Issue (4): 820-830   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
辛林
郑琳
广义Comma范畴的Recollement
辛林1,2, 郑琳3     
1. 福建师范大学数学与计算机科学学院, 福建 福州 350108;
2. 福州外语外贸学院, 福建 长乐 350202;
2. 福州市仓山区第六中心小学, 福建 福州 350000
摘要:本文研究广义Comma范畴上Recollement问题.利用Abel范畴上Recollement及其伴随函子, 诱导出广义Comma范畴, 并利用比较函子构造出广义Comma范畴上的Recollement.这些结果推广了一般Abel范畴上的Recollement, 丰富了Comma范畴研究.
关键词广义Comma范畴    Abel范畴    伴随函子    Recollement    
RECOLLEMENTS OF GENERALIZED COMMA CATEGORIES
XIN Lin1,2, ZHENG Lin3     
1. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350108, China;
2. Fuzhou University of International Studies and Trade, Changle 350202, China;
2. Sixth Central Primary School Cangshan District, Fuzhou 350000, China
Abstract: In this paper, we study the recollement problem for generalized comma category. Using recollement of abelian categories and its adjoint functor, we induce generalized comma categories. Using the comparison functors, we construct the recollement of generalized comma categories. These results generalize the recollement of general abelian categories and enrich a research for comma category.
Key words: generalized comma category     abelian category     adjoint functor     recollement    
1 引言

早期Recollement来自环模挠理论的TTF理论, 即Torsino-Torsion-Free理论.上个世纪80年代, Macpherson和Vilonen将此方法引入一般的Abel范畴中, 而Beilinson, Bernstein, Deligne将此引入三角范畴, 以刻画拓扑空间层上导出范畴.此后, Recollement方法在多个数学分支上获得了许多应用, 如奇异空间几何理论, 表示理论, 多项式算子理论等都有其重要应用[1].

Recollement的比较函子是研究Recollement的重要概念. Parshall和Scott证明了三角范畴上比较函子都是等价函子, Franjou和Pirashvili在文[5]中通过一个反例说明这些结果对于Abel范畴上的Recollement比较函子并不正确.林亚南和辛林在文[9]中通过倾斜模构造出一类Abel范畴上的非等价的Recollement比较函子.因此Abel范畴上的Recollement比较函子是值得研究的一个问题.

本文将研究由Abel范畴上Recollement的伴随函子诱导的广义Comma范畴上的Recollement, 以及构造由比较函子诱导的新的Recollement.

下面关于Abel范畴上Recollement的定义来自文[9].

定义1.1  设 ${\mathscr C}', {\mathscr{C}}$ ${\mathscr{C}}^{\prime\prime}$是三个Abel范畴.则范畴 $\mathscr{C}$关于 ${\mathscr{C}}'$ ${\mathscr{C}}^{\prime\prime}$的Recollement, 记作

是指存在六个正合函子 $i^\ast, i^!:\mathscr{C}\rightarrow\mathscr{C^{\prime}}; i_\ast:\mathscr{C^{\prime}}\rightarrow\mathscr{C}, j_!, j_\ast:\mathscr{C^{\prime\prime}}\rightarrow\mathscr{C}, j^\ast:\mathscr{C}\rightarrow\mathscr{C^{\prime\prime}}$, 并且满足如下三个条件:

(1) $(i^\ast, i_\ast, i^!)$ $(j_!, j^\ast, j_\ast)$都是伴随三元组;

(2) $i_*, j_!$ $j_*$都是满且忠实函子;

(3) Im $(i_*)=$ Ker $(j^*)$.

有关Recollement详细内容可参阅文献[2, 3, 5, 7-11].

下面定义属于文[13].

定义1.2  设 $\mathscr{E, C, D}$是范畴, $T: \mathscr{E}\rightarrow \mathscr{C}, H: \mathscr{D}\rightarrow \mathscr{C}$都是函子.构造范畴 $(T\downarrow H)$如下:

(1) $(T\downarrow H)$的对象是所有形如 $\langle E, D, f\rangle $的三元组, 其中 $E\in\rm{Obj}\mathscr{E}$, $D\in\rm{Obj}\mathscr{D}$, $f: T(E)\rightarrow H(D)$ $\mathscr{C}$中的态射;

(2) 从对象 $\langle E, D, f\rangle $到对象 $\langle E', D', f'\rangle $的态射是所有形如 $\langle e, d\rangle $的态射组, 其中 $e: E\rightarrow E'$ $\mathscr{E}$中态射, $d: D\rightarrow D'$ $\mathscr{D}$中态射, 使得 $f'T(e)=H(d)f$, 即有下面的交换图

(3) 态射的合成是分别按 $\mathscr{E}$ $\mathscr{D}$中态射合成, 称这个范畴 $(T\downarrow H)$是由函子 $T, H$确定的广义Comma范畴.

广义Comma范畴是许多熟悉范畴的自然推广.例如, 设 $\mathscr{E}=\mathscr{C}$是范畴, $B\in\rm{Obj}\mathscr{C}$.如果常值函子 $T_B:\mathscr {E}\rightarrow\mathscr {C}$使得对每一个 $\mathscr {E}$的对象 $M$, $T_B(M)=B$, 对每一个态射 $f$, $T_B(f)=1_B$, 那么广义Comma范畴 $(T_B\downarrow H)$就是通常的Comma范畴 $H\mathscr{D}^B$, 其中范畴 $H\mathscr{D}^B$的对象是 $B\stackrel{f}\rightarrow H(D), \forall D\in\rm{Obj}\mathscr{D}$, 而从 $B\stackrel{f}\rightarrow H(D)$ $B\stackrel{f^\prime}\rightarrow H(D^\prime)$的态射 $d: f\rightarrow f^{\prime}$ $\mathscr{D}$中的态射 $d:D\rightarrow D^\prime$使得下图交换

特别地, 当 $\mathscr{E}=\mathscr{C}=\mathscr{D}, H=1_\mathscr{C}$, 范畴 $(T\downarrow H)$是Comma范畴 $\mathscr{C}^B$.

