数学杂志  2016, Vol. 36 Issue (3): 641-648   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
李志广
康淑瑰
混合分数布朗运动环境下短期利率服从vasicek模型的欧式期权定价
李志广, 康淑瑰     
山西大同大学数学与计算机科学学院, 山西 大同 037009
摘要:本文研究了混合分数布朗运动环境下欧式期权定价问题.运用混合分数布朗运动的Ito公式, 得到了Black-Scholes偏微分方程.同时, 通过求解Black-Scholes方程, 得到了欧式看涨、看跌期权的定价公式。推广了Black-Scholes模型有关欧式期权定价的结论.
关键词期权定价    vasicek模型    Black-Scholes模型    混合分数布朗运动    
EUROPEAN OPTION PRICING UNDER THE VASICEK MODEL OF THE SHORT RATE IN MIXED FRACTIONAL BROWNIAN MOTION ENVIRONMENT
LI Zhi-guang, KANG Shu-gui     
School of Mathematics and Computer Science, Shanxi Datong University, Datong 037009, China
Abstract: In this paper, the option pricing problem of European option is studied in the mixed fractional Brownian motion environment. By using fractional Itŏ formula, the Black-Scholes partial difierential equation is obtained. And the pricing formulae of the European call and put option are obtained by partial difierential equation theory. The results of Black-Scholes model are generalized.
Key words: option pricing     vasicek model     Black-Scholes model     mixed fractional Brownian motion.    
1 引言

期权定价理论的重要进展开始于Black和Scholes的两篇文献, 在该文中Black和Scholes首次引入一种由几何布朗运动驱动的连续时间模型, 通过自融资策略和风险资产、无风险资产的复制方法, Black和Scholes认为在无套利情形下期权的价格等于投资组合的价格.

近些年来, 用分数布朗运动代替标准布朗运动研究金融模型已经成为了一个重要的发展方向, 分数布朗运动的“尖峰厚尾”特性和长程记忆性此外它仍然是高斯分布能够更好的描述金融资产模型.有关分数布朗运动的随机分析理论见文献[2, 3].有关分数布朗运动在金融经济中应用的文献也已经出现, 具体可见文献[4-6].

遗憾的是, 上述文献在研究期权定价理论都假设无风险资产的利率或者说短期利率在期权的整个存续期内都是常数, 这显然是不符合实际的, Kung和Lee就在这方面做了改进, 他们假定短期利率服从Merton模型, 股票价格模型仍然是由标准的几何布朗运动驱动的模型, 在该模型下Kung和Lee研究了欧式期权, 具体见文献[7].

基于此, 本文也研究短期利率非常数情形下的期权定价理论, 相比文献[7], 我们用更一般的Vasicek利率模型代替Merton模型, 除此之外我们还假定利率模型和股票价格模型均由更符合实际情况的混合分数布朗运动取代通常的白噪声.

本文的结构安排如下:在第二节, 给出了所研究的模型; 第三节给出了短期利率为vasicek模型下零息票的价格公式; 第四节研究欧式看涨、看跌期权; 第五节为本文的结论.

2 金融市场模型

首先假设$\left( {\Omega ,{\cal F},\mu } \right)$为给定的完备概率空间, 设$0 < H < 1$, 具有Hurst参数为$H$的分数布朗运动是一连续高斯过程$\left\{ {{W_H}(t),\;t \ge 0} \right\}$使得${W_H}(0) = 0$, ${E_\mu }\left[{{W_H}(t)} \right] = 0$, 并且

$${E_\mu }\left[{{W_H}(t){W_H}(s)} \right] = \frac{1}{2}\left( {{t^{2H}} + {s^{2H}} - {{\left| {t - s} \right|}^{2H}}} \right),s,t \in {R_ + },$$

$H=1/2$时, ${W_H}(t)$即为标准布朗运动.

