数学杂志  2016, Vol. 36 Issue (3): 584-590   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
胡贝贝
张玲
超经典Boussinesq系统的守恒律和自相容源
胡贝贝, 张玲     
滁州学院数学与金融学院, 安徽 滁州 239000
摘要:本文研究了超经典Boussinesq系统.利用已有的超经典Boussinesq方程族及其超哈密顿结构,构造了带自相容源的超经典Boussinesq方程族,并通过引入变量FG,获得了超经典Boussinesq方程族的守恒律.
关键词超经典 Boussinesq 系统    自相容源    守恒律    
CONSERVATION LAWS AND SELF-CONSISTENT SOURCES FOR THE SUPER CLASSICAL BOUSSINESQ SYSTEM
HU Bei-bei, ZHANG Ling     
School of Mathematics and Finance, Chuzhou University, Chuzhou 239000, China
Abstract: In this paper we study super classical Boussinesq system. By using the family super classical Boussinesq equation, its super Hamiltonian structures have been constructed, with self-consistent sources family super classical Boussinesq equation. By introducing the variables F and G, we obtain the conservation laws of super classical Boussinesq hierarchy of equations.
Key words: super classical Boussinesq system     conservation laws     self-consistent sources    
1 引言

随着孤子理论的发展, 与 Lie 超代数 B(0, 1) 相关的超可积系统及其超 Hamilton 结构 的研究引起了很多学者的兴趣, 许多经典的可积方程已被拓展到超完全可积方程 (见文 [1- 4] 等). 胡星标教授 [5] 和马文秀教授 [6] 对此方面做出了很大的贡献, 其中, 在 1990 年, 胡 [5] 不加证明的首次提出了超迹恒等式――是构造超可积方程的超哈密顿系统的有效工具; 在 2008年, 马给出超迹恒等式的证明, 同时应用此超迹恒等式构造许多超可积方程的超双哈密顿结 构 (见文 [6,7] 等).

含自相容源的可积系统研究是寻找新的可积系统过程中发展起来的, 含自相容源的孤子方程在物理上有广泛的应用, 它与流体力学、固体物理学和等离子体物理有关. 一般地, 源导致孤立波以变速行进, 使得孤子的运动特征发生了很大的变化. 从物理上讲, 含自相容源的可积方程描述的是不同孤立波间的相互作用,如含自相容源的KdV方程可以描述等离子体重高频波包和一个低频波包的相互作用, 含自相容源的KP 方程描述了在X--Y平面上传播的长短波之间的相互作用.因而,含自相容源的可积方程的研究得到重视[8- 10]. 俄罗斯数学物理学家Melnikov[11] 在原Lax 对中增加一个新的算子而得到带源的非线性可积系统. 曾云波等从约束流出发可以得到含自相容源的方程族,如含自相容源的KdV 方程族、AKNS方程族等. 胡星标等提出源生成法, 从方程的行列式解或Pfaff解出发,对原孤子方程的解进行推广, 来构造和求解含自相容源的孤子方程.

近期, 李等[12- 15]对一些经典可积系统超化, 进一步从约束流出发构造含自相容源的超可积系统并研究其守恒律. 目前, 关于经典的Boussinesq谱问题的研究也有不少结果. 如 斯仁道尔吉[16]研究了经典Boussinesq方程族的约束流; 陶[17]构造了超经典Boussinesq方程族, 并研究该超方程族的双非线性化问题. 基于前人的工作, 本文旨在已有的超经典Boussinesq 系统及其超哈密顿结构上, 研究超经典Boussinesq 方程族的守恒律以及构造带自相容源的超经典Boussinesq方程族.

本文结构如下: 在第二部分, 列出了超经典Boussinesq系统及其超哈密顿结构已有的结果. 在第三部分, 我们在第二部分基础之上构造带自相容源的超经典Boussinesq 可积方程族, 并在第四部分中研究超经典Boussinesq方程族的守恒律问题.

