数学杂志  2016, Vol. 36 Issue (3): 615-626   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
岳瑞雪
高英
多目标优化问题$(\varepsilon, \overline{\varepsilon})$ -拟近似解的非线性标量化
岳瑞雪, 高英     
重庆师范大学数学学院, 重庆 401331
摘要:本文研究了多目标优化问题的$(\varepsilon, \overline{\varepsilon})$ -拟近似解.利用文献[1]给出的多目标优化问题统一的非线性标量化问题, 在没有任何凸性条件下, 研究了多目标优化问题的$(\varepsilon, \overline{\varepsilon})$ -拟近似解的充分和必要条件.最后, 利用文献[2]中给出的的范数, 对多目标优化问题的$(\varepsilon, \overline{\varepsilon})$ -拟近似解进行了非线性标量化刻画.本文第3节推广了文献[1]中的结果.
关键词多目标优化    拟近似解    标量化    
NONLINEAR SCALARIZATIONS FOR $(\varepsilon, \overline{\varepsilon})$ -APPROXIMATE QUASI SOLUTIONS OF MULTIOBJECTIVE OPTIMIZATION PROBLEMS
YUE Rui-xue, GAO Ying     
School of Mathematics, Chongqing Normal University, Chongqing 401331, China
Abstract: In this paper, we consider $(\varepsilon, \overline{\varepsilon})$ -approximate quasi e-cient solutions of multiobjective optimization problems. Based on the uniform nonlinear scalarization problems given in [1], we derive several necessary and sufficient conditions for $(\varepsilon, \overline{\varepsilon})$ -approximate quasi e-cient solutions of multiobjective optimization problems without any convexity conditions. Finally, using the norm given in the [2], we derive a kind of nonlinear scalarization problem for $(\varepsilon, \overline{\varepsilon})$ -approximate quasi e-cient solutions of multiobjective optimization problems. Section 3 in this paper extends the results in [1].
Key words: multiobjective optimization     approximate quasi solutions     scalarization    
1 引言

多目标优化问题解的概念与数值优化问题解的概念有着本质的不同.这是因为序线性空间中的序关系是非完全的偏序关系.因此, 如何界定多目标优化问题解的概念是多目标优化理论的一个首要问题.对此, 人们引进了各种意义下解的概念.主要有:有效解, 弱有效解和各种真有效解.由于这些解在非紧的情况下往往不一定存在, 而近似解在很弱的情况下都可能存在(Ekelend变分原理), 并且通过数值算法得到的大多都是近似解.因此, 研究近似解不仅有理论价值而且有实际意义. 1979年, Kutateladze [3]首次提出了数值优化问题$\varepsilon$-近似解的概念.随后, 1984年, Loridan [4]在文[3]的基础上, 引进了多目标优化问题的$\varepsilon$-有效解的概念, 并研究了$\varepsilon$-有效解的一些性质. 1986年, White [5]研究了多目标优化问题的六种$\varepsilon$-近似有效解.随后一些学者相继提出其它新的近似解的概念, 并对此进行了理论研究, 见文献[6-10].

在求解多目标优化问题的方法中, 将多目标优化问题转化为数值优化问题是一个重要途径.即, 对多目标优化问题进行标量化刻画.近几年来, 关于多目标优化问题近似解的标量化研究取得了很多有意义的结果(见文[8-14, 17]). 2007年, Engau和Wiecek [11]给出了多目标优化问题近似解在凸性条件下的线性标量化和在没有任何凸性条件下的几种非线性标量化. 2008年, Miruna Beldiman [12]等人给出了多目标优化问题$(\varepsilon, \overline{\varepsilon})$ -拟近似(弱, 真)有效解的概念, 并在择一性定理的基础上, 利用范数对多目标优化问题$(\varepsilon, \overline{\varepsilon})$ -拟近似(弱, 真)有效解进行了非线性标量化刻画. 2011年, Ghaznavi和Khorram [13]提供了$\varepsilon$ -(弱, 真)有效解的一些充分和必要条件. 2013年, Ghaznavi, Khorram和Soleimani-Damaneh [14]进一步提出了$\varepsilon$ -(弱, 真)有效解的一些充分和必要条件. 2014年, Rastegar and Khorram [1]在文[11, 13, 14]的基础上, 给出了统一的非线性标量化模型, 考虑了多目标优化问题$\varepsilon$ -拟近似(弱, 真)有效解的一些充分和必要条件.本文在文[1]的基础上, 在没有任何凸性条件下, 研究了多目标优化问题$(\varepsilon, \overline{\varepsilon})$ -拟近似(弱, 真)有效解的一些充分和必要条件.最后, 利用文献[2]中给出的范数, 对多目标优化问题的$(\varepsilon, \overline{\varepsilon})$ -拟近似解进行了非线性标量化刻画.

本文的结构如下:在第2节, 给出了一些基本定义和结论, 在第3节, 利用文献[1]中统一的非线性标量化刻画了多目标优化问题$(\varepsilon, \overline{\varepsilon})$ -拟近似(弱, 真)有效解; 在第4节, 利用已有的范数(见文献[2])给出了一种非线性标量化问题, 并给出了多目标优化问题$(\varepsilon, \overline{\varepsilon})$ -拟近似解的充分条件, 举例说明了其逆命题不成立.

2 预备知识

在本文中, 给出以下符号:对任意的$x, y\in R^{n}, $

$x<y\Leftrightarrow y-x\in \text{int}R_{+}^{n},\\x\le y\Leftrightarrow y-x\in R_{+}^{n}\backslash \{0\},\\x\leqq y\Leftrightarrow y-x\in R_{+}^{n}.$

考虑如下的多目标优化问题

$\begin{array}{*{35}{l}} (\text{MOP}) & \min & f(x)=({{f}_{1}}(x),{{f}_{2}}(x),\cdots ,{{f}_{p}}(x)), \\ {} & \text{s}.\text{t}. & {{g}_{j}}(x)\leqq 0,j=1,2,\cdots ,m, \\ {} & {} & {{h}_{k}}(x)=0,k=1,2,\cdots ,s, \\ \end{array}$

其中, $\emptyset\neq\Omega\subset R^{n}, f_{i}, g_{j}, h_{k}:\Omega\rightarrow R, i=1,2,\cdots,p, j=1,2,\cdots,m, k=1,2,\cdots,s,$ $X$表示$(\rm MOP)$的可行域.