笔者将考虑由混合分数布朗运动(mixed fractional Brownian motion)驱动的金融市场, 主要研究随机利率下欧式看涨期权定价问题, 所谓混合分数布朗运动就是两个独立分数布朗运动的线性组合.

$$X(t) = \sigma {W_{{H_1}}}(t) + \varepsilon {W_{{H_2}}}(t),t \ge 0,$$

${W_{{H_1}}}(t),\;{W_{{H_2}}}(t)$分别是参数为${H_1}$${H_2}$的两个独立的分数布朗运动.在叙述模型之前, 先说明用混合分数布朗运动取代分数布朗运动是有意义的: Bender等人[10]已经证明随机源的个数不少于风险资产个数时, 自融资策略中是无套利的, 并说明欧式期权均存在这样一个自融资策略将其进行套期保值[11, 12].而接下来要给出的模型股票价格和零息票都是随机的, 因此如果市场模型仅仅由单个分数布朗运动驱动会有套利产生, 显然市场也就不再是完备的.

首先, 假定金融市场的短期利率服从如下的Vasicek模型

$$d{r_t} = \theta ({\mu _r} - {r_t}){\rm{d}}t + {\sigma _{r1}}\diamondsuit d{W_{{H_1}}}(t) + {\sigma _{r2}}\diamondsuit d{W_{{H_2}}}(t),$$ (2.1)

其中最后的积分$\displaystyle\int { \cdot \,\diamondsuit {\rm{d}}} {W_{{H_i}}}(t)$, $i = 1,2$为分数Wick-Ito积分, 具体见文献[4, 5, 6], ${r_t}$为短期利率, $\theta$是均值恢复率, ${\mu _r}$为长期利率, ${\sigma _{r1}}$${\sigma _{r2}}$决定了Vasicek利率的波动强度, ${W_{{H_1}}}(t)$${W_{{H_2}}}(t)$为两个参数分别为$H_1$$ H_2$的分数布朗运动.其次, 假定金融市场上只有一个股票和一个零息票.令$B(t,{r_t})$表示零息票的价格, 并假定它满足如下的随机微分方程

$\begin{array}{l} dB(t,{r_t}) = {r_t}{B_t}dt + {\sigma _{b1}}B(t,{r_t})\diamondsuit d{W_{{H_1}}} + {\sigma _{b2}}B(t,{r_t})\diamondsuit d{W_{{H_2}}},\\ B(T,{r_T}) = 1,\quad {t_0} \le t \le T. \end{array}$ (2.2)

再次, 股票价格模型满足如下混合分数布朗运动驱动的模型

$$d{S_t} = \mu {S_t}dt + {\sigma _1}{S_t}\diamondsuit d{W_{{H_1}}}(t) + {\sigma _2}{S_t}\diamondsuit d{W_{{H_2}}}(t),$$

其中$\mu $为股票的期望收益率, 它是时间的函数, 常数${\sigma _1}$${\sigma _2}$为股票价格的波动率.最后给出混合分数布朗运动的Ito公式, 它在以后的推导中经常用到.

引理2.1 [12] 假定$X(t) = \sigma {W_{{H_1}}}(t) + \varepsilon {W_{{H_2}}}(t)$, $f(t,x) \in {C^{1,2}}({_ + } \times \to )$, 且满足

$$\displaystyle\int\limits_0^t {\frac{{\partial f}}{{\partial s}}(s,X(t))ds},\displaystyle\int\limits_0^t {\frac{{{\partial ^2}f}}{{\partial {x^2}}}(s,x)d} s,\displaystyle\int\limits_0^t {\frac{{{\partial ^2}f}}{{\partial {x^2}}}(s,x){s^{2{H_1} - 1}}d} s,\displaystyle\int\limits_0^t {\frac{{{\partial ^2}f}}{{\partial {x^2}}}(s,x){s^{2{H_2} - 1}}d} s$$