2 超Boussinesq系列及其超哈密顿结构

本节中将已知结果罗列如下: 超Boussinesq等谱问题

$\begin{eqnarray} {\small \phi_x=U\phi,\quad U=\left(\begin{array}{ccc} -\lambda-\frac{1}{4}q&r&\alpha\\ -1&\lambda+\frac{1}{4}q&\beta\\ \beta&-\alpha&0\end{array} \right),\quad \phi=\left(\begin{array}{c} \phi_1\\ \phi_2\\ \phi_3\end{array} \right),\quad u=\left(\begin{array}{c} q\\ r\\ \alpha\\ \beta\end{array} \right),}\label{slisp}\end{eqnarray}$ (2.1)

其中$ \lambda $为谱参数, $ q,r $ 为偶变量, $ \alpha,\beta $ 为奇变量, 其零曲率方程

$\begin{equation} U_t-V_x^{(n)}+[U,V^{(n)}]=0,\end{equation}$ (2.2)

其中

$ \begin{equation} V^{(n)}=V_{+}^{(n)}+\Delta_n=\sum\limits_{m=0}^{n} \left(\begin{array}{ccc} A_m&B_m&\rho_m\\ C_m&-A_m&\delta_m\\ \delta_m&-\rho_m&0\end{array} \right)\lambda^{n-m}+\left(\begin{array}{ccc} -C_{n+1}&0&0\\ 0&C_{n+1}&0\\ 0&0&0\end{array} \right),\label{2.9} \end{equation}$ (2.3)

此处 $ (-\frac{1}{2}A_{j+1}, C_{j+1}, -2\delta_{j+1}, 2\rho_{j+1})^T $ 的递推关系式

$\begin{eqnarray} \left\{\begin{array}{l} ( -\frac{1}{2}A_{j+1}, C_{j+1}, -2\delta_{j+1}, 2\rho_{j+1})^T=\mathcal{L}( -\frac{1}{2}A_{j} ,C_{j}, -2\delta_{j}, 2\rho_{j})^T,\\ A_j=\partial^{-1}(B_j+rC_j+\alpha\delta_j+\beta\rho_j),\\ \end{array}\right.\label{2.7}\end{eqnarray}$ (2.4)

递推算子 $ \mathcal{L} $ 有下列形式

$\mathcal{L}=\left(\begin{array}{cccc} -\frac{1}{2}\partial-\frac{1}{4}\partial^{-1}q\partial&-\frac{1}{4}\partial^{-1}r\partial-\frac{1}{4}r &\frac{1}{4}\partial^{-1}\alpha\partial+\frac{1}{8}\alpha&\frac{1}{4}\partial^{-1}\beta\partial--\frac{1}{8}\beta\\ -2& \frac{1}{2}\partial-\frac{1}{4}q &\frac{1}{2}\beta &0\\ 4\beta&2\alpha &-\partial+\frac{1}{4}q &1 \\ 4\alpha+4\beta &2r\beta &\alpha\beta-r &-\partial-\frac{1}{4}q \end{array} \right),$

可得到超Boussinesq 系统

$\begin{equation} {\small u_{t_n}=\left(\begin{array}{c} q\\ r\\ \alpha\\ \beta\end{array} \right)_t=J\left(\begin{array}{c} -\frac{1}{2}A_{n}\\ C_{n}\\ -2\delta_{n}\\ 2\rho_{n}\end{array} \right)=\left(\begin{array}{cccc} 0 &4\partial&0&0\\ 4\partial&0 &-\alpha&\beta\\ 0 &-\alpha &0&-\frac{1}{2}\\ 0&\beta &-\frac{1}{2}&0 \end{array} \right)\left(\begin{array}{c} -\frac{1}{2}A_{n}\\ C_{n}\\ -2\delta_{n}\\ 2\rho_{n}\end{array} \right).}\label{2.11}\end{equation}$ (2.5)

应用超迹恒等式

$\begin{equation} \frac{\delta}{\delta u}({\rm Str} V\frac{\partial U}{\partial \lambda})=(\lambda^{-\gamma}\frac{\partial}{\partial \lambda}\lambda^{\gamma}) ({\rm Str} V\frac{\partial U}{\partial u}),\end{equation}$ (2.6)

得到超经典Boussinesq系统(2.5) 的超哈密顿结构

$\begin{equation} u_{t_n}=J\mathcal{L}^{n-1}\left(\begin{array}{c} q\\ r\\ \alpha\\ \beta\end{array} \right)=J\frac{\delta \tilde{H}_n}{\delta u},\quad \tilde{H}_n=\int \frac{2A_{n+2}}{n+1}dx, n\geq0.\end{equation}$ (2.7)

由此递推关系式(2.4), 给定初值 $ A_0 = -1,B_0=C_0=\rho_0=\delta_0=0 $, $ A_j , B_j , C_j , \rho_j , \delta_j (j \geq1) $ 前面几项结果为