定义2.1[12] 设$(\varepsilon,\overline{\varepsilon})\in R^{p}_{+}\times R^{p}_{+}, \widehat{x}\in X $.

(1) $ \widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解, 若不存在$x\in X,$使得

$f(x)\le f(\hat{x})-\varepsilon ||x-\hat{x}||-\bar{\varepsilon },\forall x\in X.$

(2) $ \widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似弱有效解, 若不存在$x\in X,$使得

$f(x)<f(\hat{x})-\varepsilon ||x-\hat{x}||-\bar{\varepsilon },\forall x\in X.$

(3) $ \widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解, 若存在$M>0$, 使得对于满足$ f_{i}(x)<f_{i}(\widehat{x})-\varepsilon_{i}||x-\widehat{x}||-\overline{\varepsilon}_{i}$的任何$i\in \{1,2,\cdots,p\}$$x\in X ,$存在$j \in \{1,\cdots,p\}\setminus\{i\} , $使得$f_{j}(x)>f_{j}(\widehat{x})-\varepsilon_{j}||x-\widehat{x}||-\overline{\varepsilon}_{j}$

$\frac{{{f}_{i}}(\hat{x})-{{f}_{i}}(x)-{{\varepsilon }_{i}}||x-\hat{x}||-{{{\bar{\varepsilon }}}_{i}}}{{{f}_{j}}(x)-{{f}_{j}}(\hat{x})+{{\varepsilon }_{j}}||x-\hat{x}||+{{{\bar{\varepsilon }}}_{j}}}\leqq M.$

考虑如下单目标优化问题

$\begin{array}{*{35}{l}} (\text{P}) & \min & \varphi (x), \\ {} & \text{s}.\text{t}. & x\in X. \\ \end{array}$

定义2.2[12] 设$(\epsilon,\overline{\epsilon})\in R_{+}\times R_{+}, \widehat{x}\in X,$$\widehat{x}$$(\rm P)$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 若$\forall x\in X$, 有

$\varphi (\hat{x})\leqq \varphi (x)+\epsilon ||x-\hat{x}||+\bar{\epsilon }.$

Rastegar和Khorram在文献[1]中考虑了如下统一的非线性标量化问题,

$\begin{array}{*{35}{l}} (SO{{P}_{\lambda ,\mu ,\gamma }}) & \min \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}s_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}s_{i}^{-}, \\ {} & {{f}_{i}}(x)+s_{i}^{+}-s_{i}^{-}\le {{\alpha }_{i}},i=1,\cdots ,p, \\ {} & x\in X,{{s}^{+}},{{s}^{-}}\ge 0, \\ \end{array}$

其中, $\lambda_{i}, \mu_{i}, \gamma_{i}\geq0,$ $\alpha_{i}$$f_{i}(x)+s_{i}^{+}-s_{i}^{-}$的一个上界, $\forall i=1,\cdots,p$. $X^{'}$表示$(\rm SOP_{\lambda,\mu,\nu})$的可行域.

特别地当$\gamma=0$$s^{+}=0$时, $(\rm SOP_{\lambda,\mu,\nu})$可化为$(\rm SOP_{\lambda,\mu}).$

$\begin{array}{*{35}{l}} (\text{SO}{{\text{P}}_{\lambda ,\mu }}) & \min \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{s}_{i}}, \\ {} & {{f}_{i}}(x)-{{s}_{i}}\le {{\alpha }_{i}},i=1,\cdots ,p, \\ {} & x\in X,s\ge 0, \\ \end{array}$

其中, $\lambda_{i}, \mu_{i}\geq0,$ $\alpha_{i}$$f_{i}(x)-s_{i}$的一个上界, $\forall i=1,\cdots,p$. $X^{'}$表示$(\rm SOP_{\lambda,\mu})$的可行域.

下面给出$(\rm SOP_{\lambda,\mu,\gamma})$$ (\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -拟近似解的定义.

定义2.3 设$(\epsilon,\overline{\epsilon})\in R_{+}\times R_{+}, \widehat{x}\in X $.

(1) $ (\widehat{x},\widehat{s}^+,\widehat{s}^-) $$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 若

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}\\\le \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}s_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}s_{i}^{-}+\epsilon ||x-\hat{x}||+\bar{\epsilon },\forall (x,{{s}^{+}},{{s}^{-}})\in {{X}^{'}}.$

(2) $ (\widehat{x},\widehat{s}) $$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 若

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\hat{s}}_{i}}\le \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{s}_{i}}+\epsilon ||x-\hat{x}||+\bar{\epsilon },\forall (x,s)\in {{X}^{'}}.$

引理2.4[6] 设$\lambda\in R^p,\lambda>0, \sum\limits_{i=1}^{p}\lambda_{i}=1, \epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}.$$\overline{x}$$(\rm P_{\lambda})$$\epsilon $ -近似最优解, 则$\overline{x}$是(MOP)的$\varepsilon$ -近似真有效解.

$\begin{array}{*{35}{l}} ({{\text{P}}_{\lambda }}) & \min & {{\lambda }^{T}}f(x), \\ {} & \text{s}.\text{t}. & x\in X. \\ \end{array}$

由引理2.4容易得出以下结果.

引理2.5  2.设$\lambda\in R^p,\lambda>0, \sum\limits_{i=1}^{p}\lambda_{i}=1, \epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}\leq\sum\limits_{i=1}^{p}\lambda_{i} \overline{\varepsilon}_{i}$.若$\overline{x}$$(\rm P_{\lambda})$$(\epsilon,\overline{\epsilon} )$ -拟近似最优解, 则$\overline{x}$是(MOP)的$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解.

3 多目标优化问题$(\varepsilon,\overline{\varepsilon})$ -拟近似解的非线性标量化

在文献[1]中, Rastegar和Khorram考虑了(MOP)问题的$\varepsilon$ -近似解的一些充分和必要条件.本节, 将在没有任何凸性条件下, 运用非线性标量化问题$(\rm SOP_{\lambda,\mu,\gamma})$$ (\rm SOP_{\lambda,\mu})$来刻画(MOP)的$(\varepsilon,\overline{\varepsilon})$ -拟近似(弱, 真)有效解.