都属于${L^2}(P)$, 则

$\begin{aligned} f(t,X(t)) =& f(0,0) + \int\limits_0^t {\frac{{\partial f}}{{\partial s}}(s,X(t))ds} + \int\limits_0^t {\frac{{\partial f}}{{\partial x}}(s,X(t))d{Y_s}} \\ &+ {H_1}{\sigma ^2}\int\limits_0^t {\frac{{{\partial ^2}f}}{{\partial {x^2}}}(s,X(t)){s^{2{H_1} - 1}}ds} + {H_2}{\varepsilon ^2}\int\limits_0^t {\frac{{{\partial ^2}f}}{{\partial {x^2}}}(s,X(t)){s^{2{H_2} - 1}}ds}. \end{aligned}$
3 Vasicek模型下零息票的解析表达式

本节主要求解零息票$B(t,{r_t})$的价值, 由公式(2.1) 和分数布朗运动的Ito公式[3-5], 可得

$\begin{aligned}\displaystyle {\rm{d}}B(t,{r_t}) =& \frac{{\partial B(t,{r_t})}}{{\partial t}}dt + \frac{{\partial B(t,{r_t})}}{{\partial {r_t}}}d{r_t} + {H_1}\sigma _{r1}^2{t^{2{H_1} - 1}}\frac{{{\partial ^2}B(t,{r_t})}}{{\partial {r_t}^2}}dt + {H_2}\sigma _{r2}^2{t^{2{H_2} - 1}}\frac{{{\partial ^2}B(t,{r_t})}}{{\partial {r_t}^2}}dt\\ =& \frac{{\partial B(t,{r_t})}}{{\partial t}}dt + \theta ({\mu _r} - {r_t})\frac{{\partial B(t,{r_t})}}{{\partial {r_t}}}dt + {\sigma _{r1}}\frac{{\partial B(t,{r_t})}}{{\partial {r_t}}}\diamondsuit d{W_{{H_1}}}(t)\\ &+ {\sigma _{r2}}\frac{{\partial B(t,{r_t})}}{{\partial {r_t}}}\diamondsuit d{W_{{H_2}}}(t) + {H_1}\sigma _{r1}^2{t^{2{H_1} - 1}}\frac{{{\partial ^2}B(t,{r_t})}}{{\partial {r_t}^2}}dt + {H_2}\sigma _{r2}^2{t^{2{H_2} - 1}}\frac{{{\partial ^2}B(t,{r_t})}}{{\partial {r_t}^2}}dt,\end{aligned}$

对比公式(2.2), 可得

$$\frac{{\partial B(t,{r_t})}}{{\partial t}} + \theta ({\mu _r} - {r_t})\frac{{\partial B(t,{r_t})}}{{\partial {r_t}}} + {H_1}\sigma _{r1}^2{t^{2{H_1} - 1}}\frac{{{\partial ^2}B(t,{r_t})}}{{\partial {r_t}^2}} + {H_2}\sigma _{r2}^2{t^{2{H_2} - 1}}\frac{{{\partial ^2}B(t,{r_t})}}{{\partial {r_t}^2}} = {r_t}B(t,{r_t}),$$

因此零息票在时刻的价格满足如下的抛物型方程

$$\left\{ \begin{aligned} &\frac{{\partial B(t,x)}}{{\partial t}} + \theta ({\mu _r} - x)\frac{{\partial B(t,x)}}{{\partial x}} + {H_1}\sigma _{r1}^2{t^{2{H_1} - 1}}\frac{{{\partial ^2}B(t,x)}}{{\partial {x^2}}} \\ &+ {H_2}\sigma _{r2}^2{t^{2{H_2} - 1}}\frac{{{\partial ^2}B(t,x)}}{{\partial {x^2}}} = xB(t,x),\\ &B(T,x) = 1,\end{aligned} \right.$$ (3.1)

