数学杂志  2016, Vol. 36 Issue (4): 683-689   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LIU Hui-fang
ZHU Yao-sheng
THE FEFFERMAN INEQUALITY AND DUAL THEOREM FOR QUASI-MARTINGALES
LIU Hui-fang1, ZHU Yao-sheng2     
1. Department of Basic Courses, Henan Institute of Technology, Xinxiang 453000, China;
2. School of Mathematics and Information Science, Xinxiang University, Xinxiang 453000, China
Abstract: In this paper, the Fefferman inequality and dual theorem for quasi-martingales are studied. By using the correspond results for martingales and the Doob's decomposition, the Fefferman inequality for martingales is extended to the quasi-martingale setting and the dual space of quasi-martingale Hardy space Ĥp(1 < p < ∞) is described.
Key words: quasi-martingale     Hardy space     dual space     norm    
拟鞅的Fefferman不等式和对偶定理
刘慧芳1, 朱耀生2     
1. 河南工学院基础部, 河南 新乡 453000;
2. 新乡学院数学与信息科学学院, 河南 新乡 453000
摘要:本文讨论了拟鞅的Fefferman不等式和Hardy空间的对偶空间.利用鞅的相关结果和Doob分解的方法, 把鞅的Fefferman不等式推广到拟鞅情形, 并描述了拟鞅的Hardy空间$\widehat{\rm{\mathcal{H}}}$p在1<p<∞)时的对偶空间.
关键词拟鞅    Hardy空间    对偶空间    范数    
1 Introduction

The history of martingale theory goes back to the early fifties when Doob pointed out the connection between martingales and analytic function. In the course of its development, inequalities of martingale spaces were a concerned research hot spot. People always study the properties operators via the corresponding martingale inequalities, whereby we obtain the relationship between two operators, further, the inclusions of many martingale spaces are established.

Quasi-martingales is an important generalization of martingales. Today, the theory has achieved a satisfactory development and it can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. In Section 3, we prove the Fefferman inequality for quasi-martingales. Let us briefly describe our main inequality. Let $\widehat{H}_{p}$ be the quasi-martingale Hardy space and $1\leq p\leq 2$, then

$|E(f_n\overline{\varphi_n})|\leq C\|f\|_{\widehat{H}_p}\|\varphi\|_{ _2\widehat{K}_{p'}}, \ \ \varphi\in _2\widehat{K}_{p'}, $

where $ _2\widehat{K}_{p'}$ is a special quasi-martingale space. In Section 4 we describe the dual space of $\widehat{H}_{p}$. Note that the dual space of martingale Hardy space $H_{p}$ is $H_{p'}$. However, the case of quasi-martingale is quite different. Let $1< p< \infty$. We prove the dual space of $\widehat{H}_{p}$ can be given with the norm

$\|\phi\|:=\|r\|_{{{{H}}}_{p'}}+\|s\|_{\widehat{BD}_{p'}}, $

where $\widehat{BD}_{p'}$ is a subspace of $l_\infty(L_{p'})$ and $\phi_n=r_n+s_n(n\geq1)$.

2 Preliminaries

Let $(\Omega, \cal{F}, P)$ be a probability space and let $({\cal{F}}_n, n\geq1)$ a non-decreasing sequence of $\sigma$-algebras. The expectation operator and the conditional expectation operator are denoted by $E$ and ${E_n}(\cdot)$. We briefly write $L_p$ instead of the $L_p(\Omega, \cal{F}, P)$ space while the norm (or quasinorm) of this space is defined by

$\|f\|_p:=(E|f|^p)^{1/p}(0<p\leq\infty).$

A integrable sequence $f=(f_n)_{n\geq1}$ is said to be a martingale if

(ⅰ) it is adapted, i.e., $f_n$ is ${\cal{F}}_n, $ measurable for all $n\geq1$;

(ⅱ) ${E}_n(f_{n+1})=f_n\ \ \mbox{for all}\ \ n\geq1.$

If additionally, $f=(f_n)_{n\geq1}\subset L_p$ for some $1\leq p\leq\infty$, we call $f$ an $L_p$-martingale. We refer to [1] for more information on martingales.

