数学杂志  2016, Vol. 36 Issue (3): 573-583   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
魏利
刘元星
Banach空间中m-d增生映射零点的强弱收敛定理
魏利, 刘元星     
河北经贸大学数学与统计学学院, 河北 石家庄 050061
摘要:本文研究了m-d增生映射的零点以及有限个m-d增生映射公共零点的迭代设计问题.利用Lyapunov泛函与广义f投影映射等技巧, 在Banach空间中, 证明了迭代序列强收敛或弱收敛到m-d增生映射的零点或有限个m-d增生映射的公共零点.与以往的相关研究工作相比, 迭代设计中考虑了误差项、迭代格式被简化、限定条件被削弱.
关键词Lyapunov泛函    广义f投影映射    m-d增生映射    零点    
STRONG AND WEAK CONVERGENCE THEOREMS FOR ZEROS OF m -d-ACCRETIVE MAPPINGS IN BANACH SPACES
WEI Li, LIU Yuan-xing     
School of Math. and Stat., Hebei University of Economics and Business, Shijiazhuang 050061, China
Abstract: The problems of iterative designs of zero point of m-d accretive mappings and common zero points of flnitely many m-d accretive mappings are studied in this paper. By using the techniques of Lyapunov functional and generalized f-projection mapping, the results that the iterative sequences converge strongly or weakly to zero pint of m-d accretive mappings or common zero point of flnitely many m-d accretive mappings in Banach spaces are proved. Compared to the existing work, the errors are considered in the iterative designs, the iterative schemes are simplifled and the restrictions are weaken.
Key words: Lyapunov functional     generalized f-projection mapping     m-d accretive mapping     zero point    
1 引言及预备知识

在Bananch空间中, 增生映射和$d$增生映射是两类不同的映射.因为它们均与发展方程密切相关, 所以对它们的研究吸引了数学家的目光.在过去的40年左右的时间, 涌现出了大量对$m$增生映射零点的迭代设计的研究成果, 见文[1-5], 等等.然而, 对$m-d$增生映射的研究成果却少而又少. 2000年, Alber和Reich (见文[6])在实一致光滑、一致凸Banach空间中, 设计了以下迭代格式:

$$x_{n+1} = x_n - \alpha_n Tx_n,\quad n \geq 0,$$ (1.1)
$$x_{n+1}= x_n - \alpha_n \frac{Tx_n}{\|Tx_n\|},\quad n \geq 0$$ (1.2)

$$x_{n+1}= P(x_n - \alpha_n \frac{Tx_n}{\|Tx_n\|}),\quad n \geq 0.$$ (1.3)

他们证明了在一定条件下, 由(1.1), (1.2) 和(1.3) 式产生的迭代序列$\{x_n\}$弱收敛到半连续、一致有界$d$增生映射$T$的零点.

2006年, 文[7]借鉴构造$m$增生映射零点的投影算法的思想, 在实一致光滑、一致凸Banach空间$E$中, 借助于Lyapunov泛函$\varphi : E \times E \rightarrow R^+$与广义投影映射$\Pi_C : E \rightarrow C,$针对$m-d$增生映射$A \subset E \times E,$设计了以下带误差项的迭代格式:

$$\left\{ \begin{array}{*{35}{l}} {{x}_{1}}\in D(A),\\ {{y}_{n}}={{J}^{-1}}({{\alpha }_{n}}J{{J}_{{{r}_{n}}}}{{x}_{n}}+(1-{{\alpha }_{n}})J{{e}_{n}}),\\ {{z}_{n}}={{J}^{-1}}({{\beta }_{n}}J{{x}_{n}}+(1-{{\beta }_{n}})J{{y}_{n}}),\\ {{C}_{n}}=\{v\in D(A):\varphi (v,{{z}_{n}})\le ({{\alpha }_{n}}+{{\beta }_{n}}-{{\alpha }_{n}}{{\beta }_{n}})\varphi (v,{{x}_{n}}) \\ +(1-{{\alpha }_{n}})(1-{{\beta }_{n}})\varphi (v,{{e}_{n}})\},\\ {{Q}_{n}}=\{v\in D(A):\left\langle {{x}_{n}}-v,J{{x}_{1}}-J{{x}_{n}} \right\rangle \ge 0\},\\ {{x}_{n+1}}={{\Pi }_{{{C}_{n}}\bigcap{{{Q}_{n}}}}}{{x}_{1}},\quad n\ge 1,\\ \end{array} \right.$$ (1.4)

其中$J_{r_n}^A = (I + r_n A)^{-1},$ $\{e_n\}$是误差项.在$A$是半连续映射、正规对偶算子$J$弱序列连续、$J_{r_n}^A$$\varphi$非扩展映射的前提下, 证明了由(1.4) 式产生的迭代序列强收敛到$A$的零点.而“$J_{r_n}^A$$\varphi$非扩展映射”是非常强的假设条件, 因为它要求“$\varphi(p,J^A_{r_n}x) \leq \varphi(p,x),\forall p \in A^{-1}0$”, 所以很难举出既满足半连续条件又满足这个条件的$m-d$增生映射的例子.