定理3.1 设$(\varepsilon,\overline{\varepsilon})\in R^{p}_{+}\times R^{p}_{+}, \epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}\leq\sum\limits_{i=1}^{p}(\lambda_{i}+\gamma_{i})\overline{\varepsilon_{i}}, (\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解,

(i)若$\lambda+\gamma>0$, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

(ii)若$0\leq\varepsilon<\widehat{s}^{-},\lambda+\mu>0$, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

 因为$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 故

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}\\\le \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}s_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}s_{i}^{-}+\epsilon ||x-\hat{x}||+\bar{\epsilon },\forall (x,{{s}^{+}},{{s}^{-}})\in \text{ }{{X}^{'}},$

${{f}_{i}}(x)+s_{i}^{+}-s_{i}^{-}\le {{\alpha }_{i}},i=1,\cdots ,p,\hat{x}\in X,{{\hat{s}}^{+}},{{\hat{s}}^{-}}\ge 0.$

(i)若$\widehat{x}$不是$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解, 则存在$ x\in X$使得

$f(x)\le f(\hat{x})-\varepsilon ||x-\hat{x}||-\bar{\varepsilon },$

即对任意的$i\in\{1,2,\cdots,p\}$

${{f}_{i}}(x)\le {{f}_{i}}(\hat{x})-{{\varepsilon }_{i}}||x-\hat{x}||-{{\bar{\varepsilon }}_{i}},\text{ }$ (3.1)

存在$j\in\{1,\cdots,p\}$满足

${{f}_{j}}(x)<{{f}_{j}}(\hat{x})-{{\varepsilon }_{j}}||x-\hat{x}||-{{\bar{\varepsilon }}_{j}}.\text{ }$ (3.2)

从而对满足(3.1) 式的任意的$i$

${{f}_{i}}(x)+{{\varepsilon }_{i}}||x-\hat{x}||+{{\bar{\varepsilon }}_{i}}+\hat{s}_{i}^{+}-\hat{s}_{i}^{-}\le {{f}_{i}}(\hat{x})+\hat{s}_{i}^{+}-\hat{s}_{i}^{-}\le {{\alpha }_{i}},$

且对满足(3.2) 式的任意的$j$

${{f}_{j}}(x)+{{\varepsilon }_{j}}||x-\hat{x}||+{{\bar{\varepsilon }}_{j}}+\hat{s}_{j}^{+}-\hat{s}_{j}^{-}+{{v}_{j}}\le {{f}_{j}}(\hat{x})+\hat{s}_{j}^{+}-\hat{s}_{j}^{-}\le {{\alpha }_{j}},~{{v}_{j}}>0.$

$s_{i}^{+}=\widehat{s}_{i}^{+}+\overline{\varepsilon}_{i},s_{j}^{+}=\widehat{s}_{j}^{+}+\overline{\varepsilon}_{j}+v,$$(x,s^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$的可行解.又由假设$\lambda_{j}+\gamma_{j}>0, j=1,2,\cdots,p$可知

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}s_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}\\=\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}(\hat{s}_{i}^{+}+{{{\bar{\varepsilon }}}_{i}})-{{\gamma }_{j}}v+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}\\=\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{{\bar{\varepsilon }}}_{i}}-{{\gamma }_{j}}v\\<\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}({{f}_{i}}(\hat{x})-{{\varepsilon }_{i}}||x-\hat{x}||-{{{\bar{\varepsilon }}}_{i}})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{{\bar{\varepsilon }}}_{i}}\\=\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{\varepsilon }_{i}}||x-\hat{x}||-\sum\limits_{i=1}^{p}{({{\lambda }_{i}}+{{\gamma }_{i}})}{{{\bar{\varepsilon }}}_{i}}\\\le \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\epsilon ||x-\hat{x}||-\bar{\epsilon },$

这与$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解矛盾.因此, $\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

(ii)若$\widehat{x}$不是$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$拟近似有效解, 则(3.1) 和(3.2) 式成立.类似与(i), 令$s_{i}^{-}=\widehat{s}_{i}^{-}-\varepsilon_{i}, s_{j}^{-}=\widehat{s}_{j}^{-}-\varepsilon_{j}-v. $$(x,\widehat{s}^{+},s^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$的可行解, 且有

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}s_{i}^{-}\\ <\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{\varepsilon }_{i}}||x-\hat{x}||-\sum\limits_{i=1}^{p}{({{\lambda }_{i}}+{{\mu }_{i}})}{{{\bar{\varepsilon }}}_{i}}\\ \le \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\epsilon ||x-\hat{x}||-\bar{\epsilon },$

这与$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解矛盾.因此, $\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

定理3.2 设$(\varepsilon,\overline{\varepsilon})\in R^{p}_{+}\times R^{p}_{+}$,

(i)设$\epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}\leq\sum\limits_{i=1}^{p}(\lambda_{i}+\gamma_{i})\overline{\varepsilon}_{i}, $ $\lambda+\gamma\geq0$.若$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似弱有效解.

(ii)设$\epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}\leq\sum\limits_{i=1}^{p}(\lambda_{i}+\mu_{i})\overline{\varepsilon}_{i}, $ $0\leqq\varepsilon<\widehat{s}^{-}, \lambda+\mu\geq0$.若$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -(严格)拟近似最优解, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -(拟近似有效解)拟近似弱有效解.

(iii)设$\epsilon<\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}<\sum\limits_{i=1}^{p}(\lambda_{i}+\gamma_{i})\overline{\varepsilon}_{i}, $ $\lambda+\gamma\geq0$.若$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

(iv)设$\epsilon<\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}<\sum\limits_{i=1}^{p}(\lambda_{i}+\mu_{i})\overline{\varepsilon}_{i}, $ $0\leq\varepsilon<\widehat{s}^{-}, \lambda+\mu\geq0$.若$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

(v)设$\epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}\leq\sum\limits_{i=1}^{p}(\lambda_{i}+\gamma_{i})\overline{\varepsilon}_{i},$ $\lambda+\gamma\geq0$.若$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -严格拟近似最优解, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

 与定理3.1的证明类似.

定理3.3 设$(\varepsilon,\overline{\varepsilon})\in R^{p}_{+}\times R^{p}_{+}, 0\leq\epsilon\leq\sum\limits_{i=1}^{p}(\lambda_{i}+\gamma_{i})\varepsilon_{i}, 0\leq\overline{\epsilon}\leq\sum\limits_{i=1}^{p}(\lambda_{i}+\gamma_{i})\overline{\varepsilon_{i}}, \gamma>0, \sum\limits_{i=1}^{p}\lambda_{i}=1.$$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, $f_{i}(\widehat{x})+\widehat{s}_{i}^{+}-\widehat{s}_{i}^{-}<\alpha_{i}, 1\leq i\leq p,$$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解.