$\begin{eqnarray}&&A_1=0,B_1=r,C_1=-1,\rho_1=\alpha,\delta_1=\beta,A_2=-\frac{1}{2}r+\alpha\beta,\nonumber\\&&B_2=-\frac{1}{2}r_x-\frac{1}{4}qr,C_2=\frac{1}{4}q,\rho_2=-\frac{1}{4}q\alpha-\alpha_x,\delta_2=-\frac{1}{4}q\beta+\beta_x.\nonumber\end{eqnarray}$

特别地, $ n=2 $, 方程(2.5) 约化为超经典Boussinesq方程

$\begin{equation} \left\{ \begin{array}{l} q_{t_2}=\frac{1}{2}q_{xx}-2r_x+4(\alpha\beta)_x-\frac{1}{2}qq_x-4\beta\beta_{xx},\\ r_{t_2}=-\frac{1}{2}r_{xx}-\frac{1}{2}(qr)_x-2\alpha\alpha_x+2r\beta\beta_x,\\ \alpha_{t_2}=-\alpha_{xx}-\frac{3}{8}q_x\alpha-\frac{1}{2}q\alpha_x-\frac{1}{2}r_x\beta-r\beta_x+\alpha\beta\beta_x,\\ \beta_{t_2}=\beta_{xx}-\frac{1}{8}q_x\beta-\frac{1}{2}q\beta_x-\alpha_x,\\ \end{array} \right. \label{li2} \end{equation}$ (2.8)

其Lax对为$ U $

$\begin{equation} V^{(2)}=\left(\begin{array}{ccc} -\lambda^2+\frac{1}{16}q^2-\frac{1}{8}q_x+\beta\beta_x&r\lambda-\frac{1}{2}r_x-\frac{1}{4}qr&\alpha\lambda-\alpha_x-\frac{1}{4}q\alpha\\ -\lambda+\frac{1}{4}q-\frac{1}{16}q^2+\frac{1}{8}q_x-\beta\beta_x&\lambda^2-\frac{1}{16}q^2+\frac{1}{8}q_x-\beta\beta_x&\beta\lambda+\beta_x-\frac{1}{4}q\beta\\ \beta\lambda+\beta_x-\frac{1}{4}q\beta&-\alpha\lambda+\alpha_x+\frac{1}{4}q\alpha&0\end{array} \right).\end{equation}$ (2.9)
3 带自相容源的超经典Boussinesq方程族

本节中我们将构造带自相容源的超经典Boussinesq系统的可积方程族, 在其超谱问题

$\begin{eqnarray} &&\phi_x=U\phi,\nonumber\\ &&\phi_t=V\phi \label{Boussinesq}\end{eqnarray}$ (3.1)

中令$ \lambda=\lambda_j $, 相应的谱向量$ \phi $记为$ \phi_j $,则得到$ N $个相应线性问题

$\begin{eqnarray} \left(\begin{array}{c} \phi_{1j}\\ \phi_{2j}\\ \phi_{3j}\end{array} \right)_x=U_j\left(\begin{array}{c} \phi_{1j}\\ \phi_{2j}\\ \phi_{3j}\end{array} \right),\quad\left(\begin{array}{c} \phi_{1j}\\ \phi_{2j}\\ \phi_{3j}\end{array} \right)_t=V_j\left(\begin{array}{c} \phi_{1j}\\ \phi_{2j}\\ \phi_{3j}\end{array} \right),\end{eqnarray}$ (3.2)

其中 $ U_j=U|_{\lambda=\lambda_j} $, $ V_j=V|_{\lambda=\lambda_j} $, $ j=1,2, \cdots, N $. 由

$\begin{eqnarray} \frac{\delta \tilde{H}_n}{\delta u}=\sum^N_{j=1}\frac{\delta \lambda_j}{\delta u}=\sum^N_{j=1}\left(\begin{array}{c} -\frac{1}{2}\langle\Phi_1,\Phi_2\rangle\\ \langle\Phi_2,\Phi_2\rangle\\ -2\langle\Phi_2,\Phi_3\rangle\\2\langle\Phi_1,\Phi_3\rangle\end{array}\right), \end{eqnarray}$ (3.3)

其中 $ \Phi_j=( \phi_{j1}, \cdots, \phi_{jN})^T $, $ j=1,2,3 $. 故带自相容源的超经典Boussinesq可积方程族为