Now we turn to the definition of quasi-martingales. Let $1\leq p\leq\infty$. An adapted sequence $f=(f_n)_{n\geq1}$ in $L_1$ is called a $p$ quasi-martingale with respect to $({\cal{F}}_n, n\geq1)$ if

$V_p(f):=\sum\limits_{n=1}^\infty\|{E}_{n-1}(df_n)\|_p<\infty.$ (2.1)

If in addition $f=(f_n)_{n\geq1}\subset L_p$ for some $1\leq p\leq\infty$, we call $f$ an $L_p$-quasi-martingale. In this case, we set

$\|f{{\|}_{p}}:=\mathop {\sup }\limits_n \|{{f}_{n}}{{\|}_{p}}+{{V}_{p}}(f).$

If $\|f\|_p<\infty$, $f$ is called a bounded $L_p$-quasi-martingale. The quasi-martingale space $\widehat{{L}}_p$ is defined as the space of all bounded $L_p$-quasi-martingales, and is equipped with the norm $\parallel\cdot \parallel_p$.

In the following we describe the quasi-martingale Hardy space which is needed in the main results in this paper. For $1\leq p< \infty$, let $f=(f_n)_{n\geq1}$ be a $p$-quasi-martingale,

$\widehat{H}_p=\{f=(f_n): \|f\|_{\widehat{H}_p}=\|(\sum\limits_{n=1}^\infty|f_n|^2)^{\frac{1}{2}}\|_p+ V_p(f)<\infty\}.$

Note that a basic fact respect to quasi-martingales is that each $p$-quasi-martingale can be decomposed as a sum of a martingale and a predicable quasi-martingale which we call Doob's decomposition. Doob's decomposition plays an important role in this paper.

Lemma 2.1 (Doob's decomposition) (see [6]) Let $1\leq p\leq \infty$. Each bounded $L_p$-quasi-martingale $f=(f_n)_{n\geq1}$ can be uniquely decomposed as a sum of two sequences $g=(g_n)_{n\geq1}$ and $h=(h_n)_{n\geq1}$, where $g=(g_n)_{n\geq1}$ is a bounded $L_p$-martingale and $h=(h_n)_{n\geq1}$ is a predicable $p$-quasi-martingale with $h_1=0$ such that $dh_n=E_{n-1}(dh_n)$.

In the sequel, we use $p'$ to denote the conjugate index of $p$ for $1\leq p\leq\infty$.

3 The Fefferman Inequality for Quasi-Martingales

Our main result in this section is concerned with the Fefferman inequality for quasi-martingales. We first recall the Fefferman inequality for martingales (see Theorem 2.2.2 of [2]). Let $f\in H_p$, $1\leq p\leq 2$, $\varphi\in_2K_{p'}$. Then

$|E(f_n\overline{\varphi_n})|\leq\sqrt{\frac{2}{p}}\|f\|_{H_p}\|\varphi\|_{ _2K_{p'}}, \ \ \forall n.$

In this paper, we extend the inequality to the quasi-martingale setting. First we give the definition of $_2\widehat{K}_{p}$.

Definition 3.1 Let $2\leq p\leq\infty$, $f=(f_n)_{n\geq1}$ be a $L_1$-quasi-martingale, $f$ is said to be in $_2\widehat{K}_{p}$, if there exists $\gamma \in L_{+}^p$ such that

$E(|f_m-f_{n-1}|^2|{\cal{F}}_n)\leq E({\gamma}^2|{\cal{F}}_n), \forall m\geq n\geq 1.$

We define a norm in $_2\widehat{K}_{p}$ by

$\|f\|_{_2\widehat{K}_{p}}=\inf\{\|\gamma\|_p+V_p(f):\gamma \ \mbox{runs through all possible ones}\}.$

Now we are ready to state our main result.

Theorem 3.2 Let $f=(f_n)_{n\geq1}\in \widehat{H}_p$, $1\leq p\leq 2$, $\varphi\in {_2}\widehat{K}_{p'}$. Then

$|E(f_n\overline{\varphi_n})|\leq C\|f\|_{\widehat{H}_p}\|\varphi\|_{ _2\widehat{K}_{p'}}, \ \ \forall n, $

where $C$ is a universal constant.