 由定理3.1, $\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

下面证明$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解.若$\widehat{x}$不是$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解, 则存在满足$\lim\limits_{\beta\to\infty}M_{\beta}=\infty$的正数列$\{M_{\beta}\}$, 使得对任意的$M_{\beta}, $存在满足$f_{i}(x_{\beta})<f_{i}(\widehat{x})-\varepsilon_{i}||x_{\beta}-\widehat{x}||-\overline{\varepsilon}_{i}$$ x_{\beta}\in X$$ i\in\{1,2,\cdots,p\}$, 使得对任意满足$f_{j}(\widehat{x})-\varepsilon_{j}||x_{\beta}-\widehat{x}||-\overline{\varepsilon}_{j}<f_{j}(x_{\beta})$$j\in\{1,\cdots,p\}\setminus\{i\}$, 总有

$\begin{eqnarray} \frac{f_{i}(\widehat{x})-f_{i}(x_{\beta})-\varepsilon_{i}||x_{\beta}-\widehat{x}||-\overline{\varepsilon}_{i}}{f_{j}(x_{\beta})-f_{j}(\widehat{x})+\varepsilon_{j}||x_{\beta}-\widehat{x}||+\overline{\varepsilon}_{j}}>M_{\beta}.\nonumber \end{eqnarray}$

$Q=\{j:f_{j}(x_{\beta})>f_{j}(\widehat{x})-\varepsilon_{j}||x_{\beta}-\widehat{x}||-\overline{\varepsilon}_{j}\}\neq\varnothing$.任取$j\in\{1,2,\cdots,p\}$, 下面分两种情况讨论:

情形1 若$j\notin Q $, 则

${{f}_{j}}({{x}_{\beta }})\le {{f}_{j}}(\hat{x})-{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{j}}<{{\alpha }_{j}}-\hat{s}_{j}^{+}+\hat{s}_{j}^{-}-{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{j}},$

从而

${{f}_{j}}({{x}_{\beta }})+\hat{s}_{j}^{+}-\hat{s}_{j}^{-}+{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||+{{\bar{\varepsilon }}_{j}}<{{\alpha }_{j}}.$

因此存在$ v_{\beta j}>0$使得

${{f}_{j}}({{x}_{\beta }})+\hat{s}_{j}^{+}-\hat{s}_{j}^{-}+{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||+{{\bar{\varepsilon }}_{j}}+{{v}_{\beta j}}\le {{\alpha }_{j}}.$

情形2 若$ j\in Q,$$f_{j}(x_{\beta})>f_{j}(\widehat{x})-\varepsilon_{j}||x_{\beta}-\widehat{x}||-\overline{\varepsilon}_{j}.$因为$f(X)$有界, $\lim\limits_{\beta\to\infty}M_{\beta}=\infty,$$f_{j}(x_{\beta})-f_{j}(\widehat{x})+\varepsilon_{j}||x_{\beta}-\widehat{x}||+\overline{\varepsilon}_{j}\to 0,(\beta\to \infty),$因此有

$\underset{\beta \to \infty }{\mathop{\lim }}\,{{f}_{j}}({{x}_{\beta }})={{f}_{j}}(\hat{x})-{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{j}}\text{ }{{\alpha }_{j}}-\hat{s}_{j}^{+}+\hat{s}_{j}^{-}-{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{j}},$

从而存在$\beta_{0}>0$使得$f_{j}(x_{\beta})+\widehat{s}_{j}^{+}-\widehat{s}_{j}^{-}+\varepsilon_{j}||x_{\beta}-\widehat{x}||+\overline{\varepsilon}_{j}<\alpha_{j}, \forall\beta\geq\beta_{0}.\nonumber $所以对任意的$\beta\geq\beta_{0},$存在$ v_{\beta j}$使得

${{f}_{j}}({{x}_{\beta }})+\hat{s}_{j}^{+}-\hat{s}_{j}^{-}+{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||+{{\bar{\varepsilon }}_{j}}+{{v}_{\beta j}}\le {{\alpha }_{j}}.$

$s_{\beta j}^{+}=\widehat{s}_{j}^{+}+\varepsilon_{j}||x_{\beta}-\widehat{x}||+\overline{\varepsilon}_{j}+v_{\beta j}, j=1,2,\cdots,p, \beta\geq\beta_{0}, $则对任意的$\beta\geq\beta_{0},$ $(x_{\beta},s_{\beta}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$的可行解.

另一方面, 当$j\in Q,\beta\geq\beta_{0}$时, 有$\lim\limits_{\beta\to\infty}f_{j}(x_{\beta})=f_{j}(\widehat{x})-\varepsilon_{j}||x_{\beta}-\widehat{x}||-\overline{\varepsilon}_{j},$从而

$\underset{\beta \to \infty }{\mathop{\lim }}\,(-{{f}_{j}}({{x}_{\beta }})+{{f}_{j}}(\hat{x})-{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{j}}+{{\gamma }_{1}}{{v}_{\beta 1}})={{\gamma }_{1}}{{v}_{\beta 1}}>0.$

因此存在$\beta_{0}^{'}>\beta_{0},$对任意的$\beta>\beta_{0}^{'},$

${{f}_{j}}({{x}_{\beta }})<{{f}_{j}}(\hat{x})-{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{j}}+{{\gamma }_{1}}{{v}_{\beta 1}}.\text{ }$ (3.3)

$j\notin Q$时,

${{f}_{j}}({{x}_{\beta }})\le {{f}_{j}}(\hat{x})-{{\varepsilon }_{j}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{j}}.\text{ }$ (3.4)

$\beta^{*}>\beta_{0}^{'},$$(\overline{x},\overline{s}^{+},\widehat{s}^{-})=(x_{\beta^{*}},s_{\beta^{*}j}^{+},\widehat{s}^{-}).$由(3.3), (3.4) 式和条件$\sum\limits_{i\in Q}\lambda_{i}\leq1$可知