本文将做以下两方面的工作: (1) 简化迭代算法(1.4) 式并削弱文[7]的限定条件, 提出一种新的单调投影迭代算法; (2) 借鉴极大单调算子零点的近似邻近点算法, 提出$m-d$增生映射零点的近似邻近点迭代算法.具体讲:本文第二节, 将在实一致光滑、一致凸Banach空间$E$中, 首先设计以下关于$m-d$增生映射$A\subset E^* \times E^*$的带误差项的单调投影迭代算法

$$\left\{ \begin{array}{lll} x_0 \in E,r_{0} > 0,\\ y_{n} = Q_{r_{n}}^{AJ}x_n,n \geq 0,\\ Ju_{n} = \beta_{n} Jy_{n}+(1-\beta_{n})Je_n,n \geq 0,\\ Jz_{n} = \alpha_{n} Jx_n+(1-\alpha_{n})Ju_{n},n \geq 0,\\ C_{0}= E,\\ C_{n+1}=\{v \in C_{n}: G(v,Jz_{n})\leq (\alpha_{n}+\beta_{n}-\alpha_{n}\beta_{n}) G(v,Jx_n)\\ + (1-\alpha_{n})(1-\beta_{n})G(v,Je_n)\},n \geq 0,\\ x_{n+1}= \Pi_{C_{n+1}}^f x_0,\quad n\geq 0. \end{array} \right.$$ (1.5)

继而把(1.5) 式推广为有限个$m-d$增生映射$\{A_i\}_{i = 1}^m \subset E^* \times E^*$的公共零点的迭代构造

$$\left\{ \begin{array}{lll} x_0 \in E,r_{0,i} > 0,i =1,2,\cdots,m,\\ y_{n,i} = Q_{r_{n,i}}^{A_{i}J}x_n,n \geq 0,i =1,2,\cdots,m,\\ Ju_{n,i} = \beta_{n,i} Jy_{n,i}+(1-\beta_{n,i})Je_n,n \geq 0,i =1,2,\cdots,m,\\ Jz_{n,i} = \alpha_{n,i} Jx_n+(1-\alpha_{n,i})Ju_{n,i},n \geq 0,i =1,2,\cdots,m,\\ C_{0,i} = E,i = 1,2,\cdots,m,\\ C_0 = \bigcap\limits_{i = 1}^m C_{0,i},\\ C_{n+1,i}=\{v \in C_{n}: G(v,Jz_{n,i})\leq (\alpha_{n,i}+\beta_{n,i}-\alpha_{n,i}\beta_{n,i}) G(v,Jx_n)\\ + (1-\alpha_{n,i})(1-\beta_{n,i})G(v,Je_n)\},i = 1,2,\cdots,m,n \geq 0,\\ C_{n+1} = \bigcap\limits_{i=1}^m C_{n+1,i}, n \geq 0,\\ x_{n+1}= \Pi_{C_{n+1}}^f x_0,\quad n\geq 0. \end{array} \right.$$ (1.6)

并证明(1.5) 和(1.6) 式产生的迭代序列的强收敛定理.

第三节, 将在实一致光滑、一致凸Banach空间$E$中, 首先设计以下关于$m-d$增生映射$A\subset E^* \times E^*$的带误差项的近似邻近点迭代算法

$$ \left\{ \begin{array}{lll} x_0 \in E,r_{0} > 0,\\ y_n = Q_{r_{n}}^{AJ}x_n,n \geq 0,\\ Ju_n = \beta_n Jy_n + (1-\beta_n)Je_n,n \geq 0,\\ x_{n+1}= J^{-1}[(1-\alpha_n)Jx_n+\alpha_n Ju_n],\quad n \geq 0. \end{array} \right. $$ (1.7)

继而将之推广为有限个$m-d$增生映射$\{A_i\}_{i = 1}^m \subset E^* \times E^*$的公共零点的迭代构造

$$\left\{ \begin{array}{lll} x_0 \in E,r_{0,i} > 0,i = 1,2,\cdots,m,\\ y_{n,i} = Q_{r_{n,i}}^{A_iJ}x_n,n \geq 0,i = 1,2,\cdots,m,\\ Ju_n = \sum\limits_{i = 1}^m \beta_{n,i} Jy_{n,i} + \beta_{n,m+1}Je_n,n \geq 0,\\ x_{n+1}= J^{-1}[(1-\alpha_n)Jx_n+\alpha_n Ju_n],\quad n \geq 0. \end{array} \right.$$ (1.8)

并证明(1.7) 和(1.8) 式产生的迭代序列的弱收敛定理.

为此, 需要以下预备知识.

$E$为实Banach空间, $E^*$为其对偶空间.正规对偶算子$J \subset E\times E^*$定义为

$$J(x)=\{x^*\in E^* : \langle x,x^*\rangle =\|x\|^2=\|x^*\|^2\},\forall x \in E,$$

其中$\langle \cdot,\cdot \rangle$表示$E$$E^*$元素间的广义对偶对.分别用“$\longrightarrow$”或“$\rightharpoonup$”表示空间$E$$E^*$中序列的强、弱收敛.

引理1.1 [8, 9] 正规对偶算子$J$有如下性质:

(i)若$E$为实自反、光滑Banach空间, 则$J: E\rightarrow E^*$为单值映射;

(ii)若$E$为实自反Banach空间, 则$J: E\rightarrow E^*$为满射;

(iii)若$E$为实一致光滑、一致凸Banach空间, 则$J^{-1}: E^* \rightarrow E$也是正规对偶算子.而且$J$$J^{-1}$分别在$E$$E^*$的任一有界子集上一致连续.

称映射$A \subset E\times E$为增生映射:若$\langle v_1-v_2,J(u_1 - u_2)\rangle \geq 0,$ $\forall u_i \in D(A),\forall v_i \in Au_i,i =1,2.$$A \subset E\times E$为d增生映射:若$\langle v_1-v_2,J(u_1) - J(u_2)\rangle \geq 0,$ $\forall u_i \in D(A),\forall v_i \in Au_i,i =1,2.$增生映射$A$称为$m$ -增生的:若$R(I+\lambda A) = E,$ $\forall \lambda > 0.$$d$增生映射$A$$m-d$增生的:若$R(I+\lambda A) = E,$ $\forall \lambda > 0.$称多值算子$A\subset E \times E^*$为单调算子:若$ \forall x_{i} \in D(A),y_{i}\in Ax_{i} ,i =1,2,$均有$ \langle x_{1}-x_{2},y_{1}-y_{2}\rangle \geq 0.$称单调算子$A$为极大单调的:若$\forall r > 0,R(J+rA) = E^*$.显然在Hilbert空间中, $m-d$增生映射、$m$增生映射和极大单调算子是一致的.用$A^{-1} 0$表示非线性映射$A$的零点集, 即$A^{-1} 0 : = \{x \in D(A) : Ax = 0\}.$$F(A)$表示非线性映射$A$的不动点集, 即$F(A) = \{x \in D(A): Ax = x\}.$