$\begin{eqnarray} {\small u_t=\left(\begin{array}{c} q\\ r\\ \alpha\\ \beta\end{array} \right)_t=J\left(\begin{array}{c} A_{n}\\ C_{n}\\ -2\delta_{n}\\ 2\rho_{n}\end{array} \right)+J\left(\begin{array}{c} -\frac{1}{2}\langle\Phi_1,\Phi_2\rangle\\ \langle\Phi_2,\Phi_2\rangle\\ -2\langle\Phi_2,\Phi_3\rangle\\2\langle\Phi_1,\Phi_3\rangle\end{array}\right),} \end{eqnarray}$ (3.4)

其中

$\begin{eqnarray*}&&\phi_{1j,x}=(-\lambda-\frac{1}{4}q)\phi_{1j}+r\phi_{2j}+\alpha\phi_{3j},\\ &&\phi_{2j,x}=-\phi_{1j}+(\lambda+\frac{1}{4}q))\phi_{2j}+\beta\phi_{3j},\\ &&\phi_{3j,x}=\beta\phi_{1j}-\alpha\phi_{2j}.\end{eqnarray*}$

$ n=2 $时, 可得带自相容源的超经典Boussinesq方程

$\begin{eqnarray} &&q_{t2}=\frac{1}{2}q_{xx}-2r_x+4(\alpha\beta)_x-\frac{1}{2}qq_x-4\beta\beta_{xx}+4\partial\sum^N_{j=1}\phi_{2j}\phi_{2j},\nonumber\\ &&r_{t2}=-\frac{1}{2}r_{xx}-\frac{1}{2}(qr)_x-2\alpha\alpha_x+2r\beta\beta_x-2\partial\sum^N_{j=1}\phi_{1j}\phi_{2j}+2\alpha\sum^N_{j=1}\phi_{2j}\phi_{3j}+2\beta\sum^N_{j=1}\phi_{1j}\phi_{3j} ,\nonumber\\ &&\alpha_{t2}=-\alpha_{xx}-\frac{3}{8}q_x\alpha-\frac{1}{2}q\alpha_x-\frac{1}{2}r_x\beta-r\beta_x+\alpha\beta\beta_x-\alpha\sum^N_{j=1}\phi_{2j}\phi_{2j}-2\sum^N_{j=1}\phi_{1j}\phi_{3j}, \nonumber\\ &&\beta_{t2}=\beta_{xx}-\frac{1}{8}q_x\beta-\frac{1}{2}q\beta_x-\alpha_x+\beta\sum^N_{j=1}\phi_{2j}\phi_{2j}+\sum^N_{j=1}\phi_{2j}\phi_{3j}.\nonumber \end{eqnarray}$
4 超 Boussinesq 方程族的守恒律

本节转为构造超Boussinesq方程族的守恒律. 首先 引入变量

$\begin{eqnarray} F=\dfrac{\phi_2}{\phi_1},\quad G=\dfrac{\phi_3}{\phi_1}.\end{eqnarray}$ (4.1)

由谱问题(3.1), 有

$\begin{eqnarray} && F_x=-1+(2\lambda+\frac{1}{2}q)F+\beta G-rF^2-\alpha FG,\label{FG1}\end{eqnarray}$ (4.2)
$\begin{eqnarray} && G_x=\beta-\alpha F+(\lambda+\frac{1}{4}q)G-\alpha G^2-rGF.\label{FG2}\end{eqnarray}$ (4.3)

$ F,G $存在,且将$ F,G $按谱参数$ \lambda $的负幂展开

$~\begin{eqnarray} &&F=\sum^\infty_{j=1}f_j\lambda^{-j},G=\sum^\infty_{j=1}g_j\lambda^{-j}.\label{4.4}\end{eqnarray}$ (4.4)