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\bar{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\bar{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}\\=\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\bar{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}(\hat{s}_{i}^{+}+{{\varepsilon }_{i}}||{{x}_{\beta }}-\hat{x}||+{{\bar{\varepsilon }}_{i}})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{\nu }_{{{\beta }^{*}}i}}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}\\=\sum\limits_{i\notin Q}{{{\lambda }_{i}}}{{f}_{i}}(\bar{x})+\sum\limits_{i\in Q}{{{\lambda }_{i}}}{{f}_{i}}(\bar{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{\varepsilon }_{i}}||{{x}_{\beta }}-\hat{x}||\\-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{{\bar{\varepsilon }}}_{i}}-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{\nu }_{{{\beta }^{*}}i}}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}\\\le \sum\limits_{i\notin Q}{{{\lambda }_{i}}}({{f}_{i}}(\hat{x})-{{\varepsilon }_{i}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{i}})+\sum\limits_{i\in Q}{{{\lambda }_{i}}}({{f}_{i}}(\hat{x})-{{\varepsilon }_{i}}||{{x}_{\beta }}-\hat{x}||-{{\bar{\varepsilon }}_{i}}+{{\gamma }_{1}}{{v}_{{{\beta }^{*}}1}})\\-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{\varepsilon }_{i}}||{{x}_{\beta }}-\hat{x}||-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{\bar{\varepsilon }}_{i}}-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{\nu }_{{{\beta }^{*}}i}}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}\\=\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\sum\limits_{i=1}^{p}{({{\lambda }_{i}}+{{\gamma }_{i}})}{{\varepsilon }_{i}}||{{x}_{\beta }}-\hat{x}||\\-\sum\limits_{i=1}^{p}{({{\lambda }_{i}}+{{\gamma }_{i}})}{{\bar{\varepsilon }}_{i}}+{{\gamma }_{1}}{{v}_{{{\beta }^{*}}1}}(\sum\limits_{i\in Q}{{{\lambda }_{i}}})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}{{\nu }_{{{\beta }^{*}}i}}\\<\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\sum\limits_{i=1}^{p}{({{\lambda }_{i}}+{{\gamma }_{i}})}{{\varepsilon }_{i}}||{{x}_{\beta }}-\hat{x}||-\sum\limits_{i=1}^{p}{({{\lambda }_{i}}+{{\gamma }_{i}})}{{\bar{\varepsilon }}_{i}}\\\le \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\gamma }_{i}}}\hat{s}_{i}^{+}+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}\hat{s}_{i}^{-}-\epsilon ||{{x}_{\beta }}-\hat{x}||-\bar{\epsilon }.$

这与$(\widehat{x},\widehat{s}^{+},\widehat{s}^{-})$$(\rm SOP_{\lambda,\mu,\gamma})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解矛盾.所以$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解.

定理3.4 设$(\varepsilon,\overline{\varepsilon})\in R^{p}_{+}\times R^{p}_{+}, \epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}\leq\sum\limits_{i=1}^{p}\lambda_{i}\overline{\varepsilon}_{i}.$$(\widehat{x},\widehat{s})$$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似弱有效解.

 若$\widehat{x}$不是$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似弱有效解, 则存在$ x\in X,$使得

$f(x)<f(\hat{x})-\varepsilon ||x-\hat{x}||-\bar{\varepsilon }.\text{ }$ (3.5)

从而$f_{i}(x)-\widehat{s}_{i}<f_{i}(\widehat{x})-\widehat{s}_{i}\leq\alpha_{i}.$所以$(x,\widehat{s})$$(\rm SOP_{\lambda,\mu})$的可行解.又由(3.5) 式可知

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\hat{s}}_{i}}+\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{\varepsilon }_{i}}||x-\hat{x}||+\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{\bar{\varepsilon }}_{i}}<\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\hat{s}}_{i}},$

从而

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\hat{s}}_{i}}+\epsilon ||x-\hat{x}||+\bar{\epsilon }<\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\hat{s}}_{i}}.$

这与$(\widehat{x},\widehat{s})$$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解矛盾.所以$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似弱有效解.

定理3.5 设$(\varepsilon,\overline{\varepsilon})\in R^{p}_{+}\times R^{p}_{+},$

(i)若$(\widehat{x},\widehat{s})$$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -严格拟近似最优解, $\epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}\leq\sum\limits_{i=1}^{p}\lambda_{i}\overline{\varepsilon}_{i}.$$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

(ii)若$(\widehat{x},\widehat{s})$$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, $\epsilon<\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}<\sum\limits_{i=1}^{p}\lambda_{i}\overline{\varepsilon}_{i}.$$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

 与定理3.4的证明类似.

定理3.6 设$(\varepsilon,\overline{\varepsilon})\in R^{p}_{+}\times R^{p}_{+}, \epsilon\leq\sum\limits_{i=1}^{p}\lambda_{i}\varepsilon_{i}, \overline{\epsilon}\leq\sum\limits_{i=1}^{p}\lambda_{i}\overline{\varepsilon}_{i}.$$(\widehat{x},\widehat{s})$$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$-拟近似最优解, 其中$\lambda+\mu>0, \widehat{s} >0, $$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解.

 先证$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.不失一般性, 不妨设$\widehat{s}_{i}=\max\{0,f_{i}(\widehat{x})-\alpha_{i}\}, i=1,\cdots,p.$因为$\widehat{s}>0,$所以$\widehat{s}_{i}=f_{i}(\widehat{x})-\alpha_{i}>0,i=1,2,\cdots,p.$$\widehat{x}$不是$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解, 与定理3.1 (i)的证明类似, 对满足(1) 式的任意的$i$和满足(2) 式的任意的$j$, 令$s_{i} =\widehat{s}_{i}, s_{j}=\widehat{s}_{j}-\nu,$$s\leq\widehat{s}$, $s_{j}<\widehat{s}_{j} $$(x,s)$$(\rm SOP_{\lambda,\mu})$的可行解.因为$\lambda_{j}+\mu_{j}>0,$从而有

${{\lambda }_{j}}{{f}_{j}}(x)+{{\lambda }_{j}}{{\varepsilon }_{j}}||x-\hat{x}||+{{\lambda }_{j}}\bar{\varepsilon }+{{\mu }_{j}}{{s}_{j}}<{{\lambda }_{j}}{{f}_{j}}(\hat{x})+{{\mu }_{j}}{{\hat{s}}_{j}},$

${{\lambda }_{i}}{{f}_{i}}(x)+{{\lambda }_{i}}{{\varepsilon }_{i}}||x-\hat{x}||+{{\lambda }_{i}}\bar{\varepsilon }+{{\mu }_{i}}{{s}_{i}}\le {{\lambda }_{i}}{{f}_{i}}(\hat{x})+{{\mu }_{i}}{{\hat{s}}_{i}},\forall i\ne j,$

这表明

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{s}_{i}}+\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{\varepsilon }_{i}}||x-\hat{x}||+\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}\bar{\varepsilon }<\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\hat{s}}_{i}},$

因此

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{s}_{i}}+\epsilon ||x-\hat{x}||+\bar{\epsilon }<\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\hat{s}}_{i}}.$

这与$\widehat{x}$不是$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解矛盾.所以$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

下面证明$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解.事实上, 由于$(\widehat{x},\widehat{s})$$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 从而$\widehat{x}$是下面问题的$(\epsilon,\overline{\epsilon})$ -拟近似最优解.