为了保证$B(T,x) = 1$, 假定上述方程满足如下形式的解

$$B(t,x) = \exp \{ {A_1}(t) + x{A_2}(t)\} ,{A_1}(T) = 0,{A_2}(T) = 0,$$

将上式代入公式(3.1), 有

$\begin{equation} \frac{{\partial B(t,{r_t})}}{{\partial t}} = {A'_1}(t)B(t,x) + x{A'_2}(t)B(t,x),\frac{{\partial B(t,x)}}{{\partial x}} = {A_2}(t)B(t,x),\frac{{{\partial ^2}B(t,x)}}{{\partial {x^2}}} = {A_2}{(t)^2}B(t,x).\end{equation}$ (3.2)

对比公式(3.1) 和公式(3.2), 可得

$$\left\{ \begin{array}{l} \theta {A_2}(t) - {{A'}_2}(t) + 1 = 0,\\ {{A'}_1}(t) + \theta {\mu _r}{A_2}(t) + ({H_1}\sigma _{r1}^2{t^{2{H_1} - 1}} + {H_2}\sigma _{r2}^2{t^{2{H_2} - 1}}){A_2}{(t)^2} = 0,\\ {A_1}(T) = 0,{A_2}(T) = 0,\end{array} \right.$$

解上述方程, 有

$\begin{eqnarray*}&& {A_1}(t) = - {\mu _r}(T - t) - {\mu _r}(1 - {e^{\theta (T - t)}}) - \int\limits_t^T {({H_1}\sigma _{r1}^2{s^{2{H_1} - 1}} + {H_2}\sigma _{r2}^2{s^{2{H_2} - 1}}){A_2}{{(s)}^2}ds},\\ && {A_2}(t) = \frac{{1 - \theta \exp \{ - \theta (T - t)\} }}{\theta },\end{eqnarray*}$

这样一来, 有如下的定理成立.

定理3.1 零息票的在$t$时刻的价格为

$$B(t,{r_t}) = \exp \{ {A_1}(t) + {r_t}{A_2}(t)\} ,B(T,{r_T}) = 1.$$ (3.3)

$\theta = 0,{\sigma _{r1}} = 0,{\sigma _{r2}} = 0$时, 可得$d{r_t} = 0$, 因此${r_t} = r$.此时公式(3.3) 简化为

$$B(t,{r_t}) = \exp \{ r(T - t)\}.$$
4 欧式期权的解析表达式

为了方便描述, 定义如下的符号

$\begin{eqnarray*} && {D_1}(t) = {H_1}\sigma _{b1}^2B{(t,{r_t})^2} + {H_2}\sigma _{b2}^2B{(t,{r_t})^2},{D_2}(t) = {H_1}\sigma _1^2{t^{2{H_1} - 1}} + {H_2}\sigma _2^2{t^{2{H_2} - 1}},\\ && {D_3}(t) = {H_1}{\sigma _{b1}}{\sigma _2}{t^{2{H_1} - 1}} + {H_2}{\sigma _{b2}}{\sigma _2}{t^{2{H_2} - 1}},D(t) = {D_1}(t) + {D_2}(t) - 2{D_3}(t). \end{eqnarray*}$

本文主要研究在除息日$T$损益为${({S_T} - B(T,{r_T})K)^ + }$的欧式看涨期权和损益为$(B(T,{r_T})K$ $- {S_T})^ + $的欧式看跌期权, 考虑到$B(T,{r_T}) = 1$, 因此${({S_T} - B(T,{r_T})K)^ + }$${(B(T,{r_T})K - {S_T})^ + }$也满足如下的等式

$\begin{equation}{({S_T} - B(T,{r_T})K)^ + } = {({S_T} - K)^ + },{(B(T,{r_T})K - {S_T})^ + } = {(K - {S_T})^ + },\end{equation}$ (4.1)

其中$K$为交割价格.