Proof  Let $f_n=g_n+h_n(n\geq1)$ be the Doob's decomposition of $f$. Then $g=(g_n)_{n\geq1}$ is a martingale and $\sum\limits_{n=1}^\infty\|dh_n\|_p<\infty$. Noting that $(\sum\limits_{n=1}^\infty|dh_n|^2)^{\frac{1}{2}}\leq \sum\limits_{n=1}^\infty|dh_n|$, we have that

$\|(\sum\limits_{n=1}^\infty|dh_n|^2)^{\frac{1}{2}}\|_p\leq \sum\limits_{n=1}^\infty\|dh_n\|_p<\infty.$

Thus $h=(h_n)_{n\geq1}\in {H}_p$ and $\|h\|_{{H}_p}\leq 2\sum\limits_{n=1}^\infty\|dh_n\|_p.$ Therefore, we obtain

$\|g\|_{H_p}\leq \|f\|_{{H}_p}+\|h\|_{{H}_p}\leq C\|f\|_{{H}_p}.$ (3.1)

Let $\varphi_n=r_n+s_n(n\geq1)$ be the Doob's decomposition of $\varphi$. We must have that $s=(s_n)_{n\geq1}\in {_2}\widehat{K}_{p'}$. Indeed, by the inequality $|s_m-s_{n-1}|\leq \sum\limits_{n=1}^\infty|ds_n|, \forall m\geq n$ and the definition of the space $_2\widehat{K}_{p'}$, we have that

$\begin{eqnarray*} \|s\|_{_2\widehat{K}_{p'}} &\leq&\|\sum\limits_{n=1}^\infty|ds_n|\|_{p'}+\sum\limits_{n=1}^\infty\|ds_n\|_{p'}\\ &\leq&2\sum\limits_{n=1}^\infty\|ds_n\|_{p'}<\infty. \end{eqnarray*}$

Thus we have that $s=(s_n)_{n\geq1}\in _2\widehat{K}_{p'}$. Therefore, we get that

$\|r\|_{_2K_{p'}}\leq\|\varphi\|_{_2\widehat{K}_{p'}}+\|s\|_{_2\widehat{K}_{p'}}\leq C\|\varphi\|_{_2\widehat{K}_{p'}}.$ (3.2)

By the Fefferman inequality for martingales and H$\mbox{ö}$lder's inequality, we have

$ \begin {array}{lll} |E(f_n\overline{\varphi_n})| &=&|E(g_n+h_n)(\overline{r_n}+\overline{s_n})|\\ &\leq&|E(g_n\overline{r_n})|+|E(h_n\overline{r_n})|+|E(h_n\overline{s_n})|+|E(g_n\overline{s_n})|\\ &\leq& \sqrt{\frac{2}{p}}\|g\|_{H_p}\|r\|_{ _2K_{p'}}+\|h_n\|_p\|r_n\|_{p'}+\|h_n\|_p\|s_n\|_{p'}+\|g_n\|_p\|s_n\|_{p'}\\ &=& \mbox{I+II+III+IV}. \end{array}$ (3.3)

It follows from (3.1) and (3.2) that

$\mbox{I}\leq C\|f\|_{\widehat{H}_p}\|\varphi\|_{ _2\widehat{K}_{p'}}.$ (3.4)

To treat $\mbox{II}$, we first prove the inequality

$\|r_n\|_{p'}\leq C\|r\|_{{_2K_{p'}}}.$ (3.5)

For $p'>2$, by the equality $H_{p'}={_2K_{p'}}$ (see Theorem 2.2.2 and Theorem 2.2.5 of [2]) and the Burkholder-Gundy inequalities, we get inequality (3.5). For $p'=2$, since $r=(r_n)_{n\geq1}\in {_2}\widehat{K}_{2}$, there exists $\gamma \in L_{+}^2$ such that

$E(|r_m-r_{n-1}|^2|{\cal{F}}_n)\leq E({\gamma}^2|{\cal{F}}_n), \forall m\geq n\geq 1.$

Then

$E(|r_m|^2|{\cal{F}}_0)=E(|r_m-r_{-1}|^2|{\cal{F}}_0)\leq E(|\gamma|^2|{\cal{F}}_0).$

It is easy to see that for any $n\geq1$

$(E(|r_n|^2)^{\frac{1}{2}}\leq (E(|r_{m+1}-r_n|^2)^{\frac{1}{2}}+(E(|r_{m+1}|^2)^{\frac{1}{2}} \leq (E\gamma^2)^{\frac{1}{2}}+(E\gamma^2)^{\frac{1}{2}}\leq2(E\gamma^2)^{\frac{1}{2}}.$

Thus we have that $\|r_n\|_{2}\leq C\|r\|_{{_2K_{2}}}$. Using (3.5) and (3.2), we get that

$\mbox{II}\leq C\sum\limits_{n=1}^\infty\|dh_n\|_p\|r\|_{{_2K_{p'}}}\leq C\|f\|_{\widehat{H}_p}\|\varphi\|_{_2\widehat{K}_{p'}}.$ (3.6)