$\mathscr{D}=\mathscr{C}$是范畴, $D\in\mathscr{C}$.如果常值函子 $H_D:\mathscr{D}\rightarrow\mathscr{C}$使得对每一个 $\mathscr {D}$的对象 $M$, $H_D(M)=D$, 对每一个态射 $f$, $H_D(f)=1_D$, 那么广义Comma范畴 $(T\downarrow H_D)$是余Comma范畴 $T\mathscr{E}_D$, 其中 $T\mathscr{E}_D$的对象 $ T(E)\stackrel{f}\rightarrow D, \forall E\in\rm{Obj}\mathscr{E}$, 而从 $ T(E)\stackrel{f}\rightarrow D$ $ T(E^\prime)\stackrel{f^{\prime}}\rightarrow D$的态射 $e: f\rightarrow f^{\prime}$ $\mathscr{E}$中的态射 $e:E\rightarrow E^\prime$, 使得有下面交换图

特别地, 如果 $\mathscr{D}=\mathscr{C}=\mathscr{E}, T=1_\mathscr{C}$, 那么范畴 $(T\downarrow H)$是余Comma范畴 $\mathscr{C}_D$.

如果 $\mathscr{E}=\mathscr{C}=\mathscr{D}$ $H=T=1_{\mathscr{C}}$, 那么范畴 $(T\downarrow H)=\mathscr{C}^2$, 这是 $\mathscr{C}$的态射范畴, 其对象是 $\mathscr{C}$中态射, 从对象 $f: A\rightarrow B$到对象 $g: C\rightarrow D$的态射是所有满足下面交换图的 $\mathscr{C}$中态射对 $(t, h)$

如果 $\mathscr{D}=\mathscr{E}$, $\eta: T\rightarrow H$是自然变换, 那么可以构造自然变换范畴 $Nat(\eta)$, 这是 $(T\downarrow H)$的满子范畴, 其对象是 $\langle E, E, \eta_E\rangle, \forall E\in\rm{Obj}\mathscr{E}$, 从 $\langle E, E, \eta_E\rangle $ $\langle E^\prime, E^\prime, \eta_{E^\prime}\rangle $态射是 $\mathscr{C}$中的态射对 $(e, e)$, 使得有下面的交换图

下面来回忆一下伴随函子.函子 $F:\mathscr{C}\rightarrow \mathscr{D}$ $G:\mathscr{D}\rightarrow \mathscr{C}$称为伴随的, 如果存在一个自然同构 $\eta=\eta_{X, Y}: \rm{Hom}_{\mathscr{D}}(\mathit{F}(\mathit{X}), \mathit{Y})\rightarrow\rm{Hom}_{\mathscr{C}}(\mathit{X}, \mathit{G}(\mathit{Y}))$, $\forall X\in\rm{Obj}\mathscr{C}, \mathit{Y}\in\rm{Obj}\mathscr{D}$.这时, 也称 $F$ $G$的左伴随, 而 $G$称为 $F$的右伴随, 或者简称 $(F, G)$是伴随对.下面两个引理可在文[4, 6]中找到.

引理1.3  设函子 $F: \mathscr{A}\rightarrow\mathscr{B}, G: \mathscr{B}\rightarrow\mathscr{A}$构成伴随对 $(F, G)$,

$ h=h_{A, B}: \rm{Hom}_{\mathscr{B}}(\mathit{F}(\mathit{A}), \mathit{B})\rightarrow \rm{Hom}_{\mathscr{A}}(\mathit{A}, \mathit{G}(\mathit{B})) $

是自然同构.那么

(1) 存在自然变换 $\epsilon: 1_{\mathscr{A}}\rightarrow GF$, 使得对每一个 $f\in\rm{Hom}_{\mathscr{B}}(\mathit{F}(\mathit{A}), \mathit{B})$, $h(f)=G(f)\epsilon_{A}$, $\epsilon$也称为该伴随对的单位.

(2) 存在自然变换 $\delta: FG\rightarrow 1_{\mathscr{B}}$使得对每一个 $g\in\rm{Hom}_{\mathscr{A}}(\mathit{A}, \mathit{G}(\mathit{B}))$, $h^{-1}(g)=\delta_{B}F(g)$, $\delta$也称为该伴随对的余单位.

引理1.4  如果 $(F, G)$是伴随对, 那么 $F$是满且忠实函子当且仅当存在自然等价 $GF\approx id$.

定义1.5  设 $\mathscr{E}_1, \mathscr{E}_2, \mathscr{C}_1, \mathscr{C}_2, \mathscr{D}_1, \mathscr{D}_2$都是Abel范畴, $T_1: \mathscr{E}_1\rightarrow\mathscr{C}_1, T_2: \mathscr{E}_2\rightarrow\mathscr{C}_2, H_1: \mathscr{D}_1\rightarrow\mathscr{C}_1, H_2: \mathscr{D}_2\rightarrow\mathscr{C}_2, F_{\mathscr{E}}: \mathscr{E}_1\rightarrow\mathscr{E}_2, F_{\mathscr{C}}: \mathscr{C}_1\rightarrow\mathscr{C}_2, F_{\mathscr{D}}: \mathscr{D}_1\rightarrow\mathscr{D}_2, $ $G_{\mathscr{E}}: \mathscr{E}_2\rightarrow\mathscr{E}_1, G_{\mathscr{C}}: \mathscr{C}_2\rightarrow\mathscr{C}_1, G_{\mathscr{D}}: \mathscr{D}_2\rightarrow\mathscr{D}_1$都是加法函子, 如果 $(F_{\mathscr{E}}, G_{\mathscr{E}})$是伴随对, $\epsilon^{\mathscr{E}_1}, \delta^{\mathscr{E}_2}$分别是该伴随对相应的单位和余单位, $(F_{\mathscr{C}}, G_{\mathscr{C}})$是伴随对, $\epsilon^{\mathscr{C}_1}, \delta^{\mathscr{C}_2}$分别是该伴随对相应的单位和余单位, $(F_{\mathscr{D}}, G_{\mathscr{D}})$是伴随对, $\epsilon^{\mathscr{D}_1}, \delta^{\mathscr{D}_2}$分别是该伴随对相应的单位和余单位, 并且 $F_{\mathscr{C}}T_1=T_2F_{\mathscr{E}}, H_2F_{\mathscr{D}}=F_{\mathscr{C}}H_1, G_{\mathscr{C}}T_2=T_1G_{\mathscr{E}}, H_1G_{\mathscr{D}}=G_{\mathscr{C}}H_2, \epsilon_{T_1E_1}^{\mathscr{C}_1}=T_1(\epsilon_{E_1}^{\mathscr{E}_1}), $$ \delta_{T_2E_2}^{\mathscr{C}_2}=T_2(\delta_{E_2}^{\mathscr{E}_2}), \epsilon_{H_1D_1}^{\mathscr{C}_1}=H_1(\epsilon_{D_1}^{\mathscr{D}_1}), \delta_{H_2D_2}^{\mathscr{C}_2}=H_2(\delta_{D_2}^{\mathscr{D}_2})$, $\forall E_1\in\rm{Obj}\mathscr{E}_1, \mathit{E}_2\in\rm{Obj}\mathscr{E}_2, \mathit{D}_1\in\rm{Obj}\mathscr{D}_1, \mathit{D}_2\in\rm{Obj}\mathscr{D}_2$, 即存在下面交换图