$\min \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}({{f}_{i}}(x)-{{\alpha }_{i}})=\sum\limits_{i=1}^{p}{({{\lambda }_{i}}+{{\mu }_{i}}){{f}_{i}}(x)}-\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\alpha }_{i}},\\{{f}_{i}}(x)>{{\alpha }_{i}},\forall i\in \{1,\cdots ,p\},\\x\in X.$

因为$\lambda+\mu>0,$由引理2.6可知$\widehat{x}$是(MOP)在$ f_{i}(x)>\alpha_{i}, i=1,\cdots,p $条件下的$(\varepsilon,\overline{\varepsilon})$ -真有效解.又由文献[2]中的引理3.3可知, $\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解.

定理3.7 若$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似真有效解, $\lambda\geq0$, $\sum\limits_{i=1}^{p}\lambda_{i}=1, $则存在$\alpha, \widehat{s}, \widehat{\mu},$使得$(\widehat{x},\widehat{s})$$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 对任意的$\mu\geqq\widehat{\mu},$其中$\epsilon=\sum\limits_{i=1}^{p}(\lambda_{i}+\mu_{i})\varepsilon_{i}, \overline{\epsilon}=\sum\limits_{i=1}^{p}\lambda_{i}\overline{\varepsilon}_{i}.$

 设$\alpha_{i}=f_{i}(\widehat{x})-\overline{\varepsilon}_{i}, \widehat{s}_{i}=\varepsilon_{i}, i=1,2,\cdots,p.$任取$x\in X,$$s_{i}=\max\{0,f_{i}(x)+\varepsilon_{i}||x-\widehat{x}||-\alpha_{i}\} =\max\{0,f_{i}(x)+\varepsilon_{i}||x-\widehat{x}||-f_{i}(\widehat{x})+\overline{\varepsilon}_{i}\}, \widehat{\mu}_{i}=M, i=1,\cdots,p.$$k\in\{1,\cdots,p\},$$f_{k}(x)\geq f_{k}(\widehat{x})-\varepsilon_{k}||x-\widehat{x}||-\overline{\varepsilon}_{k},$

${{f}_{k}}(x)+\sum\limits_{i=1}^{p}{{{{\hat{\mu }}}_{i}}}{{s}_{i}}\ge {{f}_{k}}(\hat{x})-{{\varepsilon }_{k}}||x-\hat{x}||-{{\bar{\varepsilon }}_{k}}.\text{ }$ (3.6)

$f_{k}(x)< f_{k}(\widehat{x})-\varepsilon_{k}||x-\widehat{x}||-\overline{\varepsilon}_{k},$$I^{*}=\{i:f_{i}(x)>f_{i}(\widehat{x})-\varepsilon_{i}||x-\widehat{x}||-\overline{\varepsilon}_{i}\},$$I^{*}\neq\varnothing,$

${{f}_{k}}(x)+\sum\limits_{i=1}^{p}{{{{\hat{\mu }}}_{i}}}{{s}_{i}}={{f}_{k}}(x)+\sum\limits_{i=1}^{p}{{{{\hat{\mu }}}_{i}}}\max \{0,{{f}_{i}}(x)+{{\varepsilon }_{i}}||x-\hat{x}||-{{f}_{i}}(\hat{x})+{{\bar{\varepsilon }}_{i}}\}\\={{f}_{k}}(x)+\sum\limits_{i\in {{I}^{*}}}{{{{\hat{\mu }}}_{i}}}({{f}_{i}}(x)+{{\varepsilon }_{i}}||x-\hat{x}||-{{f}_{i}}(\hat{x})+{{\bar{\varepsilon }}_{i}}),$

因为$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -的真有效解且$f_{k}(x)< f_{k}(\widehat{x})-\varepsilon_{k}||x-\widehat{x}||-\overline{\varepsilon}_{k},$故存在$ k^{*}\in I^{*},$使得

$\frac{{{f_k}(\hat x) - {f_k}(x) - {\varepsilon _k}||x - \hat x|| - {{\bar \varepsilon }_k}}}{{{f_{{k^*}}}(x) - {f_{{k^*}}}(\hat x) + {\varepsilon _{{k^*}}}||x - \hat x|| + {{\bar \varepsilon }_{{k^*}}}}} < {\rm{ }}M.$

从而有

${{f}_{k}}(x)+\sum\limits_{i\in {{I}^{*}}}{{{{\hat{\mu }}}_{i}}}({{f}_{i}}(x)+{{\varepsilon }_{i}}||x-\hat{x}||-{{f}_{i}}(\hat{x})+{{\bar{\varepsilon }}_{i}})\\ \ge {{f}_{k}}(x)+{{\hat{\mu }}_{{{k}^{*}}}}({{f}_{{{k}^{*}}}}(x)-{{f}_{{{k}^{*}}}}(\hat{x})+{{\varepsilon }_{{{k}^{*}}}}||x-\hat{x}||+{{\bar{\varepsilon }}_{{{k}^{*}}}})\\ >{{f}_{k}}(x)+\frac{{{f}_{k}}(\hat{x})-{{f}_{k}}(x)-{{\varepsilon }_{k}}||x-\hat{x}||-{{{\bar{\varepsilon }}}_{k}}}{{{f}_{{{k}^{*}}}}(x)-{{f}_{{{k}^{*}}}}(\hat{x})+{{\varepsilon }_{{{k}^{*}}}}||x-\hat{x}||+{{{\bar{\varepsilon }}}_{{{k}^{*}}}}}({{f}_{{{k}^{*}}}}(x)-{{f}_{{{k}^{*}}}}(\hat{x})+{{\varepsilon }_{{{k}^{*}}}}||x-\hat{x}||+{{\bar{\varepsilon }}_{{{k}^{*}}}})\\ ={{f}_{k}}(\hat{x})-{{\varepsilon }_{k}}||x-\hat{x}||-{{\bar{\varepsilon }}_{k}}.$