Now we turn to estimate the two last term separately. By the definitions of the spaces $\widehat{H_p}$ and $_2\widehat{K}_{p'}, $ we have that

$\mbox{III}\leq C\sum\limits_{n=1}^\infty\|dh_n\|_p\sum\limits_{n=1}^\infty\|ds_n\|_{p'}\leq C\|f\|_{\widehat{H}_p}\|\varphi\|_{ _2\widehat{K}_{p'}}.$ (3.7)

By the Burkholder-Gundy inequalities and Davis inequalities, we get that $\|g_n\|_{p}\leq C\|g\|_{H_p}$. Thus we have that

$\mbox{IV}\leq C\|g\|_{H_p}\sum\limits_{n=1}^\infty\|ds_n\|_{p'}\leq C\|f\|_{\widehat{H}_p}\|\varphi\|_{ _2\widehat{K}_{p'}}.$ (3.8)

Putting (3.3), (3.4), (3.6), (3.7) and (3.8) together, we obtain that

$|E(f_n\overline{\varphi_n})|\leq C\|f\|_{\widehat{H}_p}\|\varphi\|_{_2\widehat{K}_{p'}}.$
4 The Dual Space of Quasi-Martingale Hardy Space $\widehat{{{H}}}_{p}$

In this section we describe the dual space of quasi-martingale Hardy space $\widehat{{{H}}}_{p}$. Note that the dual space of martingale Hardy space ${{{H}}}_{p}$ is ${{{H}}}_{p'}$. It is natural to ask whether the preceding result can be generalized to the quasi-martingale setting. The answer is unfortunately negative in general. Indeed, the dual space of $\widehat{{{H}}}_{p}$ which is introduced in Theorem 4.2 is difficult from $\widehat{{{H}}}_{p'}$. Now we start by introducing a special space which is needed in our main result in this section.

Definition 4.1 Denote by $\widehat{BD}_p$ ($1\leq p\leq\infty$) the space of all predicable sequences $f=(f_n)_{n\geq1}$ (with $f_1=0$) for which

$\|f\|_{\widehat{BD}_p}:=\sup_n\|df_n\|_p.$

Now we are ready to state the following result.

Theorem 4.2 The dual space of $\widehat{{{H}}}_{p}$ ($1< p< \infty$) can be given with the norm

$\|\phi\|:=\|r\|_{{{{H}}}_{p'}}+\|s\|_{\widehat{BD}_{p'}}, $

where $\phi_n=r_n+s_n(n\geq1)$.

Proof  Let $f=(f_n)_{n\geq1}\in \widehat{{{H}}}_{p}$ and $f_n=g_n+h_n(n\geq1)$ be the Doob's decomposition of $f$. Define a linear functional on $\widehat{{{H}}}_{p}$ by

$l_\phi(f)= E(\sum\limits_{n=1}^\infty{dr_n}dg_n)+\sum\limits_{n=1}^\infty E({ds_n}dh_n), $

where $r=(r_n)_{n\geq1}\in {{{H}}}_{p'}$, $s=(s_n)_{n\geq1}\in \widehat{BD}_{p'}$ and $\phi_n=r_n+s_n(n\geq1)$. By Hölder's inequality, we have that

$\begin{eqnarray*} l_\phi(f) &\leq&E((\sum\limits_{n=1}^\infty|dr_n|^2)^{\frac{1}{2}}(\sum\limits_{n=1}^\infty|dg_n|^2)^{\frac{1}{2}})+\sum\limits_{n=1}^\infty (\|ds_n\|_{p'}\|dh_n\|_p)\\ &\leq&\|(\sum\limits_{n=1}^\infty|dr_n|^2)^{\frac{1}{2}}\|_{p'} \|(\sum\limits_{n=1}^\infty|dg_n|^2)^{\frac{1}{2}})\|_p+\sup_n\|ds_n\|_{p'}\sum\limits_{n=1}^\infty \|dh_n\|_p\\ &= & \|r\|_{{{{H}}}_{p'}}\|g\|_{{{{H}}}_{p}^s}+\|s\|_{\widehat{BD}_{p'}}V_p(f)\\ &\leq&\|f\|_{\widehat{{\mathcal{H}}}_{p}}(\|r\|_{{{\mathcal{H}}}_{p'}}+\|s\|_{\widehat{BD}_{p'}}). \end{eqnarray*}$

Namely, $l_\phi(f)$ is a bounded linear functional.