那么, 称 $(F_{\mathscr{E}}, G_{\mathscr{E}}), (F_{\mathscr{C}}, G_{\mathscr{C}}), (F_{\mathscr{D}}, G_{\mathscr{D}})$是相容于 $T_1, T_2, H_1, H_2$的伴随对.

2 由伴随对诱导的广义Comma范畴

命题2.1  如果函子 $ G: \mathscr{D}\rightarrow\mathscr{C}$有左伴随 $F: \mathscr{C}\rightarrow\mathscr{D}$, 那么

$ (F\downarrow 1_{\mathscr{D}})\cong(1_{\mathscr{C}}\downarrow G). $

  设 $\epsilon: 1_{\mathscr{C}}\rightarrow GF$是伴随对 $(F, G)$的单位.定义 $Q: (F\downarrow 1_{\mathscr{D}})\rightarrow (1_{\mathscr{C}}\downarrow G)$如下:

(1) $Q:\rm{Obj}(\mathit{F}\downarrow 1_{\mathscr{D}})\rightarrow\rm{Obj}(1_{\mathscr{C}}\downarrow \mathit{G}): \langle \mathit{C}, \mathit{D}, \mathit{f}\rangle \mapsto\langle \mathit{C}, \mathit{D}, \mathit{G}(\mathit{f})\epsilon_\mathit{C}\rangle $, 其中

$ f: F(C)\rightarrow D, G(f)\epsilon_C: C\rightarrow G(D). $

(2) 对任意 $\langle C_1, D_1, f_1\rangle, \langle C_2, D_2, f_2\rangle \in\rm{Obj}(\mathit{F}\downarrow 1_{\mathscr{D}})$, 令

$ \begin{eqnarray*} Q: &&\rm{Hom}_{(\mathit{F}\downarrow 1_{\mathscr{D}})}(\langle \mathit{C}_1, \mathit{D}_1, \mathit{f}_1\rangle, \langle \mathit{C}_2, \mathit{D}_2, \mathit{f}_2\rangle )\\ &\rightarrow&\rm{Hom}_{(1_{\mathscr{C}}\downarrow \mathit{G})}(\mathit{Q}\langle \mathit{C}_1, \mathit{D}_1, \mathit{f}_1\rangle, \mathit{Q}\langle \mathit{C}_2, \mathit{D}_2, \mathit{f}_2\rangle ):\langle \mathit{a}, \mathit{b}\rangle \mapsto\langle \mathit{a}, \mathit{b}\rangle .\end{eqnarray*} $

由于 $bf_1=f_2F(a)$, 则

$ G(b)G(f_1)\epsilon_{C_1}=G(f_2F(a))\epsilon_{C_1}=G(f_2)GF(a)\epsilon_{C_1}=G(f_2) \epsilon_{C_2}a, $

所以 $Q$是定义好的.容易知道 $Q$是忠实的.

$\langle a, b\rangle : \langle C_1, D_1, G(f_1)\epsilon_{C_1}\rangle \rightarrow {\langle C_2, D_2, G(f_2)\epsilon_{C_2}\rangle }\in\rm{Mor}{(1_{\mathscr{C}}\downarrow \mathit{G})}, $

$ G(b)G(f_1)\epsilon_{C_1}=G(f_2)\epsilon_{C_2}a, $

$ \begin{eqnarray*} bf_1&=&b\delta_{D_1}F(G(f_1)\epsilon_{C_1})=\delta_{D_2}FG(b)F(G(f_1)\epsilon_{C_1})\\ &=&\delta_{D_2}F(G(f_2)\epsilon_{C_2}a)=\delta_{D_2}F(G(f_2)\epsilon_{C_2})F(a)\\ &=&f_2F(a). \end{eqnarray*} $

因此 $Q\langle a, b\rangle =\langle a, b\rangle $, 即 $Q$是满的. $Q$显然是稠密的.所以 $(F\downarrow 1_{\mathscr{D}})\cong(1_{\mathscr{C}}\downarrow G)$.

下面结论类似可得.

命题2.2  如果 $F: \mathscr{C}\rightarrow\mathscr{D}, G: \mathscr{D}\rightarrow\mathscr{C}$是函子使得 $(F, G)$是伴随对, 那么

$ (F\downarrow FG)\cong (1_{\mathscr{C}}\downarrow GFG), (G\downarrow GF)\cong (FG\downarrow F), \\ (F\downarrow F)\cong (1_{\mathscr{C}}\downarrow GF), (G\downarrow G)\cong (FG\downarrow 1_{\mathscr{D}}). $

推论2.3  如果下图

$\mathscr{C}$关于 $\mathscr{C}^\prime, \mathscr{C}^{\prime\prime}$的Recollement, 那么

(1) $\begin{array}{cc}(i^\ast\downarrow 1_{\mathscr{C^\prime}})\cong(1_{\mathscr{C}}\downarrow i_\ast),& (i_\ast\downarrow 1_{\mathscr{C}})\cong(1_{\mathscr{C^\prime}}\downarrow i^!), \\ (j_!\downarrow 1_{\mathscr{C}})\cong (1_{\mathscr{C^{\prime\prime}}}\downarrow j^\ast),&(j^\ast\downarrow 1_{\mathscr{C^{\prime\prime}}})\cong (1_{\mathscr{C}}\downarrow j_*).\end{array}$

(2) $(i_\ast\downarrow i_\ast i^!)\cong(1_{\mathscr{C^\prime}}\downarrow i^!), \, \, \, (j_!\downarrow j_!j^*)\cong(1_{\mathscr{C^{\prime\prime}}}\downarrow j^\ast)$.