$C = C({S_t},B(t,{r_t}),t,K)$$P = P({S_t},B(t,{r_t}),t,K)$分别表示看涨期权和看跌期权的价格, 显然他们都是股票价格${S_t}$、零息票价格$B(t,{r_t})$、以及时间$t$的函数.由混合分数布朗运动的Itǒ公式, 可得

$\begin{eqnarray} dC &=& \frac{{\partial C}}{{\partial t}}dt + \frac{{\partial C}}{{\partial B(t,{r_t})}}dB(t,{r_t}) + {D_1}(t)\frac{{{\partial ^2}C}}{{\partial B{{(t,{r_t})}^2}}}dt + \frac{{\partial C}}{{\partial {S_t}}}d{S_t}\nonumber\\ &&+ {D_2}(t){S_t}^2\frac{{{\partial ^2}C}}{{\partial {S_t}^2}}dt + 2{D_3}(t)\frac{{{\partial ^2}C}}{{\partial {S_t}\partial B(t,{r_t})}}dt\nonumber\\ &=& [\frac{{\partial C}}{{\partial t}} + {D_1}(t)\frac{{{\partial ^2}C}}{{\partial B{{(t,{r_t})}^2}}} + {D_2}(t){S_t}^2\frac{{{\partial ^2}C}}{{\partial {S_t}^2}} + 2{D_3}(t)\frac{{{\partial ^2}C}}{{\partial {S_t}\partial B(t,{r_t})}}]dt\nonumber\\ &&+ \frac{{\partial C}}{{\partial B(t,{r_t})}}dB(t,{r_t}) + \frac{{\partial C}}{{\partial {S_t}}}d{S_t}. \end{eqnarray}$ (4.2)

接下来构造一个包含股票价格、零息票以及看涨期权的投资组合, 令$\theta _t^0$表示零息票的份数, $\theta _t^1$表示股票价格的份数, 同样$\theta _t^3$表示看涨期权的份数, 因为没有套利发生, 如果用$H$表示该投资组合的价值, 则应当满足$H = \theta _t^0B(t,{r_t}) + \theta _t^1{S_t} + \theta _t^2C = 0,$因此有

$\begin{equation}dH = \theta _t^0dB(t,{r_t}) + \theta _t^1d{S_t} + \theta _t^2dC = 0,\end{equation}$ (4.3)

将公式(4.2) 代入公式(4.3) 可得

$\begin{eqnarray} dH &=& \theta _t^2[\frac{{\partial C}}{{\partial t}} + {D_1}(t)\frac{{{\partial ^2}C}}{{\partial B{{(t,{r_t})}^2}}} + {D_2}(t){S_t}^2\frac{{{\partial ^2}C}}{{\partial {S_t}^2}} + 2{D_3}(t)\frac{{{\partial ^2}C}}{{\partial {S_t}\partial B(t,{r_t})}}]dt\nonumber\\ && + [\theta _t^2\frac{{\partial C}}{{\partial {S_t}}} + \theta _t^1]d{S_t} + [\frac{{\partial C}}{{\partial B(t,{r_t})}} + \theta _t^0]dB(t,{r_t}),\end{eqnarray}$ (4.4)

公式(4.4) 意味着$\theta _t^2\frac{{\partial C}}{{\partial {S_t}}} + \theta _t^1 = 0$, $\frac{{\partial C}}{{\partial B(t,{r_t})}} + \theta _t^0 = 0$, 以及

$$\frac{{\partial C}}{{\partial t}} + {D_1}(t)B{(t,{r_t})^2}\frac{{{\partial ^2}C}}{{\partial B{{(t,{r_t})}^2}}} + {D_2}(t){S_t}^2\frac{{{\partial ^2}C}}{{\partial {S_t}^2}} + 2{D_3}(t){S_t}B(t,{r_t})\frac{{{\partial ^2}C}}{{\partial {S_t}\partial B(t,{r_t})}} = 0.$$ (4.5)

因此根据上面的公式可得如下的结论.