Conversely, assume that $l$ is an arbitrary bounded linear functional on $\widehat{{{H}}}_{p}$. It is easy to see that $l$ is also a bounded linear functional on ${{{H}}}_{p}$. Since ${{{H}}_{p}}^{*}={{H}}_{p'}, $ there exists a sequence $r=(r_n)_{n\geq1}\in {{H}}_{p'}$ such that

${l}(r)=E(\sum\limits_{n=1}^\infty dr_ndg_n)\ \ (g=(g_n)_{n\geq1}\in {{{H}}}_{p})$

and

$\|r\|_{{{H}}_{p'}}\leq C\|l\|.$ (4.1)

On the other hand, let $Q_p$ be the subspace of $l_1(L_p)$ of all sequences $db=(db_n)_{n\geq1}$ such that $b=(b_n)_{n\geq1}$ is a predictable quasi-martingale in $\widehat{{{H}}}_{p}$ with $b_1=0$. Then we have that

$\|db\|_{l_1(L_p)}\leq\|b\|_{\widehat{{{H}}}_{p}}\leq2\|db\|_{l_1(L_p)}$

for any $db=(db_n)_{n\geq1}\in Q_p.$ Define a functional on $Q_p$ by

$l_2(db)=l(b), \ \ db=(db_n)_{n\geq1}\in Q_p.$

Then $l_2$ is a continuous linear functional on $Q_p$ and $\|l_2\|\leq 2\|l\|$. By the Hahn-Banach theorem, $l_2$ extends to a functional on $l_1(L_p)$. Since $(l_1(L_p))^{*}=l_\infty(L_{p'}), $ the representation theorem allows us to find a sequence $s'=(s_n')_{n\geq1}\in l_\infty(L_{p'})$ such that

$l_2(s)=\sum\limits_{n=1}^\infty E(s_n'h_n)\ \ (h=(h_n)_{n\geq1}\in l_1(L_p))$ (4.2)

and $\|s'\|_{l_\infty(L_{p'})}=\sup_n\|s_n'\|_{p'}\leq C\|l_2\|.$ Set $s_1=0$ and $s_n=\sum\limits_{k=1}^{n}{{E}}_{k-1}(s_k')(n\geq2)$. For any $db=(db_n)_{n\geq1}\in Q_p$, noting that $db=(db_n)_{n\geq1}$ is predicable, it follows from (4.2) that

$ \begin {array}{lll} l_2(db)&=&\sum\limits_{n=1}^\infty E({{E}}_{n-1}(s_n'db_n))\\ &=&\sum\limits_{n=1}^\infty E(db_n{{E}}_{n-1}(s_n'))\\ &=&\sum\limits_{n=1}^\infty E(ds_ndb_n). \end{array} $

It remains to show that $s=(s_n)_{n\geq1}\in \widehat{BD}_{p'}$. This is true since $s=(s_n)_{n\geq1}$ is predicable with $s_1=0$ and

$\|s\|_{\widehat{BD}_{p'}}=\mathop {\sup }\limits_n \|ds_n\|_{p'}\leq\mathop {\sup }\limits_n \|s_n'\|_{p'}\leq C\|l_2\|\leq C\|l\|.$ (4.3)

Putting (4.1) and (4.3) together, we have that

$\|r\|_{{\mathcal{H}}_{p'}}+\|s\|_{\widehat{BD}_{p'}}\leq C\|l\|.$
References
[1] Weisz F. Martingale Hardy spaces and their applications in Fourier analysis[M]. New York: Spingverlag, 1994.
[2] Long R L. Martingale space and inequalities[M]. Beijing: Peking University Press, 1993.
[3] Fisk D L. Quasi-martingales[J]. Trans. Amer. Math. Soc., 1965, 120: 369–389. DOI:10.1090/S0002-9947-1965-0192542-5
[4] Liu Peide, Hou Youliang. Atomic decompositions of Banach-spaces-valued martingales[J]. Sci. China(A), 1999, 42: 38–47.
[5] Yu Lin. The convergence and its applications of martingale transforms with respect to complexmeasures[J]. J. Math., 2000, 20(1): 93–98.
[6] Li Yufan, Liu Peide. Atomic decompositions for B-valued quasimartingales[J]. J. Wuhan Univ. (Nat.Sci. Ed.), 2006, 52(3): 267–272.