(3) $\begin{array}{cc}(i_*\downarrow i_*i^*)\cong(1_{\mathscr{C^\prime}}\downarrow i^*),& (i^!\downarrow 1_{\mathscr{C^\prime}})\cong(i_\ast i^!\downarrow i_\ast), \\ (j^\ast\downarrow 1_{\mathscr{C^{\prime\prime}}})\cong(j_!j^\ast\downarrow j_!),&(j_\ast\downarrow j_\ast j^\ast)\cong(1_{\mathscr{C^{\prime\prime}}}\downarrow j^\ast).\end{array}$

(4) $(i^\ast\downarrow i^\ast)\cong(1_{\mathscr{C}}\downarrow i_\ast i^\ast), (i_\ast\downarrow i_\ast)\cong {\mathscr{C^\prime}}^2, (j_!\downarrow j_!)\cong {\mathscr{C^{\prime\prime}}^2}, (j^\ast\downarrow j^\ast)\cong (1_{\mathscr{C}}\downarrow j_\ast j^\ast)$.

(5) $(i^!\downarrow i^!)\cong(i_*i^!\downarrow 1_{\mathscr{C}}), (j^\ast\downarrow j^\ast)\cong(j_!j^\ast\downarrow 1_{\mathscr{C}}), (j_\ast\downarrow j_\ast)\cong {\mathscr{C^{\prime\prime}}^2}$.

命题2.4  设 $T: \mathscr{E}\rightarrow \mathscr{C}$ $H: \mathscr{D}\rightarrow \mathscr{C}$是函子.如果对所有的 $E\in\rm{Obj}{\mathscr{E}}, \mathit{D}\in\rm{Obj}{\mathscr{D}}$, $\rm{Hom}_{\mathscr{C}}(\mathit{T}(\mathit{E}), \mathit{H}(\mathit{D}))=0$, 那么 $(T\downarrow H)\cong\mathscr{E}\times\mathscr{D}$.

  设 $F:\mathscr{E}\times\mathscr{D}\rightarrow(T\downarrow H)$使得 $F(E, D)= \langle E, D, 0\rangle .$那么 $F$是范畴同构.

推论2.5  如果下图

$\mathscr{C}$关于 $\mathscr{C}^\prime, \mathscr{C}^{\prime\prime}$的Recollement, 那么

(1) $(j_!\downarrow i_\ast)\cong \mathscr{C^{\prime\prime}}\times\mathscr{C^\prime}, (j_!j^\ast\downarrow i_\ast)\cong \mathscr{C}\times\mathscr{C^\prime}, (j_!\downarrow i_\ast i^\ast)\cong (j_!\downarrow i_\ast i^!)\cong \mathscr{C^{\prime\prime}}\times\mathscr{C}.$

(2) $(i_\ast\downarrow j_\ast)\cong\mathscr{C^\prime}\times\mathscr{C^{\prime\prime}}, (i_\ast i^!\downarrow j_\ast)\cong(i_\ast i^\ast\downarrow j_\ast)\cong\mathscr{C}\times\mathscr{C^{\prime\prime}}, (i_\ast\downarrow j_\ast j^\ast)\cong\mathscr{C^\prime}\times\mathscr{C}.$

(3) $(j_!j^\ast\downarrow i_\ast i^\ast)\cong (j_!j^\ast\downarrow i_\ast i^!)\cong(i_\ast i^!\downarrow j_\ast j^\ast)\cong(i_\ast i^\ast\downarrow j_\ast j^\ast)\cong\mathscr{C}\times\mathscr{C}.$

3 广义Comma范畴的Recollement

引理3.1  设 $\mathscr{E}, \mathscr{D}$ $\mathscr{C}$都是Abel范畴.如果 $(H, T)$是伴随对, 并且 $T: \mathscr{E}\rightarrow \mathscr{C}$是右正合函子, $H: \mathscr{D}\rightarrow \mathscr{C}$是左正合函子, 则 $(T\downarrow H)$是Abel范畴.

  由于 $T, H$是加法函子, 所以 $(T\downarrow H)$是预加法范畴.

$E_i\in\rm{Obj}{\mathscr{E}}, \mathit{D_i}\in\rm{Obj}{\mathscr{D}}, \mathit{i}\in \mathit{I}$, 其中 $I$是有限集合.令 $E=\amalg E_i$ $D=\amalg D_i$分别是这些对象的上积.由于加法函子保持有限上积, 故 $T(E)=\amalg T(E_i)$ $H(D)=\amalg H(D_i)$.于是 $\langle E, D, f\rangle =\amalg \langle E_i, D_i, f_i\rangle $, 其中 $f=\amalg f_i$.事实上, 如果 $e_i: E_i\rightarrow E, d_i: D_i\rightarrow D$是典范的嵌入态射, 则 $\{\langle e_i, d_i\rangle : {\langle E_i, D_i, f_i\rangle }\rightarrow \langle E, D, f\rangle \}_{i\in I}$ $(T\downarrow H)$中的一类态射.对每一个 ${\langle M, N, k\rangle }\in\rm{Obj}(\mathit{T}\downarrow \mathit{H})$, 如果存在 $\langle m_i, n_i\rangle : {\langle E_i, D_i, f_i\rangle }\rightarrow {\langle M, N, k\rangle }$, 则存在 $m: E\rightarrow M, n: D\rightarrow N$使得 $m_i=me_i, n_i=nd_i$, 所以

$ kT(m)T(e_i)=kT(m_i)=H(n_i)f_i=H(n)H(d_i)f_i=H(n)fT(e_i). $

$kT(m)=H(n)f$.因此 $\langle m, n\rangle \in\rm{Hom}_{(\mathit{T}\downarrow \mathit{H})}(\langle \mathit{E}, \mathit{D}, \mathit{f}\rangle, \langle \mathit{M}, \mathit{N}, \mathit{k}\rangle )$, 这表明 $(T\downarrow H)$是加法范畴.