定理4.1 损益为${({S_T} - B(T,{r_T})K)^ + }$的看涨期权的价格满足如下方程

$$\left\{ \begin{array}{l} \frac{{\partial C}}{{\partial t}} + {D_1}(t){y^2}\frac{{{\partial ^2}C}}{{\partial {y^2}}} + {D_2}(t){x^2}\frac{{{\partial ^2}C}}{{\partial {x^2}}} + 2{D_3}(t)xy\frac{{{\partial ^2}C}}{{\partial x\partial y}} = 0,\\ C(T,x,y) = {(x - Ky)^ + },\end{array} \right.$$ (4.6)

损益为${( B(T,{r_T})K-{S_T} )^ + }$的看跌期权的价格满足如下方程

$$\left\{ \begin{array}{l} \frac{{\partial P}}{{\partial t}} + {D_1}(t){y^2}\frac{{{\partial ^2}P}}{{\partial {y^2}}} + {D_2}(t){x^2}\frac{{{\partial ^2}P}}{{\partial {x^2}}} + 2{D_3}(t)xy\frac{{{\partial ^2}P}}{{\partial x\partial y}} = 0,\\ P(T,x,y) = {(Ky - x)^ + },\end{array} \right.$$

其中$x$表示股票价格, $y$表示零息票的价格.

 前面公式(4.1) 到公式(4.4) 的推导, 已经得出了欧式看涨期权价值所满足的偏微分方程(4.5), 又因为欧式看涨期权和欧式看跌期权仅仅是到期日的损益不同, 而前面公式(4.1) 到公式(4.4) 的推导又没有用到这些条件, 因此欧式看跌期权价值也满足方程(4.5).接下来只需要找出欧式看涨期权价值和欧式看跌期权价值所满足的倒向初值条件, 因为欧式看涨期权在除息日的损益为${({S_T} - B(T,{r_T})K)^ + }$, 易得$C(T,x,y) = {(x - Ky)^ + }.$同理有$P(T,x,y) = {(Ky - x)^ + }.$

幸运的是上述两个抛物方程是可求解的, 通过变换将他们化为较为简单的热方程, 有如下的结论成立.

定理4.2 欧式看涨、看跌期权的价格分别为

$$C({S_t},B(t,{r_t}),t,K) = {S_t}\Phi ({d_1}) - KB(t,{r_t})\Phi ({d_2}),$$ (4.7)
$$P({S_t},B(t,{r_t}),t,K) = KB(t,{r_t})\Phi ( - {d_2}) - {S_t}\Phi ( - {d_1}),$$ (4.8)

其中

$${d_1} = \frac{{\ln {S_t} - \ln B(t,{r_t}) - \ln K + \int_t^T {D(\tau ){\rm{d}}\tau } }}{{\sqrt {2\int_t^T {D(\tau ){\rm{d}}\tau } } }},{d_2} = \frac{{\ln {S_t} - \ln B(t,{r_t}) - \ln K - \int_t^T {D(\tau ){\rm{d}}\tau } }}{{\sqrt {2\int_t^T {D(\tau ){\rm{d}}\tau } } }}.$$

 令

$$\xi = \frac{x}{y},F(t,\xi ) = \frac{C}{y},$$ (4.9)

可得

$\begin{array}{l} {C_x} = \frac{{\partial F}}{{\partial \xi }},{C_y} = F - \xi \frac{{\partial F}}{{\partial \xi }},{C_{xx}} = \frac{1}{y}\frac{{{\partial ^2}F}}{{\partial {\xi ^2}}},\\ {C_{xy}} = - \frac{\xi }{y}\frac{{{\partial ^2}F}}{{\partial {\xi ^2}}},{C_{yy}} = \frac{{{\xi ^2}}}{{{y^2}}}\frac{{{\partial ^2}F}}{{\partial {\xi ^2}}},\end{array}$ (4.10)