将展开式(4.4)代入方程(4.2),(4.3)比较$ \lambda $同次幂的系数, 得

$~\begin{eqnarray} \lambda^0:~~~f_1&=&\frac{1}{2},g_1=-\beta,\nonumber\\ \lambda^{-1}:~~~f_2&=&\frac{1}{2}f_{1x}-\frac{1}{4}qf_1-\frac{1}{2}\beta g_1=-\frac{1}{8}q,\nonumber\\ g_2&=&g_{1x}+\alpha f_1-\frac{1}{4}qg_1=-\beta_x+\frac{\alpha}{2}+\frac{1}{4}q\beta,\nonumber\\ \lambda^{-2}:~~~f_3&=&\frac{1}{2}f_{2x}-\frac{1}{4}qf_2-\frac{1}{2}\beta g_2+\frac{1}{2}rf^2_1-\frac{1}{2}\alpha f_1 g_1\nonumber\\ &=&-\frac{1}{16}q_x+\frac{1}{32}q^2+\frac{1}{2}\beta\beta_x-\frac{1}{4}\beta\alpha-\frac{1}{8}\beta^2q+\frac{1}{8}r-\frac{1}{4}\alpha\beta\nonumber\\ &=&-\frac{1}{16}q_x+\frac{1}{32}q^2+\frac{1}{2}\beta\beta_x+\frac{1}{8}r,\nonumber\\ g_3&=&g_{2x}+\alpha f_2-\frac{1}{4}qg_2+\alpha g^2_1+rf_1g_1\nonumber\\ &=&-\beta_{xx}+\frac{1}{2}\alpha_x+\frac{1}{4}q_x\beta+\frac{1}{4}q\beta_x-\frac{1}{8}\alpha q+\frac{1}{4}q\beta_x-\frac{1}{8}q\alpha-\frac{1}{16}q^2\beta+\alpha\beta^2-\frac{1}{2}r\beta\nonumber\\ &=&-\beta_{xx}+\frac{1}{2}\alpha_x+\frac{1}{4}q_x\beta+\frac{1}{2}q\beta_x-\frac{1}{16}q^2\beta-\frac{1}{2}r\beta.\nonumber\end{eqnarray}$

从而有$ ~f_n $$ ~g_n $的递推公式

$~\begin{eqnarray} &&f_{n+1}=\frac{1}{2}f_{nx}-\frac{1}{4}qf_n-\frac{1}{2}\beta g_n+\frac{1}{2}r\sum^n_{l=1}f_lf_{n-l}-\frac{1}{2}\alpha\sum^n_{l=1}f_lg_{n-l},\nonumber\\ &&g_{n+1}=g_{nx}+\alpha g_n-\frac{1}{4}qg_n+\alpha\sum^n_{l=1}g_lg_{n-l}+r\sum^n_{l=1}f_lg_{n-l}.\nonumber\end{eqnarray}$

由线性谱问题(3.1)知

$~\begin{eqnarray} &&(\ln\phi_1)_x=(-\lambda-\frac{1}{4}q)+rF+\alpha G,\nonumber\\ &&(\ln\phi_1)_t=A+BF+\rho G.\nonumber\end{eqnarray}$

所以有

$~\begin{eqnarray} &&\frac{\partial}{\partial t}((-\lambda-\frac{1}{4}q)+rF+\alpha G)=\frac{\partial}{\partial x}(A+BF+\rho G).\nonumber\end{eqnarray}$

若令$ ~a=(-\lambda-\frac{1}{4}q)+rF+\alpha G,~\theta=A+BF+\rho G $. 则方程化为$ a_t=\theta_x $. 对于超经典Boussinesq方程(2.8), 容易计算出

$~\begin{eqnarray} &&A=-\lambda^2-\frac{1}{2}r+\alpha\beta,~~~ B=r\lambda-\frac{1}{2}r_x-\frac{1}{4}qr,~~~C=-\lambda+\frac{1}{4}q,\nonumber\\ &&\rho=\alpha\lambda-\alpha x-\frac{1}{4}q\alpha,\delta=\beta\lambda+\beta_x-\frac{1}{4}q\beta.\nonumber\end{eqnarray}$

$ F,G $的展开式(4.4)与超经典Boussinesq方程族(2.8)所对应的$ A,B,\rho $代入可见

$~\begin{eqnarray} &&a=-\lambda-\frac{1}{4}q+\sum^\infty_{j=1}a_j\lambda^{-j},\nonumber\\ &&\theta=-\lambda^2-\frac{1}{2}r+\alpha\beta+\frac{1}{2}r-\alpha\beta+\sum^\infty_{j=1}\theta_j\lambda^{-j}=-\lambda^2+\sum^\infty_{j=1}\theta_j\lambda^{-j}.\nonumber\end{eqnarray}$

$ \lambda $的同次幂相等,即知超经典Boussinesq方程(2.8)具有无穷多守恒律,其中$ a_j,\theta_j $分别称为守恒密度和连带流. 第一对守恒密度和流为