定义1.1 [10] 设$E$为实光滑Banach空间,定义Lyapunov泛函$\varphi : E \times E \rightarrow R^{+}$如下:

$$\varphi(x,y) = \|x\|^{2}-2\langle x,Jy\rangle + \|y\|^2, \forall x ,y \in E.$$

由此易知$\forall x,y \in E,$

$$(\|x\|-\|y\|)^2 \leq \varphi(x,y)\leq (\|x\|+\|y\|)^2.$$ (1.9)

引理1.2 [9] 设$E$为实光滑、一致凸Banach空间, $A\subset E \times E^*$为极大单调算子, 则$A^{-1}0$$E$中的闭凸子集; $A$的图像$G(A)$是次闭的, 即$\forall \{x_{n}\} \subset D(A),$ $x_{n}\rightharpoonup x$ $(n \rightarrow \infty),$ $\forall y_{n} \in Ax_{n}$, $y_{n}\rightarrow y$ $(n \rightarrow \infty)$$\Rightarrow$ $x \in D(A)$$y \in Ax.$

定义1.2 [11] 设$E$为实光滑、一致凸Banach空间, $A\subset E \times E^*$为极大单调算子. $\forall r >0,$定义算子$Q_r^A:E\rightarrow E$$ Q_{r}^Ax = (J+rA)^{-1}Jx ,$并称之为$A$的相对预解式.

引理1.3 [12] 设$E$为实自反、严格凸、光滑Banach空间, $C$$E$中的非空闭凸子集, 则$\forall x\in E,$存在唯一的$x_0 \in C$, 满足$ \varphi(x_{0},x)= \inf \{\varphi(z,x): z \in C\}. $此时, $\forall x\in E,$定义$\Pi_C:E \rightarrow C$$\Pi_Cx=x_0,$并称$\Pi_C$为从$E$$C$上的广义投影算子.

引理1.4 [12] 设$E$为实光滑、一致凸Banach空间, $\{x_{n}\}$$ \{y_{n}\}$$E$中两个序列, 若其中之一有界且$ \varphi (x_{n},y_{n}) \rightarrow 0,$ $n \rightarrow \infty,$$x_{n} - y_{n} \rightarrow 0 ,$ $n \rightarrow \infty$.

引理1.5 [12] 设$E$为实自反、严格凸、光滑Banach空间, $A \subset E \times E$为极大单调算子且$A^{-1}0 \neq \emptyset,$$\forall x \in E,$ $ y \in A^{-1}0$$r>0,$$\varphi(y,Q_{r}^Ax)+\varphi (Q_{r}^Ax,x) \leq \varphi(y,x). $

引理1.6 [12] 设$E$为实光滑Banach空间, $C$$E$的非空闭凸子集, $x \in E,$ $x_{0} \in C,$$ \varphi(x_{0},x)= \inf \{\varphi(z,x): z \in C\} $当且仅当$ \langle z-x_{0},Jx_{0}-Jx\rangle \geq 0,\forall z \in C. $

定义1.3 设$E$为实光滑Banach空间, $C$$E$中非空闭凸子集, 定义函数$G: C \times E^* \rightarrow (-\infty,+\infty]$如下:

$$G(x,y) = \|x\|^2 - 2\langle x,y\rangle + \|y\|^2 + 2\rho f(x),\forall x \in C,y \in E^*,$$

其中$\rho$为正常数, $f: C \rightarrow (-\infty,+\infty]$为正则、凸、下半连续函数.易知当$C = E$$f(x)=0,\forall x \in C$时, $G(x,Jy) = \varphi(x,y),\forall x,y \in C.$

定义1.4 [13] 设$E$为实光滑Banach空间, $C$$E$中非空闭凸子集, 称$\Pi_C^f: E \rightarrow 2^C$为广义$f$投影映射, 若

$$\Pi_C^f(y) = \{z \in C: G(z,Jy)\leq G(x,Jy),\forall x \in C\},\forall y \in E.$$

引理1.7 [13] 设$E$为实自反、光滑Banach空间, $C$$E$中的非空闭凸子集, 则$\forall x \in E,$ $\forall y \in C,$

$$\varphi(y,\Pi_{C}^f x)+G(\Pi_{C}^f x,Jx) \leq G(y,Jx). $$

引理1.8 [14] 令$\{a_n\}$$\{b_n\}$为两个非负实数列且$a_{n+1}\leq a_n + b_n,$ $\forall n \geq 0.$$\sum\limits_{n=0}^{\infty}b_n < +\infty,$$\lim\limits_{n \rightarrow \infty}a_n$存在.

引理1.9 [12] 设$E$为实自反、光滑、严格凸Banach空间, $C$$E$中非空闭凸子集, 则$\forall x\in E,\forall y \in C,$

$$\varphi(y,\Pi_C x) + \varphi(\Pi_C x,x)\leq \varphi(y,x).$$
2 强收敛定理

引理2.1 假设$E$为实一致光滑、一致凸Banach空间, $A\subset E^* \times E^*$$m-d$增生映射, $J: E \rightarrow E^*$为正规对偶算子, 则$AJ \subset E \times E^*$极大单调.

 由引理1.1知$J^{-1} : E^* \rightarrow E$为正规对偶算子.因$A$$m-d$增生映射, 故$\forall x,y \in E,$

$$\langle x-y,AJx-AJy\rangle = \langle A(Jx)-A(Jy),J^{-1}(Jx)-J^{-1}(Jy)\rangle \geq 0,$$

从而$AJ$单调.

又因$R(I+\lambda A) = E^*,\lambda > 0,$其中$I$$E^*$上的恒等映射, 故$\forall y^* \in E^*,$存在$x^* \in E^*$使得$x^* + \lambda Ax^* = y^*,\lambda > 0.$应用引理1.1 (ii), 存在$x \in E$使得$Jx = x^*.$因此$Jx+\lambda AJx = y^*,\lambda > 0.$于是$R(J+\lambda AJ) = E^*.$至此证明了$AJ$极大单调.证毕.