将公式(4.10) 代入公式(4.6), 可得

$$\frac{{\partial F}}{{\partial t}} + D(t){\xi ^2}\frac{{{\partial ^2}F}}{{\partial {\xi ^2}}} = 0,\quad F(T,\xi ) = {(\xi - K)^ + }.$$ (4.11)

$$z = \ln \frac{\xi }{K} - \int_t^T {D(\tau )d\tau } ,s = \int_t^T {D(\tau )d\tau } ,F(t,\xi ) = KU(s,z),$$ (4.12)

$$\frac{{\partial F}}{{\partial t}} = K[- D(t)\frac{{\partial U}}{{\partial s}} + D(t)\frac{{\partial U}}{{\partial z}}],\frac{{\partial F}}{{\partial \xi }} = \frac{K}{\xi }\frac{{\partial U}}{{\partial z}},\frac{{{\partial ^2}F}}{{\partial {\xi ^2}}} = \frac{K}{{{\xi ^2}}}[\frac{{{\partial ^2}U}}{{\partial {z^2}}} - \frac{{\partial U}}{{\partial z}}],)$$ (4.13)

将公式(4.13) 代入到公式(4.11), 则公式(4.11) 可化为

$$\frac{{\partial U}}{{\partial s}} = \frac{{{\partial ^2}U}}{{\partial {z^2}}},\;\;U(0,z) = {({e^z} - 1)^ + },$$ (4.14)

公式(4.14) 为标准的一维热方程, 它有如下形式的强解

$$U(s,z) = \frac{1}{{2\sqrt {\pi s} }}\int\limits_{ - \infty }^\infty {U(0,\tau ){e^{\frac{{{{(\tau - z)}^2}}}{{4s}}}}{\rm{d}}\tau } ,$$ (4.15)

$U(0,z) = {({e^z} - 1)^ + }$代入到公式(4.15), 可得$C(s,z) = {e^{z + s}}\Phi (\frac{{z + 2s}}{{\sqrt {2s} }}) - \Phi (\frac{z}{{\sqrt {2s} }}),$对变换(4.9) 和变换(4.12) 进行逆变换, 可得欧式看涨期权的价格.从公式(4.9) 到公式(4.15) 的分析, 得到了欧式看涨期权的定价公式, 欧式看跌期权的定价公式分析方法大致相同仅仅需要将初值条件做一些变化, 这里不再赘述.

最后, 将模型进行一些简化, 以便说明模型所得结论和他人的成果是吻合的.当短期利率是常数时(即公式(1) 中的$\theta$, ${\sigma _{r1}}$${\sigma _{r2}}$都为零), 则公式(3.3) 所描述的零息票价格为

$$B(t,{r_t}) = \exp \{ r(T - t)\}, $$ (4.16)

此外, 可得

$${\sigma _{r1}} = {\sigma _{r2}} = 0,{D_1}(t) = 0,{D_3}(t) = 0,D(t) = {H_1}\sigma _1^2{t^{2{H_1} - 1}} + {H_2}\sigma _2^2{t^{2{H_2} - 1}}.$$

将上述事实代入公式(4.7) 和公式(4.8), 也可以得到分数B-S模型下看涨、看跌期权定价公式

$\begin{eqnarray*}&& C({S_t},B(t,{r_t}),t,K) = {S_t}\Phi ({\bar d_1}) - K\exp \{ r(T - t)\} \Phi ({\bar d_2}),\\ && P({S_t},B(t,{r_t}),t,K) = K\exp \{ r(T - t)\} \Phi ( - {\bar d_2}) - {S_t}\Phi ( - {\bar d_1}),\\ && {d_1} = \frac{{\ln {S_t} - \ln K + r(T - t) + 0.5\sigma _1^2{t^{2{H_1}}} + 0.5\sigma _2^2{t^{2{H_2}}}}}{{\sqrt {\sigma _1^2{t^{2{H_1}}} + \sigma _2^2{t^{2{H_2}}}} }},{d_2} = {d_1} - \sqrt {\sigma _1^2{t^{2{H_1}}} + \sigma _2^2{t^{2{H_2}}}}. \end{eqnarray*}$

这与文献[3-5]所描述的结论相同, 最后令${H_1} = {H_2} = 0.5$, 也可得经典B-S模型下结论(具体见文献[1]).