对任意 $\langle e, d\rangle \in \rm{Hom}_{(\mathit{T}\downarrow \mathit{H})}(\langle \mathit{E}_1, \mathit{D}_1, \mathit{f}_1\rangle, \langle \mathit{E}_2, \mathit{D}_2, \mathit{f}_2\rangle )$, 存在 $\rm{ker}\mathit{e}: \rm{Ker}\mathit{e}\rightarrow \mathit{E}_1$ $\rm{ker}\mathit{d}: \rm{Ker}\mathit{d}\rightarrow \mathit{D}_1$.由于 $H$是左正合函子, 从而保持核, 于是存在唯一态射 $f_0: T(\rm{Ker}\mathit{e})\rightarrow \mathit{H}(\rm{Ker}\mathit{d})$使得下图交换

$ \langle \rm{ker}\mathit{e}, \rm{ker}\mathit{d}\rangle \in\rm{Hom}_{(\mathit{T}\downarrow \mathit{H})}(\langle \rm{ker}\mathit{e}, \rm{ker}\mathit{d}, \mathit{f}_0\rangle, \langle \mathit{E}_1, \mathit{D}_1, \mathit{f}_1\rangle ) $

使得 $\langle e, d\rangle \langle \rm{ker}\mathit{e}, \rm{ker}\mathit{d}\rangle =0.$如果 $\langle M, N, h\rangle \in$ Obj $(T\downarrow H)$ $\langle a, b\rangle :\langle M, N, h\rangle \rightarrow \langle E_1, D_1, f_1\rangle $使得 $\langle e, d\rangle \langle a, b\rangle =0$, 那么存在唯一 $a_1: M\rightarrow \rm{ker}\mathit{e}$ $b_1:N\rightarrow\rm{ker}\mathit{d}$使得 $a=\rm{ker}\mathit{e}\cdot a_1, b=\rm{ker}\mathit{d}\cdot b_1$.故 $\mathit{T}(\mathit{a})=\mathit{T}(\rm{ker}\mathit{e})\cdot \mathit{T}(\mathit{a}_1), \mathit{H}(\mathit{b})=\mathit{H}(\rm{ker}\mathit{d})\cdot \mathit{H}(\mathit{b}_1)$, 从而由 $H(\rm{ker}\mathit{d})(\mathit{f}_0\mathit{T}(\mathit{a}_1)-\mathit{H}(\mathit{b}_1)\mathit{h})=0$ $f_0T(a_1)=H(b_1)h$.所以 $\langle \rm{ker}\mathit{e}, \rm{ker}\mathit{d}\rangle =\rm{ker}\langle \mathit{e}, \mathit{d}\rangle $.对偶地, 如果 $T$右正合函子, 那么在 $(T\downarrow H)$中每一个态射都有余核.由于 $\mathscr{E}, \mathscr{D}$都是Abel范畴, 所以在 $(T\downarrow H)$中每一个态射都是严格的.因此 $(T\downarrow H)$是Abel范畴.这证明了引理.

$\mathscr{E}_1, \mathscr{E}_2, \mathscr{D}_1, \mathscr{D}_2$是Abel范畴, $\mathscr{C}_1, \mathscr{C}_2$是加法范畴.如果下图是加法函子交换图

那么存在从广义Comma范畴 $(T_1\downarrow H_1)$到广义Comma范畴 $(T_2\downarrow H_2)$的加法函子 $\widetilde{F}$使得

$ \begin{eqnarray*}\widetilde{F}\langle E_1, D_1, f_1\rangle &=&\langle F_{\mathscr{E}}(E_1), F_{\mathscr{D}}(D_1), F_{\mathscr{C}}(f_1)\rangle, \\ \widetilde{F}\langle e, d\rangle &=&\langle F_{\mathscr{E}}(e), F_{\mathscr{D}}(d)\rangle .\end{eqnarray*} $

上述 $\widetilde{F}$称为由 $(F_{\mathscr{E}}, F_{\mathscr{D}})$诱导的函子.

引理3.2  设 $\mathscr{E}_1, \mathscr{E}_2, \mathscr{D}_1, \mathscr{D}_2$是Abel范畴, $\mathscr{C}_1, \mathscr{C}_2$是加法范畴.在下面的交换图

如果 $(F_{\mathscr{E}}, G_{\mathscr{E}}), (F_{\mathscr{C}}, G_{\mathscr{C}}), (F_{\mathscr{D}}, G_{\mathscr{D}})$是相容于 $T_1, T_2, H_1, H_2$的伴随对, 那么存在伴随对 $(\widetilde{F}, \widetilde{G})$, 其中 $\widetilde{F}:(T_1\downarrow H_1)\rightarrow (T_2\downarrow H_2)$ $\widetilde{G}:(T_2\downarrow H_2)\rightarrow (T_1\downarrow H_1)$分别是由 $(F_{\mathscr{E}}, F_{\mathscr{D}})$ $(G_{\mathscr{E}}, G_{\mathscr{D}})$诱导的函子.

  设 $\widetilde{F}:(T_1\downarrow H_1)\rightarrow (T_2\downarrow H_2)$ $\widetilde{G}:(T_2\downarrow H_2)\rightarrow (T_1\downarrow H_1)$分别是由 $(F_{\mathscr{E}}, F_{\mathscr{D}})$ $(G_{\mathscr{E}}, G_{\mathscr{D}})$诱导的函子.如果

$ \langle E_1, D_1, f_1\rangle \in\rm{Obj}(\mathit{T}_1\downarrow \mathit{H}_1), \langle \mathit{E}_2, \mathit{D}_2, \mathit{f}_2\rangle \in\rm{Obj}(\mathit{T}_2\downarrow \mathit{H}_2), $

对每一个 $\langle e, d\rangle \in \rm{Hom}_{(\mathit{T}_1\downarrow \mathit{H}_1)}(\langle \mathit{E}_1, \mathit{D}_1, \mathit{f}_1\rangle, \widetilde{G}\langle \mathit{E}_2, \mathit{D}_2, \mathit{f}_2\rangle )$, 由于 $H_1(d)f_1=G_{\mathscr{C}}(f_2)T_1(e)$, 则