引理2.2 假设$E$为实一致光滑、一致凸Banach空间, $A\subset E^* \times E^*$$m-d$增生映射且$A^{-1}0 \neq \emptyset.$ $\{e_n\} \subset E,\{\alpha_n\},\{\beta_n\} \subset (0,1),\{r_n\}\subset (0,+\infty),G$同于定义1.3, 则$\emptyset \neq (AJ)^{-1}0 \subset C_n ,$ $\forall n\geq 0.$而且由投影算法$(1.5)$产生的迭代序列$\{x_n\}$是有意义的.

 因$A^{-1}0 \neq \emptyset,$故存在$x^* \in E^*$使得$Ax^* = 0.$由引理1.1知$J$为满射, 故存在$x \in E$使$Jx = x^*.$于是$AJx = 0,$$x \in (AJ)^{-1}0.$从而$ (AJ)^{-1}0 \neq \emptyset.$

$\begin{eqnarray*} G(v,Jz_{n}) \leq (\alpha_{n}+\beta_{n}-\alpha_{n}\beta_{n})G(v,Jx_n)+ (1-\alpha_{n})(1-\beta_{n})G(v,Je_n)\\ \Leftrightarrow \|z_{n}\|^{2}-(\alpha_{n}+\beta_{n}-\alpha_{n}\beta_{n})\|x_n\|^2 - (1-\alpha_{n}) (1-\beta_{n})\|e_n\|^2\\ \leq 2 \langle v,Jz_{n}-(\alpha_{n}+\beta_{n}-\alpha_{n}\beta_{n})Jx_n -(1-\alpha_{n})(1-\beta_{n})Je_n\rangle, \end{eqnarray*}$

$C_{n}$$E$的闭凸子集, $\forall n \geq 0.$

$p \in (AJ)^{-1}0 .$由引理1.5和引理2.1有$\varphi (p,y_{0}) \leq \varphi (p,x_0),$从而

$\begin{eqnarray*} G(p,Jz_{0}) \leq \alpha_{0}G(p,Jx_0)+ (1-\alpha_{0})G(p,Ju_{0})\\ \leq (\alpha_{0}+\beta_{0}-\alpha_{0}\beta_{0})G(p,Jx_0)+ (1-\alpha_{0})(1-\beta_{0})G(p,Je_0), \end{eqnarray*}$

因此$p \in C_{1}.$于是$x_1 = \Pi_{C_1}^f(x_0)$有意义.

假设$p \in C_{n}$$x_{n}$ $(n \geq 1)$有意义, 则引理1.5蕴含

$\begin{eqnarray*} G(p,Jz_{n}) \leq \alpha_{n}G(p,Jx_{n})+ (1-\alpha_{n})[\beta_{n} G(p,Jy_{n})+(1-\beta_{n})G(p,Je_{n})]\\ \leq (\alpha_{n}+\beta_{n}-\alpha_{n}\beta_{n})G(p,Jx_{n})+ (1-\alpha_{n})(1-\beta_{n})G(p,Je_{n}), \end{eqnarray*}$

因此$p \in C_{n+1}.$于是归纳可知$x_{n+1} = \Pi_{C_{n+1}}^fx_0$有意义且$(AJ)^{-1}0 \subset C_n,$ $\forall n \geq 0.$证毕.

类似于引理2.2可证:

引理2.3 假设$E$为实一致光滑、一致凸Banach空间, $A_i\subset E^* \times E^*,i =1,2,\cdots,m $$m-d$增生映射且$D:= \bigcap\limits_{i=1}^{m}A^{-1}_{i}0 \neq \emptyset.$ $\{e_n\}$$ G$同于引理2.2, $\{\alpha_{n,i}\},\{\beta_{n,i}\} \subset (0,1),\{r_{n,i}\}\subset (0,+\infty),$ $i = 1,2,\cdots,m.$则由投影算法$(1.6)$产生的迭代序列$\{x_n\}$是有意义的, 且$\emptyset \neq D_1 := \bigcap\limits_{i=1}^{m}(A_iJ)^{-1}0 \subset C_n,$ $\forall n\geq 0.$

定理2.1 在引理2.2的假设条件下, 进一步假设正规对偶算子$J\subset E \times E^*$弱序列连续,

$$\inf_{n \geq 0}r_{n} >0,\lim\inf_{n \rightarrow \infty}\alpha_{n} >0,\lim\limits_{n \rightarrow \infty}\beta_{n} =1,$$

且存在正常数$M$使得$\|e_n\|\leq M,$则由(1.5) 式产生的迭代序列$\{x_n\}$满足$x_n \rightarrow \Pi_{(AJ)^{-1}0}^f x_0,n \rightarrow \infty.$

 由引理1.2和2.1知$(AJ)^{-1}0$为闭凸子集, 从而$\Pi_{(AJ)^{-1}0}^f $有定义.以下证明分为4步:

第一步 证$\{x_n\}$有界.

事实上, $ \forall p \in (AJ)^{-1}0\subset C_n,$ $n \geq 0,$由引理1.7知

$$\varphi(p,x_n)+G(x_n,Jx_0) \leq G(p,Jx_0).$$

于是$\{x_n\}$$G(x_n,Jx_0)$均有界.从而由迭代格式(1.5) 知$\{y_n\}$, $\{u_n\}$$\{z_n\}$均有界.

第二步 证$\omega(x_n) \subset (AJ)^{-1}0,$其中$\omega(x_n)$表示$\{x_n\}$的所有弱收敛子列的弱极限点的全体.