5 数值算例

基于以上结论, 以欧式期权为例, 以经典的B-S定价公式和定理4.2所获得的欧式期权定价公式进行比对.CBOT网站上公布了一组长周期欧式看涨期权, 并已经给出了个参数的具体数值, 如下$T = 6$ ,$K = 100$,${\sigma_{11}} = 0.3$, 为了讨论分数布朗运动在期权中的重要性, 令${\sigma_{12}} = 0,$将定理4.2的结论按照CBOT上所述交割日期、无风险收益率、交割价格、波动率的数值进行计算, 来考虑不同${H_1}$对期权实际价值的影响(如表 1).结果发现当取值在0.58到0.59之间时, 推论2所得结论比经典的B-S模型所给的计算公式更能接近期权的实际成交价格.

表 1 欧式看涨期权($r=0.04$)

遗憾的是, Hurst参数${H_1}$, ${H_2}$甚至波动率的具体数值都很难获得, 只能根据以往股票价格以及各种期权的成交记录进行估算.实际上大多数情况下股票的Hurst参数都维持在0.55到0.7之间(见文献[3-7]), 只有少数行业的股票低于0.5 (比如电力行业Hurst参数为0.4), 而经典的B-S模型总是假定Hurst参数为0.5, 因此本文所给出的欧式期权的结论相比B-S更有实际应用价值.

表 2 欧式看涨期权($r=0.02$)
参考文献
[1] Black F, Scholes M. The pricing of options and corporate liabilities[J]. J. Polit. Econ., 1973, 81(3): 637–654. DOI:10.1086/260062
[2] Elliott R J, Hoek J. A general fractional White noise theory and applications to finance[J]. Math. Finan., 2003, 13(2): 301–330. DOI:10.1111/mafi.2003.13.issue-2
[3] Hu Y, Oksendal B. Fractional White noise calculus and applications to finance, infinite dimensional analysis[J]. Quant. Prob. Rel. Top, 2003, 6(1): 1–32. DOI:10.1142/S0219025703001110
[4] 孙玉东, 师义民, 谭伟. 带跳混合分数布朗运动下利差期权定价[J]. 系统科学与数学, 2012, 32(11): 1377–1385.
[5] 孙玉东, 师义民. 修正的Black-Scholes模型下的欧式期权定价[J]. 高校应用数学学报, 2012, 27(1): 23–32.
[6] 李志广. 参数依赖股票价格情形下的回望期权定价[J]. 数学杂志, 2012, 32(6): 1091–1099.
[7] Kung J J, Lee L S. Option pricing under the Merton model of the short rate[J]. Math. Comput. Simul., 2009, 80(1): 378–386.
[8] Biagini F, Hu Y, OKsendal B. Stochastic calculus for fractional brownian motions and applications[M]. Berlin: Springer-Verlag, 2008.
[9] Cheridito P. Regularizing fractional Brownian motion with a Miew towards stock price modeling[M]. Zurich: Zurich Univ., 2002.
[10] Bender C, Sottine T, Valkeila E. Arbitrage with fractional Brownian motion[J]. The. Stoch. Proc., 2006, 12(3): 1–12.
[11] Bender C, Sottine T, Valkeila E. Pricing by hedging and absence of regular arbitrage beyond semimartingales[J]. Finan. Stoch., 2008, 12(4): 441–468. DOI:10.1007/s00780-008-0074-8
[12] Cheridito P. Mixed fractional Brownian motion[J]. Bernoulli, 2001, 7: 913–934. DOI:10.2307/3318626