$~\begin{eqnarray} a_1&=&rf_1+\alpha g_1=\frac{1}{2}r-\alpha\beta,\nonumber\\ \theta_1&=&rf_2-(\frac{1}{2}r_x+\frac{1}{4}qr)f_1+\alpha g_2-(\alpha_x+\frac{1}{4}qr)g_1\nonumber\\ &=&-\frac{1}{8}rq-\frac{1}{4}r_x-\frac{1}{8}qr-\alpha\beta_x+\frac{1}{2}\alpha^2+\frac{1}{4}\alpha q\beta+\frac{1}{4}q\alpha\beta+\alpha_x\beta\nonumber\\ &=&-\frac{1}{4}rq-\frac{1}{4}r_x-\alpha\beta_x+\frac{1}{2}q\alpha\beta+\alpha_x\beta.\nonumber\end{eqnarray}$

一般的守恒密度和流的表达式为

$\begin{eqnarray} &&a_n=rf_n+\alpha g_n,\nonumber\\ &&\theta_n=rf_{n+1}-(\frac{1}{2}r_x+\frac{1}{4}qr)f_n+\alpha g_{n+1}-(\frac{1}{4}q\alpha+\alpha_x)g_n .\nonumber\end{eqnarray}$
参考文献
[1] Li Y S, Zhang L N. Super AKNS scheme and its inflnite conserved currents[J]. Nuovo. Cimento. A., 1986, 93(2): 175–183. DOI:10.1007/BF02819989
[2] Tao S X, Xia T C. Two super-integrable hierarchies and their super-Hamiltonian structures[J]. Commun. Nonl. Sci. Numer. Simul., 2011, 16: 127–132. DOI:10.1016/j.cnsns.2010.04.009
[3] Tao S X, Xia T C. Lie algebra and lie super algebra for integrable couplings of C-KdV hierarchy[J]. Chin. Phys. Lett., 2010, 27: 040202. DOI:10.1088/0256-307X/27/4/040202
[4] Tao S X, Xia T C. The super-classical-Boussinesq hierarchy and its super Hamiltonian structure[J]. Chin. Phys. B., 2010, 19: 070202. DOI:10.1088/1674-1056/19/7/070202
[5] Hu X B. An approach to generate superextensions of integrable systems[J]. Phys. A., 1997, 30(2): 619–632. DOI:10.1088/0305-4470/30/2/023
[6] Ma W X, He J S, Qin Z Y. A supertrace identity and its applications to super integrable systems[J]. Math. Phys., 2008, 49(3): 033511. DOI:10.1063/1.2897036
[7] Ma W X. Variational identities and Hamiltonian structures[J]. Nonl. Modern Math. Phys., 2010: 1–27.
[8] Hu X B, Wang H. Construction of dKP and BKP equations with selfconsistent sources[J]. Inverse Prob., 2006, 22: 1903–1920. DOI:10.1088/0266-5611/22/5/022
[9] Zeng Y, Ma W X. Integration of the soliton hierarchy with self consistent sources[J]. Math. Phys., 2000, 41: 5453–5489. DOI:10.1063/1.533420
[10] Zhang D. The N-soliton solutions of the MKdV equation with selfconsistent sources[J]. Phys. Soc. Jpn., 2002, 71: 2649–2656. DOI:10.1143/JPSJ.71.2649
[11] Melnikov. On equations for wave intersections[J]. Lett. Math. Phys., 1983, 7: 129–136. DOI:10.1007/BF00419931
[12] Li L. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy[J]. Phys. Lett. A., 2011, 375: 1402–1406. DOI:10.1016/j.physleta.2011.02.013
[13] Wang H, Xia T C. Conservation laws for a super G-J hierarchy with self-consistent sources[J]. Commun. Nonl. Sci. Numer. Simul., 2012, 17: 566–572. DOI:10.1016/j.cnsns.2011.06.007
[14] Wang Y, Chen Y. Conservation laws and self-consistent sources for a super integrable equation hierarchy[J]. Commun. Nonl. Sci. Numer. Simul., 2012, 17: 2292–2298. DOI:10.1016/j.cnsns.2011.09.034
[15] Tao S X. Self-consistent sources and conservation laws for super coupled Burgers equation hierarchy[J]. Intern. J. Appl. Phys. Math., 2013, 3: 252–256.
[16] Sirendaoerji, Li Y S. Difierent Hamiltonian for the constrained flows of the classical Boussinesq hierarcy[J]. J. Inner Mongolia Norm. Univ. (Natur. Sci. Ed.), 2000, 29(1): 1–7.
[17] Tao S X, Wang H, Shi H. Binary nonlinearization of the super-classical-Boussinesq hierarchy[J]. Chin. Phys. B., 2011, 7: 070201.