因为$x_{n+1}\in C_{n+1} \subset C_n,$所以由引理1.7知$ \varphi(x_{n+1},x_n)+G(x_n,Jx_0) \leq G(x_{n+1},Jx_0).$又因$\{x_n\}$有界, 故$G(x_n,Jx_0)$单调增且有上界, 从而$\lim\limits_{n\rightarrow \infty}G(x_n,Jx_0)$存在.于是$\varphi(x_{n+1},x_n)\rightarrow 0,n\rightarrow \infty.$由引理1.4, $x_{n+1}-x_n \rightarrow 0,n \rightarrow \infty.$

$x_{n+1} \in C_{n+1},$

$$G(x_{n+1},Jz_{n}) \leq (\alpha_{n}+\beta_{n}-\alpha_{n}\beta_{n})G(x_{n+1},Jx_n)+ (1-\alpha_{n})(1-\beta_{n})G(x_{n+1},Je_n).$$

从而

$$\varphi(x_{n+1},z_{n}) \leq (\alpha_{n}+\beta_{n}-\alpha_{n}\beta_{n})\varphi(x_{n+1},x_n)+ (1-\alpha_{n})(1-\beta_{n})\varphi(x_{n+1},e_n).$$

于是$\varphi(x_{n+1},z_{n})\rightarrow 0,n\rightarrow \infty,$故引理1.4蕴含$x_{n+1}-z_{n}\rightarrow 0,n \rightarrow \infty.$

$J$$J^{-1}$均在有界集上一致连续, 故由$Jz_{n}=\alpha_{n}Jx_n+ (1-\alpha_{n})Ju_{n}$$\lim\inf\limits_{n \rightarrow \infty}\alpha_{n} > 0 $$Ju_{n}-Jx_n \rightarrow 0,$再由$Ju_{n}=\beta_{n}Jy_{n}+ (1-\beta_{n})Je_{n}$$Jy_{n}-Ju_{n} \rightarrow 0,n \rightarrow \infty.$进而$Jy_{n}-Jx_{n}\rightarrow 0,n \rightarrow \infty.$$y_{n}- x_{n}\rightarrow 0,n \rightarrow \infty.$

由第一步知$\omega(x_n)\neq \emptyset.$于是$\forall q \in \omega(x_n),$存在$\{x_n\}$的子列, 不妨仍记为$\{x_{n}\}$使得$x_n \rightharpoonup q,$$n \rightarrow \infty.$从而$y_{n}\rightharpoonup q,$$n \rightarrow \infty.$$y_{n}$的定义又知$Jy_{n} +r_{n} AJy_{n} =J x_n$, 故$AJy_{n}\rightarrow 0,n \rightarrow \infty.$$(AJ)^{-1}0$是次闭的可知$q \in (AJ)^{-1}0.$

第三步 证$\{x_n\}$为Cauchy列.

$\forall m \in N,$由引理1.7知

$$\varphi(x_{n+m},x_n)\leq G(x_{n+m},Jx_0)-G(x_{n},Jx_0).$$ (2.1)

(反证法)若$\{x_n\}$不是Cauchy列, 则存在$\varepsilon_0 >0$$\{n\}$的两个子列$\{n_k\}$$\{m_k\}$使得$ \|x_{n_k+m_k}-x_{n_k}\|\geq \varepsilon_0 ,$ $\forall k \geq 1.$

于是(2.1) 式和$\lim\limits_{n \rightarrow \infty}G(x_n,Jx_0)$存在蕴含:当$k\rightarrow \infty$时,

$\begin{align} & \varphi(x_{n_k+m_k},x_{n_k})\leq G(x_{n_k+m_k},Jx_0)-G(x_{n_k},Jx_0)\\ & = G(x_{n_k+m_k},Jx_0)-\lim_{k\rightarrow \infty}G(x_{n_k+m_k},Jx_0)\\ & + \lim_{k\rightarrow \infty}G(x_{n_k},Jx_0)-G(x_{n_k},Jx_0) \rightarrow 0. \end{align}$

由引理1.4可知$\lim\limits_{k\rightarrow \infty}\|x_{n_k+m_k}-x_{n_k}\|= 0,$产生矛盾!因此$\{x_n\}$是Cauchy列.

第四步$x_n \rightarrow q $$ q = \Pi_{(AJ)^{-1}0}^f x_0$, 当$n \rightarrow \infty$.

$\{x_n\}$是Cauchy列, 故由第二步知存在$q \in E$使得$x_n \rightarrow q \in (AJ)^{-1}0,$$n \rightarrow \infty.$

下证$ q = \Pi_{(AJ)^{-1}0}^f x_0$.

$C_j \subset C_i,$ $\forall j \geq i \geq 0,$故多次应用引理1.7, 有

$$G(\Pi_{C_1}^f(x_0),Jx_0)\leq G(\Pi_{C_2}^f(x_0),Jx_0)\leq \cdots \leq G(\Pi_{C_n}^f(x_0),Jx_0)\leq G(\Pi_{\bigcap\limits _{n=1}^{\infty}C_n}^f(x_0),Jx_0).$$

因此由$(AJ)^{-1}0 \subset \bigcap\limits_{n =1}^{\infty}C_n$可知

$\begin{align} & G(q,J{{x}_{0}})=\underset{n\to \infty }{\mathop{\lim }}\,G({{x}_{n}},J{{x}_{0}}) \\ & =\underset{n\to \infty }{\mathop{\lim }}\,G(\Pi _{{{C}_{n}}}^{f}({{x}_{0}}),J{{x}_{0}}) \\ & \le G(\Pi _{\bigcap\limits_{n=1}^{\infty }{{{C}_{n}}}}^{f}({{x}_{0}}),J{{x}_{0}}) \\ & ={{\min }_{x\in \bigcap\limits_{n=1}^{\infty }{{{C}_{n}}}}}G(x,J{{x}_{0}}) \\ & \le {{\min }_{x\in \bigcap\limits_{n=1}^{\infty }{{{C}_{n}}}\bigcap{{{(AJ)}^{-1}}}0}}G(x,J{{x}_{0}}) \\ & =G(\Pi _{\bigcap\limits_{n=1}^{\infty }{{{C}_{n}}}\bigcap{{{(AJ)}^{-1}}}0}^{f}{{x}_{0}},J{{x}_{0}})=G(\Pi _{{{(AJ)}^{-1}}0}^{f}{{x}_{0}},J{{x}_{0}}). \end{align}$

$q \in (AJ)^{-1}0,$$ q = \Pi_{(AJ)^{-1}0}^f x_0.$

$$x_n \rightarrow q = \Pi^f_{(AJ)^{-1}0}x_0,n \rightarrow \infty.$$

从而

$$Jx_n \rightarrow Jq \in A^{-1}0,n \rightarrow \infty.$$

证毕.