$ \begin{eqnarray*} H_2(\delta_{D_2}^{\mathscr{D}}F_{\mathscr{D}}(d)))F_{\mathscr{C}}(f_1)&=&H_2(\delta_{D_2}^{\mathscr{D}})F_{\mathscr{C}}H_1(d)F_{\mathscr{C}}(f_1)\\ &=& H_2(\delta_{D_2}^{\mathscr{D}})F_{\mathscr{C}}(H_1(d)f_1)\\ &=&H_2(\delta_{D_2}^{\mathscr{D}})F_{\mathscr{C}}(G_{\mathscr{C}}(f_2)T_1(e))\\ &=&H_2(\delta_{D_2}^{\mathscr{D}})F_{\mathscr{C}}G_{\mathscr{C}}(f_2)T_2F_{\mathscr{E}}(e)\\ &=&\delta_{H_2D_2}^{\mathscr{C}}F_{\mathscr{C}}G_{\mathscr{C}}(f_2)T_2F_{\mathscr{E}}(e)\\ &=&f_2T_2(\delta_{E_2}^{\mathscr{E}})T_2F_{\mathscr{E}}(e)\\ &=&f_2T_2(\delta_{E_2}^{\mathscr{E}}F_{\mathscr{E}}(e)).\end{eqnarray*} $

$(\delta_{E_2}^{\mathscr{E}}F_{\mathscr{E}}(e), \delta_{D_2}^{\mathscr{D}}F_{\mathscr{D}}(d))\in \rm{Hom}_{(\mathit{T}_2\downarrow \mathit{H}_2)}(\widetilde{\mathit{F}}\langle \mathit{E}_1, \mathit{D}_1, \mathit{f}_1\rangle, \langle \mathit{E}_2, \mathit{D}_2, \mathit{f}_2\rangle )$, 所以映射

$ \begin{eqnarray*}\phi:&&\rm{Hom}_{(\mathit{T}_1\downarrow \mathit{H}_1)}(\langle \mathit{E}_1, \mathit{D}_1, \mathit{f}_1\rangle, \widetilde{G}\langle \mathit{E}_2, \mathit{D}_2, \mathit{f}_2\rangle )\\ &\rightarrow &{\rm{Hom}}_{(T_2\downarrow H_2)}(\widetilde{F}\langle E_1, D_1, f_1\rangle, \langle E_2, D_2, f_2\rangle )\end{eqnarray*} $

使得 $\phi(\langle e, d\rangle )=\langle \delta_{E_2}^{\mathscr{E}}F_{\mathscr{E}}(e), \delta_{D_2}^{\mathscr{D}}F_{\mathscr{D}}(d)\rangle $是合理的.类似地, 存在映射

$ \begin{eqnarray*}\psi:&&{\rm{Hom}}_{(T_2\downarrow H_2)}(\widetilde{F}\langle E_1, D_1, f_1\rangle, \langle E_2, D_2, f_2\rangle )\\ &\rightarrow&{\rm{Hom}}_{(T_1\downarrow H_1)}(\langle E_1, D_1, f_1\rangle, \widetilde{G}\langle E_2, D_2, f_2\rangle )\end{eqnarray*} $

使得 $\psi(\langle e', d'\rangle )=\langle G_{\mathscr{E}}(e')\epsilon_{E_1}^{\mathscr{E}}, G_{\mathscr{D}}(d')\epsilon_{D_1}^{\mathscr{D}}\rangle $.而且

$ \begin{eqnarray*} \psi\phi(e, d)&=&\psi(\delta_{E_2}^{\mathscr{E}}F_{\mathscr{E}}(e), \delta_{D_2}^{\mathscr{D}}F_{\mathscr{D}}(d))\\ &=&(G_{\mathscr{E}}(\delta_{E_2}^{\mathscr{E}}F_{\mathscr{E}}(e))\epsilon_{E_1}^{\mathscr{E}}, G_{\mathscr{D}}(\delta_{D_2}^{\mathscr{D}}F_{\mathscr{D}}(d))\epsilon_{D_1}^{\mathscr{D}})\\ &=&(e, d), \end{eqnarray*} $

于是 $\psi\phi=1$.类似 $\phi\psi=1$.所以

$ \begin{eqnarray*}&\rm{Hom}_{(\mathit{T}_1\downarrow \mathit{H}_1)}(\langle \mathit{E}_1, \mathit{D}_1, \mathit{f}_1\rangle, \widetilde{G}\langle \mathit{E}_2, \mathit{D}_2, \mathit{f}_2\rangle )\\ \cong&{\rm{Hom}_{(\mathit{T}_2\downarrow \mathit{H}_2)}(\widetilde{\mathit{F}}\langle \mathit{E}_1, \mathit{D}_1, \mathit{f}_1\rangle, }\langle \mathit{E}_2, \mathit{D}_2, \mathit{f}_2\rangle ).\end{eqnarray*} $

下面将证明 $\phi, \psi$是自然的.

$ \begin{eqnarray*}&&\langle E^\prime, D^\prime, f^\prime\rangle \in{\rm{Obj}}(T_2\downarrow H_2), \\ &&\langle a, b\rangle \in {\rm{Hom}}_{(T_1\downarrow H_1)}({\langle E_2, D_2, f_2\rangle, \langle E_1, D_1, f_1\rangle )}, \end{eqnarray*} $

下图是交换的

事实上, 对每一个 $\langle e', d'\rangle \in {\rm{Hom}}_{(T_2\downarrow H_2)}(\widetilde{F}\langle E_1, D_1, f_1\rangle, \langle E', D', f'\rangle )$,