再由(3.6) 式可知

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}(\sum\limits_{i=1}^{p}{{{{\hat{\mu }}}_{i}}}{{s}_{i}})\ge \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})-\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{\varepsilon }_{i}}||x-\hat{x}||-\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{\bar{\varepsilon }}_{i}}.$

又因为$\sum\limits_{i=1}^{p}\lambda_{i}=1,$ $\epsilon=\sum\limits_{i=1}^{p}(\lambda_{i}+\mu_{i})\varepsilon_{i}, \overline{\epsilon}=\sum\limits_{i=1}^{p}\lambda_{i}\overline{\varepsilon}_{i},$从而有

$\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(x)+\sum\limits_{i=1}^{p}{{{{\hat{\mu }}}_{i}}}{{s}_{i}}\\\ge \sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\varepsilon }_{i}}-[\sum\limits_{i=1}^{p}{({{\lambda }_{i}}+{{\mu }_{i}})}{{\varepsilon }_{i}}||x-\hat{x}||]-\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{{\bar{\varepsilon }}}_{i}}\\=\sum\limits_{i=1}^{p}{{{\lambda }_{i}}}{{f}_{i}}(\hat{x})+\sum\limits_{i=1}^{p}{{{\mu }_{i}}}{{\varepsilon }_{i}}-\epsilon ||x-\hat{x}||-\bar{\epsilon }.$

所以$(\widehat{x},\widehat{s})$$(\rm SOP_{\lambda,\mu})$$(\epsilon,\overline{\epsilon})$ -拟近似最优解.

注3.8 当$\overline{\varepsilon}=0,$时, 定理3.1--3.7分别退化为文献[1]中的定理6.1, 定理6.2, 定理6.3, 定理6.7, 定理6.9, 定理6.11和定理6.13.

4 多目标优化问题$(\varepsilon,\overline{\varepsilon})$ -拟近似解的范数标量化

$y\in R^{n},$文献[2]中考虑了如下范数, $ ||y||_{\alpha}=||y||_{\infty}+(\frac{1}{\alpha})(\sum\limits_{i=1}^{p}|y_{i}|),~\alpha\in [1,\infty),$其中$||y||_{\infty}=\max\limits_{i=1,\cdots,n}|y_{i}|.$

利用范数$||\cdot||_{\alpha}$给出如下非线性标量化问题:

$(\text{SOP})\underset{x\in X}{\mathop{\min }}\,||f(x)-r|{{|}_{\alpha }}=\underset{i=1,\cdots ,p}{\mathop{\max }}\,\{{{f}_{i}}(x)-{{r}_{i}}\}+\frac{1}{\alpha }(\sum\limits_{i=1}^{p}{({{f}_{i}}(}x)-{{r}_{i}})),$

其中$r=(r_{1},r_{2},\cdots,r_{p}), r_{i}\leq\inf\limits_{x\in X}f_{i}(x), i=1,2,\cdots,p.$$r$为问题$(\rm MOP)$的理想点.

定理4.1 设$(\varepsilon,\overline{\varepsilon})\in R^{p}_{+}\times R^{p}_{+}, \epsilon\leq\min\limits_{i=1,\cdots,p}\{\varepsilon_{i}\}+\frac{1}{\alpha}\sum\limits_{i=1}^{p}\varepsilon_{i}, \overline{\epsilon}\leq\min\limits_{i=1,\cdots,p}\{\overline{\varepsilon}_{i}\}+\frac{1}{\alpha}\sum\limits_{i=1}^{p}\overline{\varepsilon}_{i}$,

(i)若$\widehat{x}$$(\rm SOP)$$(\epsilon,\overline{\epsilon})$ -严格拟近似最优解, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

(ii)若$\widehat{x}$$(\rm SOP) $$(\epsilon,\overline{\epsilon})$ -拟近似最优解, 则$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似弱有效解.

 (i)设$\widehat{x}$$(\rm SOP)$$(\epsilon,\overline{\epsilon})$ -严格拟近似最优解, 故对任意的$x\in X,x\neq\widehat{x}$, 有

$\mathop {\max }\limits_{i = 1, \cdots ,p} {\mkern 1mu} \{ {f_i}(\hat x) - {r_i}\} + \frac{1}{\alpha }(\sum\limits_{i = 1}^p {({f_i}(} \hat x) - {r_i})){\rm{ }} < \mathop {\max }\limits_{i = 1, \cdots ,p} {\mkern 1mu} \{ {f_i}(x) - {r_i}\} + \frac{1}{\alpha }(\sum\limits_{i = 1}^p {({f_i}(} x) - {r_i})) + ||x - \hat x|| + \bar{\epsilon }.$

$\widehat{x}$不是$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解, 则存在$ x\in X,$使得$f(\widehat{x})\geq f(x)+\varepsilon||x-\widehat{x}||+\overline{\varepsilon}.$从而有

$\begin{array}{l} \mathop {\max }\limits_{i = 1, \cdots ,p} {\mkern 1mu} \{ {f_i}(\hat x) - {r_i}\} + \frac{1}{\alpha }(\sum\limits_{i = 1}^p {({f_i}(} \hat x) - {r_i}))\\ > \mathop {\max }\limits_{i = 1, \cdots ,p} {\mkern 1mu} \{ {f_i}(x) + {\varepsilon _i}||x - \hat x|| + {{\bar \varepsilon }_i} - {r_i}\} + \frac{1}{\alpha }(\sum\limits_{i = 1}^p {({f_i}(} x) + {\varepsilon _i}||x - \hat x|| + {{\bar \varepsilon }_i} - {r_i})\\ \ge \mathop {\max }\limits_{i = 1, \cdots ,p} {\mkern 1mu} \{ {f_i}(x) - {r_i}\} + \mathop {\min }\limits_{i = 1, \cdots ,p} {\mkern 1mu} \{ {\varepsilon _i}||x - \hat x||\} + \mathop {\min }\limits_{i = 1, \cdots ,p} {\mkern 1mu} \{ {{\bar \varepsilon }_i}\} + \frac{1}{\alpha }(\sum\limits_{i = 1}^p {({f_i}(} x) - {r_i})\\ + \frac{1}{\alpha }\sum\limits_{i = 1}^p {{\varepsilon _i}} ||x - \hat x|| + \frac{1}{\alpha }\sum\limits_{i = 1}^p {{{\bar \varepsilon }_i}} \\ \ge \mathop {\max }\limits_{i = 1, \cdots ,p} {\mkern 1mu} \{ {f_i}(x) - {r_i}\} + \frac{1}{\alpha }(\sum\limits_{i = 1}^p {({f_i}(} x) - {r_i})) + ||x - \hat x|| + \bar{\epsilon }. \end{array}$

这与$\widehat{x}$$(\rm SOP)$$(\epsilon,\overline{\epsilon})$ -严格拟近似最优解矛盾.所以$\widehat{x}$$(\rm MOP)$$(\varepsilon,\overline{\varepsilon})$ -拟近似有效解.