模拟定理2.1的证明过程, 有

定理2.2 在引理2.3的假设条件下, 进一步假设正规对偶算子$J \subset E \times E^*$弱序列连续,

$$\inf_{n \geq 0}r_{n,i} >0,\lim\inf\limits_{n \rightarrow \infty}\alpha_{n,i} >0,\lim_{n \rightarrow \infty}\beta_{n,i} =1,i = 1,2,\cdots,m,$$

且存在正常数$M$使得$\|e_n\|\leq M,$则由(1.6) 式构造的迭代序列$\{x_n\}$满足$x_n \rightarrow \Pi_{D_1}(x_0),n \rightarrow \infty,$其中$D_1 := \bigcap\limits_{i=1}^m (A_iJ)^{-1}0. $

推论2.1 若$f \equiv 0,$$G(x,Jy) \equiv \varphi(x,y),\forall x,y \in E,$ $\Pi_{A^{-1}0}^f = \Pi_{A^{-1}0}.$从而单调投影算法$(1.5)$变成

$$\left\{ \begin{array}{lll} x_0 \in E,r_{0} > 0,\\ Ju_{n} = \beta_{n} JQ_{r_{n}}^{AJ}x_n +(1-\beta_{n})Je_n,n \geq 0,\\ Jz_{n} = \alpha_{n} Jx_n+(1-\alpha_{n})Ju_{n},n \geq 0,\\ C_{0} = E,\\ C_{n+1}=\{v \in C_{n}: \varphi(v,z_{n})\leq (\alpha_{n}+\beta_{n}-\alpha_{n}\beta_{n}) \varphi(v,x_n)\\ +(1-\alpha_{n})(1-\beta_{n})\varphi(v,e_n)\},n \geq 0,\\ x_{n+1}= \Pi_{C_{n+1}}x_0,\quad n\geq 0. \end{array} \right.$$ (2.2)

在定理2.1的假设条件下, $x_n \rightarrow \Pi_{(AJ)^{-1}0}x_0,$$n \rightarrow +\infty.$

推论2.2 若$f \equiv 0,$则单调投影算法(1.6) 变成

$$\left\{ \begin{array}{lll} x_0 \in E,r_{0,i} > 0,i =1,2,\cdots,m,\\ y_{n,i} = Q_{r_{n,i}}^{A_{i}J}x_n,n \geq 0,i =1,2,\cdots,m,\\ Ju_{n,i} = \beta_{n,i} Jy_{n,i}+(1-\beta_{n,i})Je_n,n \geq 0,i =1,2,\cdots,m,\\ Jz_{n,i} = \alpha_{n,i} Jx_n+(1-\alpha_{n,i})Ju_{n,i},n \geq 0,i =1,2,\cdots,m,\\ C_{0,i} = E,i = 1,2,\cdots,m,\\ C_0 = \bigcap\limits_{i = 1}^m C_{0,i},\\ C_{n+1,i}=\{v \in C_{n}: \varphi(v,z_{n,i})\leq (\alpha_{n,i}+\beta_{n,i}-\alpha_{n,i}\beta_{n,i}) \varphi(v,x_n)\\+ (1-\alpha_{n,i})(1-\beta_{n,i})\varphi(v,e_n)\},i = 1,2,\cdots,m,n \geq 0,\\ C_{n+1} = \bigcap\limits_{i=1}^m C_{n+1,i}, n \geq 0,\\ x_{n+1}= \Pi_{C_{n+1}}x_0,\quad n\geq 0. \end{array} \right.$$ (2.3)

在定理2.2的假设条件下, $x_n \rightarrow \Pi_{D_1}x_0,$$n \rightarrow +\infty.$

注2.1 在迭代算法(1.5) 中, $C_{n+1}\subset C_n,$ $\forall n \geq 0,$所以被称为单调投影迭代算法.与(1.4) 式相比, 投影集$Q_n$被去掉, 投影集$C_n$愈来愈小, 迭代的计算量也会愈来愈小.

注2.2 因为在Hilbert空间中$m-d$增生映射就是$m$增生映射, 所以当$E$退化成Hilbert空间后, (1.5) 和(1.6) 式就分别演变成单个或有限个$m$增生映射零点的迭代算法.

3 弱收敛定理

定理3.1 假设$E$为实一致光滑、一致凸Banach空间, $A \subset E^* \times E^*$$m-d$增生映射且$A^{-1}0 \neq \emptyset.$ $\{e_n\} \subset E,$ $\{r_n\} \subset (0,+\infty),\{\alpha_n\},\{\beta_n\} \subset (0,1].$进一步假设正规对偶算子$J\subset E\times E^*$是弱序列连续的,

$$\inf_{n \geq 0}r_{n} >0,\sum_{n = 0}^\infty \alpha_{n}(1-\beta_{n}) < +\infty $$

且存在正常数$M$使得$\|e_n\|\leq M.$则由(1.7) 式产生的迭代序列$\{x_n\}$满足

$$x_n \rightharpoonup \Pi_{(AJ)^{-1}0} x_0,n \rightarrow \infty.$$

第一步 证$\{x_n\}$有界. $\forall p \in (AJ)^{-1}0,$由引理1.5有

$\begin{eqnarray} \varphi(p,x_{n+1}) \leq (1-\alpha_n)\varphi(p,x_n)+\alpha_n \varphi(p,u_n)\nonumber\\ \leq (1-\alpha_n)\varphi(p,x_n)+\alpha_n[\beta_n \varphi(p,y_n)+(1-\beta_n)\varphi(p,e_n)]\nonumber\\ \leq [1-\alpha_n(1-\beta_n)]\varphi(p,x_n)+\alpha_n(1-\beta_n)\varphi(p,e_n). \end{eqnarray}$

由引理1.8, $\lim\limits_{n \rightarrow \infty}\varphi(p,x_n)$存在, 从而$\{x_n\}$有界.