$ \begin{eqnarray*} \psi_2(\widetilde{F}\langle a, b\rangle )^\ast\langle e', d'\rangle &=&\psi_2\langle F_{\mathscr{E}}(a), F_{\mathscr{D}}(b)\rangle ^\ast\langle e', d'\rangle \\ &=&\psi_2\langle e'F_{\mathscr{E}}(a), d'F_{\mathscr{D}}(b)\rangle \\ &=&\langle G_{\mathscr{E}}(e'F_{\mathscr{E}}(a))\epsilon_{E_2}^{\mathscr{E}_1}, G_{\mathscr{D}}(d'F_{\mathscr{D}}(b))\epsilon_{D_2}^{\mathscr{D}_1}\rangle, \\ \langle a, b\rangle ^\ast\psi_1\langle e', d'\rangle &=&\langle a, b\rangle ^\ast\langle G_{\mathscr{E}}(e')\epsilon_{E_1}^{\mathscr{E}_1}, G_{\mathscr{D}}(d')\epsilon_{D_1}^{\mathscr{D}_1}\rangle \\ &=& \langle G_{\mathscr{E}}(e')\epsilon_{E_1}^{\mathscr{E}_1}a, G_{\mathscr{D}}(d')\epsilon_{D_1}^{\mathscr{D}_1}b\rangle .\end{eqnarray*} $

于是

$ \begin{eqnarray*}G_{\mathscr{E}}(e'F_{\mathscr{E}}(a))\epsilon_{E_2}^{\mathscr{E}_1}&=&G_{\mathscr{E}}(e')G_{\mathscr{E}}F_{\mathscr{E}}(a)\epsilon_{E_2}^{\mathscr{E}_1} =G_{\mathscr{E}}(e')\epsilon_{E_1}^{\mathscr{E}_1}a, \\ G_{\mathscr{D}}(d'F_{\mathscr{D}}(b))\epsilon_{D_2}^{\mathscr{D}_1}&=& G_{\mathscr{D}}(d')G_{\mathscr{D}}F_{\mathscr{D}}(b)\epsilon_{D_2}^{\mathscr{D}_1}=G_{\mathscr{D}}(d')\epsilon_{D_1}^{\mathscr{D}_1}b. \end{eqnarray*} $

$\psi_2(\widetilde{F}\langle a, b\rangle )^\ast=\langle a, b\rangle ^\ast\psi_1$, 即 $\psi$ $\langle E_1, D_1, f_1\rangle $处是自然的.类似 $\psi$ $\langle E_2, D_2, f_2\rangle $处是自然的, $\phi$也是自然的.所以 $(\widetilde{F}, \widetilde{G})$是伴随对.

下面定理是本文的主要结果:

定理3.3  设 $\mathscr{E}_1, \mathscr{E}_2, \mathscr{E}_3, \mathscr{C}_1, \mathscr{C}_2, \mathscr{C}_3, \mathscr{D}_1, \mathscr{D}_2, \mathscr{D}_3$都是Abel范畴.在下面的Recollement交换图中, 如果所有伴随对关于相应函子都是相容的,

$T_1, T_2, T_3$是右正合函子, $H_1, H_2, H_3$是左正合函子, 那么存在广义Comma范畴的Recollement.

  由引理3.1, $(T_i\downarrow H_i)$都是Abel范畴, $i=1, 2, 3$.根据引理3.2, 分别存在由 $i^\ast, j_!, i_\ast, j^\ast, i^!, j_\ast$诱导的加法函子 $\widetilde{F}^\ast, \widetilde{G}_!, \widetilde{F}_\ast, \widetilde{G}^\ast, \widetilde{F}^!, \widetilde{G}_\ast$.而且 $(\widetilde{F}^\ast, \widetilde{F}_\ast, \widetilde{F}^!), (\widetilde{G}_!, \widetilde{G}^\ast, \widetilde{G}_\ast)$都是伴随三元组.

对任意 $\langle E_1, D_1, f_1\rangle \in{\rm{Obj}}(T_1\downarrow H_1)$,

$ \widetilde{F}^\ast\widetilde{F}_\ast(\langle E_1, D_1, f_1\rangle )=\langle i^\ast_{\mathscr{E}}i_\ast^{\mathscr{E}}E_1, i^\ast_{\mathscr{D}}i_\ast^{\mathscr{D}}D_1, i^\ast_{\mathscr{C}}i_\ast^{\mathscr{C}}f_1\rangle \simeq\\\langle E_1, D_1, f_1\rangle . $

对每一个 $\langle e, d\rangle \in{\rm{Hom}}_{(T_1\downarrow H_1)}(\langle E_1, D_1, f_1\rangle, \langle E_2, D_2, f_2\rangle )$,

$ \widetilde{F}^\ast\widetilde{F}_\ast\langle e, d\rangle =\langle i^\ast_{\mathscr{E}}i_\ast^{\mathscr{E}}(e), i^\ast_{\mathscr{D}}i_\ast^{\mathscr{D}}(d)\rangle \simeq\langle e, d\rangle, $

因此 $\widetilde{F}^\ast\widetilde{F}_\ast\simeq 1_{(T_1\downarrow H_1)}$.类似地, $\widetilde{F}^!\widetilde{F}_\ast\simeq 1_{(T_1\downarrow H_1)}, \widetilde{G}^\ast\widetilde{G}_!\simeq 1_{(T_3\downarrow H_3)}, $ $\widetilde{G}^\ast\widetilde{G}_\ast \simeq 1_{(T_3\downarrow H_3)}$.因此由引理1.4可得 $\widetilde{F}_\ast, \widetilde{G}_\ast$ $\widetilde{G}_!$都是满且忠实函子.

对每一个 $\langle E_1, D_1, f_1\rangle \in{\rm{Obj}}(T_1\downarrow H_1)$,

$ \widetilde{G}^\ast\widetilde{F}_\ast(\langle E_1, D_1, f_1\rangle )=\langle j^\ast_{\mathscr{E}}i_\ast^{\mathscr{E}}E_1, j^\ast_{\mathscr{D}}i_\ast^{\mathscr{D}}D_1, j^\ast_{\mathscr{C}}i_\ast^{\mathscr{C}}f_1\rangle =0. $

对每一个 $\langle e, d\rangle \in{\rm{Hom}}_{(T_1\downarrow H_1)}(\langle E_1, D_1, f_1\rangle, \langle E_2, D_2, f_2\rangle )$,

$ \widetilde{G}^\ast\widetilde{F}_\ast\langle e, d\rangle =\langle j^\ast_{\mathscr{E}}i_\ast^{\mathscr{E}}(e), j^\ast_{\mathscr{D}}i_\ast^{\mathscr{D}}(d)\rangle =0, $

因此 $\widetilde{G}^\ast\widetilde{F}_\ast=0$.