(ii)的证明与(i)的证明类似.

推论4.2 设$\varepsilon\in R^{p}_{+}, \epsilon\leq\min\limits_{i=1,\cdots,p}\{\varepsilon_{i}\}+\frac{1}{\alpha}\sum\limits_{i=1}^{p}\varepsilon_{i},$

(i)若$\widehat{x}$$(\rm SOP)$$\epsilon$ -严格近似最优解, 则$\widehat{x}$$(\rm MOP)$$\varepsilon$ -近似有效解.

(ii)若$\widehat{x}$$(\rm SOP)$$\epsilon$ -近似最优解, 则$\widehat{x}$$(\rm MOP)$$\varepsilon$ -近似弱有效解.

注4.3 定理4.1的逆命题不一定成立.参见下面的例子.

例4.4 在问题(MOP)中, 设$X=\{(x_{1},x_{2}):x_{1}+x_{2}\geqq0, 0\leqq x_{1}\leqq1\}\cup\{(x_{1},x_{2}):x_{1}^{2}+(x_{2}-1)^{2}\leqq1\}\subset R^{2}, f(x)=(f_{1}(x),f_{2}(x)), f_{1}(x)=x_{1}, f_{2}(x)=x_{2}.$取理想点$r=(-2,-2), \widehat{x}=(0,0).$$ \varepsilon=\overline{\varepsilon}=0,\epsilon=\overline{\epsilon}=0 $时, $\widehat{x}$$(\rm MOP)$的有效解, 但$\widehat{x}$不是$(\rm MOP)$的真有效解.故由文献[5]中的定理3.4.10可知$\widehat{x}$不是$(\rm SOP)$的最优解.所以即使对于精确解定理4.1的逆命题都不一定成立.

参考文献
[1] Rastegar N, Khorram E. A combined scalarizing method for multiobjective programming prob-lems[J]. Euro. J. Oper. Res., 2014, 236: 229–237. DOI:10.1016/j.ejor.2013.11.020
[2] Sawaragi and Yoshikazu, Da te. Theory of multiobjective optimzation[M]. Japan: Dpt. Appl. Math.Konan Univ., 1985.
[3] Kutateladze S S. Convex -programming[J]. Sov. Math. Dokl., 1979, 20: 390–393.
[4] Loridan P. ε-solutions in vector minimization problems[J]. J. Optim. The. Appl., 1984, 43(2): 265–276. DOI:10.1007/BF00936165
[5] White D J. Epsilon efficiency[J]. J. Optim. Theory App, 1986, 49: 319–337. DOI:10.1007/BF00940762
[6] Liu J C. ε-properly efficient solution to nondifferentiable multi-objective programming problems[J]. Appl. Math. Lett., 1999, 12: 109–113. DOI:10.1016/S0893-9659(99)00087-7
[7] Dutta J, Vetrivel V. On approximate minima in vector optimization[J]. Numer. Funct. Anal. Optim., 2001, 22: 845–859. DOI:10.1081/NFA-100108312
[8] Gutierrez C, Jimenez B, Novo V. On approximate solutions in vector optimization problems viascalarization[J]. Comput. Optim. Appl., 2006, 35: 305–324. DOI:10.1007/s10589-006-8718-0
[9] Gutierrez C, Jimenez B, Novo V. Optimality conditions for metrically consistent approximate solu-tions in vector optimization[J]. J. Optim. Theory Appl., 2007, 133: 49–64. DOI:10.1007/s10957-007-9191-3
[10] Li Z, Wang S. $\epsilon$-efficient solutions in multiobjective optimization[J]. Optim., 1998, 44: 161–174. DOI:10.1080/02331939808844406
[11] Engau A, Wiecek M M. Generating ε-efficient solutions in multiobjective programming[J]. EuropeanJ. Operational Research, 2007, 177: 1566–1579. DOI:10.1016/j.ejor.2005.10.023
[12] Beldiman M, Panaitescu E, Dogaru L. Approximate quasi efficient solutions in multiobjective opti-mization[J]. Bull. Math. Soc. Math. Roumanie Tome, 2008, 51(99): 109–121.
[13] Ghaznavi B A, Khorram E. On approximating weakly/properly efficient solutions in multi-objectiveprogramming[J]. Math. Comput. Model., 2011, 54: 3172–3181. DOI:10.1016/j.mcm.2011.08.013
[14] Ghaznavi B A, Khorram E, Soleimani-Damaneh M. Scalarization for characterization of approximatestrong/weak/proper efficiency in multiobjective optimization[J]. Optim., 2013, 62(6): 703–720. DOI:10.1080/02331934.2012.668190
[15] 林銼云, 董加礼. 多目标优化的方法与理论[M]. 吉林: 吉林教育出版社, 1992.
[16] Kaliszewski I. A theorem on nonconvex functions and its application to vector optimization[J]. European J. Oper. Res., 1995, 80: 439–449. DOI:10.1016/0377-2217(93)E0272-Y
[17] Ehrgott M, Ruzika S. Improved $\epsilon$-constraint method for multiobjective programming[J]. J. Optim.The. Appl., 2008, 138: 375–396. DOI:10.1007/s10957-008-9394-2
[18] Jian J B, Ma P F, Xu Q J. Properties of optimal solutions for a special kind of quadratic program-ming[J]. J. Math., 2013, 33(1): 15–19.
[19] 吕一兵, 洪志明, 万仲平. 一类弱线性二层多目标规划的罚函数方法[J]. 数学杂志, 2013, 33(3): 465–472.
[20] 钟守楠, 钟良, 蔡晓芬. 基于神经网络的多目标演化优化方法[J]. 数学杂志, 2002, 22(4): 453–458.