第二步 证$\omega(x_n) \subset (AJ)^{-1}0,$其中$\omega(x_n)$$\{ x_n \}$的所有弱收敛子列的弱极限点的全体.

$\{ x_n \}$有界, 故$\omega(x_n)\neq \emptyset.$从而存在$\{ x_n \}$的子列, 不妨仍记作$\{ x_n \}$满足$x_n \rightharpoonup x,n \rightarrow \infty$.

$\forall p \in (AJ)^{-1}0,$再次应用引理1.5, 有

$\begin{eqnarray*} \varphi(p,x_{n+1})\leq (1-\alpha_n)\varphi(p,x_n)+\alpha_n\beta_n [\varphi(p,x_n)-\varphi(Q_{r_n}^{AJ}x_n,x_n)] +\alpha_n(1-\beta_n)\varphi(p,e_n) \\ \leq [1-\alpha_n(1-\beta_n)]\varphi(p,x_n)-\alpha_n\beta_n\varphi(Q_{r_n}^{AJ}x_n,x_n)+\alpha_n(1-\beta_n) \varphi(p,e_n). \end{eqnarray*}$

于是由$\lim\limits_{n \rightarrow \infty}\varphi(p,x_n)$存在, $\{x_n\}$有界及已知条件, 利用引理1.4, $Q_{r_{n}}^{AJ}x_n - x_n \rightarrow 0,$从而$Q_{r_n}^{AJ}x_n \rightharpoonup x,n \rightarrow \infty.$$y_n = Q_{r_n}^{AJ}x_n,$由引理1.1 (iii), $AJy_n = \frac{Jx_n - Jy_n}{r_n},n \rightarrow \infty.$$G(AJ)$次闭, 故$x\in (AJ)^{-1}0.$

第三步 存在唯一的$v_0 \in (AJ)^{-1}0$满足

$$\mathop {\lim }\limits_{n \to \infty } \varphi ({v_0},{x_n}) = \mathop {\min }\limits_{y \in D} \mathop {\lim }\limits_{n \to \infty } \varphi (y,{x_n}).$$

事实上, 令$h(y) = \lim\limits_{n\rightarrow \infty}\varphi(y,x_n),$ $\forall y \in (AJ)^{-1}0.$$h: (AJ)^{-1}0 \rightarrow R^+$为正则、凸、下半连续函数且$h(y) \rightarrow +\infty,$$\|y\|\rightarrow +\infty.$因此存在$v_0 \in (AJ)^{-1}0$使得$h(v_0) = \min\limits_{y \in D}h(y).$$h$严格凸, 故$v_0$唯一.

第四步$\lim\limits_{n\rightarrow \infty}\varphi(\Pi_{(AJ)^{-1}0}x_n,x_n)$存在.

$\Pi_{(AJ)^{-1}0}$的定义知$\varphi(\Pi_{(AJ)^{-1}0}x_{n+1},x_{n+1})\leq \varphi(\Pi_{(AJ)^{-1}0} x_n,x_{n+1}).$

再利用(3.1) 式, 有

$$\varphi(\Pi_{(AJ)^{-1}0}x_n,x_{n+1}) \leq [1-\alpha_n(1-\beta_n)]\varphi(\Pi_{(AJ)^{-1}0}x_n,x_{n})+\alpha_n(1-\beta_n)\varphi(\Pi_{(AJ)^{-1}0}x_n,e_{n}).$$

因此

$$\varphi(\Pi_{(AJ)^{-1}0}x_{n+1},x_{n+1})\leq \varphi(\Pi_{(AJ)^{-1}0}x_n,x_{n})+\alpha_n(1-\beta_n)\varphi(\Pi_{(AJ)^{-1}0}x_n,e_{n}).$$

对第三步中的$v_0,$应用引理1.9有

$$\varphi(v_0,\Pi_{(AJ)^{-1}0}x_{n})\leq \varphi(v_0,x_{n})-\varphi(\Pi_{(AJ)^{-1}0}x_n,x_{n})\leq \varphi(v_0,x_n).$$ (3.2)

从而由(3.2) 式及$\{x_n\}$有界知$\{\Pi_{(AJ)^{-1}0}x_n\}$有界.于是引理1.8蕴含

$$\lim\limits_{n\rightarrow \infty}\varphi(\Pi_{(AJ)^{-1}0}x_n,x_n)$$

存在.

第五步$\lim\limits_{n \rightarrow \infty} \Pi_{(AJ)^{-1}0}x_n = v_0,$其中$v_0$同于第三步.

对(3.2) 式两边取极限, 有

$\begin{align} & \lim \underset{n\to \infty }{\mathop{\sup }}\,\varphi ({{v}_{0}},{{\Pi }_{{{(AJ)}^{-1}}0}}{{x}_{n}})\le \underset{n\to \infty }{\mathop{\lim }}\,\varphi ({{v}_{0}},{{x}_{n}})-\underset{n\to \infty }{\mathop{\lim }}\,\varphi ({{\Pi }_{{{(AJ)}^{-1}}0}}{{x}_{n}},{{x}_{n}}) \\ & =h({{v}_{0}})-\underset{n\to \infty }{\mathop{\lim }}\,\varphi ({{\Pi }_{{{(AJ)}^{-1}}0}}{{x}_{n}},{{x}_{n}})\le 0. \end{align}$

引理1.4蕴含$\Pi_{(AJ)^{-1}0}x_n \rightarrow v_0,$$n \rightarrow \infty.$

第六步$x_n \rightharpoonup v_0,$其中$v_0$同于第三步和第五步.