如果 $\widetilde{G}^\ast:(T_2\downarrow H_2)\rightarrow (T_3\downarrow H_3)$使得 $\widetilde{G}^\ast\langle E_2, D_2, f_2\rangle =\langle j^\ast_{\mathscr{E}}(E_2), j^\ast_{\mathscr{D}}(D_2), j^\ast_{\mathscr{C}}(f_2)\rangle =0$, 那么存在 $\mathscr{E}$的对象 $E_1$ $\mathscr{D}$的对象 $D_1$使得 $E_2=i^{\mathscr{E}}_\ast(E_1), D_2=i^{\mathscr{D}}_\ast(D_1)$.由于 $i^{\mathscr{C}}_\ast$是满的, 存在 $\mathscr{C}_1$中态射 $f_1:T_1E_1\rightarrow H_1D_1$使得 $i^{\mathscr{C}}_\ast(f_1)=f_2: i^{\mathscr{C}}_\ast T_1E_1= T_2E_2\rightarrow H_2D_2=i^{\mathscr{C}}_\ast H_1D_1$.所以 $\langle E_1, D_1, f_1\rangle \in$ Obj $(T_1\downarrow H_1)$并且

$ \widetilde{F}_\ast\langle E_1, D_1, f_1\rangle =\langle i^{\mathscr{E}}_\ast(E_1), i^{\mathscr{D}}_\ast(D_1), i^{\mathscr{C}}_\ast(f_1)\rangle =\langle E_2, D_2, f_2\rangle . $

定理证毕.

下面考察一个来自文[5]的例子.

例1  设 $\mathscr{C}_1$是2元域 $\mathbb{Z}_2$上有限维向量空间范畴, $\mathscr{C}_2$是2元域 $\mathbb{Z}_2$上具有对合的有限维向量空间范畴.如果 $\mathscr{C}$是2元域 $\mathbb{Z}_2$上有限维向量空间如下形式对象的范畴:

$ (V_1, H, V_2, P): V_1\rightleftarrows V_2, $

其中 $H: V_1\rightarrow V_2, P: V_2\rightarrow V_1$都是线性映射, 并且满足 $PHP = 0$ $HPH = 0$, 那么 $\mathscr{C}$关于 $\mathscr{C}_1$ $\mathscr{C}_2$的Recollement如下图所示.

具有如下函子:

$ \begin{eqnarray*}&&i^*(V_1, H, V_2, P)={\rm{Coker}} (P), j_!(V, T)=(V_T, 1+T, V, p), \\ &&i_*(V)=(V, 0, 0, 0), j^*(V_1, H, V_2, P)=(V_2, HP-1), \\ &&i^!(V_1, H, V_2, P)={\rm{Ker}} (H), j_*(V, T)=(V^T, h, V, 1+T), \end{eqnarray*} $

其中 $V^T ={\rm{Ker}}(1-T), V_T ={\rm{Coker}}(1-T)$, $h$是典范的嵌入, $p$是典范的商映射.

现在考察 $\mathscr{C}$的满子范畴 $\mathscr{B}$ $\mathscr{A}$. $\mathscr{B}$的对象是由所有满足 $PH = 0$的对象 $(V_1, H, V_2, P)$构成, $\mathscr{A}$的对象是由所有满足 $HP=0$的对象 $(V_1, H, V_2, P)$构成.

类似文[5], 可得如下的Recollements.

于是包含函子 $L: \mathscr{B}\rightarrow\mathscr{C}$ $F: \mathscr{A}\rightarrow\mathscr{C}$分别给出了相应的比较函子.由于 $\mathbb{Z}_2$上有限维向量空间范畴上的嵌入函子都是正合函子, 因此 $L, F$均为正合函子.

存在下面的交换图

根据定理3.3, 可得广义Comma范畴的Recollement.

由于 $\mathscr{C}_1^2\cong (1_{\mathscr{C}_1}\downarrow 1_{\mathscr{C}_1}), \mathscr{C}_2^2\cong (1_{\mathscr{C}_2}\downarrow 1_{\mathscr{C}_2})$, 所以有下面的Recollement.

参考文献
[1] Beilinson A A, Bernstein J, Deligne P. Faisceaux pervers[J]. Astérisque, 1982, 100: 5–171.
[2] Chen Q H, Lin Y N. Recollements of extension algebras[J]. Sci. China Math., 2003, 46(4): 530–537. DOI:10.1007/BF02884025
[3] Chen Q H, Zheng M. Recollements of Abelian categories and special types of comma categories[J]. J. Algebra, 2009, 321: 2474–2485. DOI:10.1016/j.jalgebra.2009.01.025
[4] Faith C. Algebra i rings, modules and categories[M]. New York: Springer-Verlag, 1981.
[5] Franjou V, Pirashvili T. Comparison of Abelian categories recollement[J]. Doc. Math., 2004, 9: 41–56.
[6] Hilton P J, Stammbach U. A course in Homological algebra[M]. New York: Springer-Verlag, 1997.
[7] Lin Y N, Lin Z Q. One-point extension and recollement[J]. Sci. China Math., 2008, 51(3): 376–382. DOI:10.1007/s11425-008-0032-0
[8] Lin Y N, Wang M X. From recollement of triangulated categories to recollement of Abelian categories[J]. Sci. China Math., 2010, 53(4): 1111–1116. DOI:10.1007/s11425-009-0189-1
[9] Lin Y N, Xin L. Comparisons of recollements and tilting modules[J]. Sci. China Math., 2010, 153: 1325–1336.
[10] MacPherson R, Vilonen K. Elementary construction of perverse sheaves[J]. Invent. Math., 1986, 84: 403–436. DOI:10.1007/BF01388812
[11] Miyachi J. Recollement and tilting complexes[J]. Pur. Appl. Alg., 2003, 183: 245–273. DOI:10.1016/S0022-4049(03)00072-0
[12] Parshall B, Scott L. Derived categories, quasi-hereditary algebras and algebraic groups[J]. Carlton Univ. Math. Notes, 1988, 3: 1–104.
[13] Saunders M L. Categories for the working mathematician (second edition) [M]. New York: SpringerVerlag, 1998.