由引理1.6,

$$\forall y\in (AJ)^{-1}0,\langle \Pi_{(AJ)^{-1}0}x_n - y,J\Pi_{(AJ)^{-1}0}x_n - Jx_n\rangle \leq 0.$$ (3.3)

利用第五步及引理1.1 (iii)知$J\Pi_{(AJ)^{-1}0}x_n \rightarrow Jv_0,$$n \rightarrow \infty.$

$\{x_n\}$有界, 故存在$\{x_n\}$的子列$\{x_{n_{j}}\}$满足$x_{n_{j}} \rightharpoonup x_0,$$j \rightarrow \infty.$由第二步$x_0 \in (AJ)^{-1}0.$由假设“$J$是弱序列连续的”有$Jx_{n_j}\rightharpoonup Jx_0,$$j \rightarrow \infty.$把(3.3) 式中的$\{x_n\}$换成$\{x_{n_j}\}$后取极限, 有

$$\forall y\in (AJ)^{-1}0,\langle v_0 - y,Jv_0 - Jx_0\rangle \leq 0.$$ (3.4)

在(3.4) 式中令$y = x_0$, 有$\langle v_0 - x_0,Jv_0 - Jx_0\rangle \leq 0.$$J$严格单调, 故$x_0 = v_0.$

假设存在$\{x_n\}$的另一子列$\{x_{n_{l}}\}$满足$x_{n_{l}} \rightharpoonup x_1,$$l \rightarrow \infty.$$x_1 \in (AJ)^{-1}0$$Jx_{n_l}\rightharpoonup Jx_1,$$l \rightarrow +\infty.$重复以上过程$x_1 = v_0.$因此$\{x_n\}$的所有弱收敛子列收敛到同一元$v_0$.所以$x_n \rightharpoonup v_0,$$n \rightarrow \infty.$从而$Jx_n \rightharpoonup Jv_0 \in A^{-1}0,$$n \rightarrow \infty.$证毕.

定理3.2 假设$E$为实一致光滑、一致凸Banach空间, $A_i \subset E^* \times E^*$ $(i = 1,2,\cdots,m)$$m-d$增生映射且$D:= \bigcap\limits_{i=1}^m A_i^{-1}0 \neq \emptyset.$正规对偶算子$J\subset E\times E^*$弱序列连续, $\{e_n\} \subset E,\{r_{n,i}\}\subset (0,+\infty),$ $\{\alpha_{n,i}\},\{\beta_{n,j}\} \subset (0,1],i = 1,2,\cdots,m; j = 1,2,\cdots,m+1.$$\sum\limits_{j=1}^{m+1}\beta_{n,j} = 1,$ $\inf_{n \geq 0}r_{n,i} >0,\sum\limits_{n = 0}^\infty \alpha_{n,i}(1-\beta_{n,i}) < +\infty$ $(i = 1,2,\cdots,m)$且存在正常数$M$使得$\|e_n\|\leq M,$则由(1.8) 式产生的迭代序列$\{x_n\}$满足$x_n \rightharpoonup \Pi_{D_1}(x_0),n \rightarrow \infty,$其中$D_1 = \bigcap\limits_{i=1}^m (A_iJ)^{-1}0.$$Jx_n \rightharpoonup J\Pi_{D_1}(x_0),n \rightarrow \infty.$

注3.1 当$E$蜕化成Hilbert空间, $J \equiv I$$m-d$增生映射即为$m$增生映射. (1.7) 和(1.8) 式便成为$m$增生映射零点的迭代格式.

参考文献
[1] Chidume C E, Zegeye H. Iterative solution of $0\in Ax$ for an m-accretive operator $A$ in certain Banach spaces[J]. J. Math.Anal. Appl., 2002, 269: 421–430. DOI:10.1016/S0022-247X(02)00015-X
[2] Reich S. Constructive techniques for accretive and monotone operators[J]. Appl. Nonl. Anal., 1979: 335–345.
[3] Rockafellar R T. Monotone operators and the proximal point algorithm[J]. SIAM J. Control Optim., 1976, 14: 877–898. DOI:10.1137/0314056
[4] Kamimura S, Takahashi W. Weak and strong convergence of solutions to accretive operator inclusions and applications[J]. Set. Valued Anal., 2000, 8: 361–374. DOI:10.1023/A:1026592623460
[5] 魏利, 周海云. Banach空间中有限个增生算子公共零点的带误差项的迭代格式[J]. 数学杂志, 2009, 29(3): 329–334.
[6] Alber Y, Reich S. Convergence of averaged approximations to null points of a class of nonlinear mapping[J]. Commu. Appli.Nonli. Anal., 2000, 7: 1–20.
[7] 管维荣. 非线性系统平衡点迭代算法的研究[D]. 石家庄: 军械工程学院, 2007.
[8] Takahashi W. Nonlinear functional analysis[M]. Yokohama: Yokohama Publishers, 2000.
[9] Pascali D, Sburlan S. Nonlinear mappings of monotone type[M]. Romania: Sijthoff and Noordhoff, 1978.
[10] Alber Y I. Metric and generalized projection operators in Banach spaces: properties and applications[J]. Kartsatos A. Theory and applications of nonlinear operators of accretive and monotone type[C]. New York: Marcel Dekker, 1996: 15–50.
[11] Takahashi W. Proximal point algorithms and four resolvents of nonlinear operators of monotone type in Banach spaces[J]. Taiwanese J. Math., 2008, 12(8): 1883–1910.
[12] Kamimura S, Takahashi W. Strong convergence of a proximal type algorithm in a Banach space[J]. SIAM J. Optim., 2003, 13(3): 938–945.
[13] Li X, Huang N J, O'Regan D. Strong convergence theorems for relatively nonexpansive mapping in Banach spaces with applications[J]. Compt. Math. Appl., 2010, 60: 1322–1331. DOI:10.1016/j.camwa.2010.06.013
[14] Osilike O. Iterative solutions of nonlinear equations of the $\Phi$-strongly accretive type[J]. Math. Anal. Appl., 1996, 1: 153–167.