数学杂志  2016, Vol. 36 Issue (3): 559-565   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
陆万春
易才凤
彭友花
右半平面上解析的Laplace-Stieltjes变换对数级
陆万春1, 易才凤2, 彭友花1     
1. 萍乡学院数学系, 江西 萍乡 337055;
2. 江西师范大学数学与信息科学学院, 江西 南昌 330027
摘要:本文研究了零级Laplace-Stieltjes变换的增长性问题.利用对数级和对数下级的定义, 获得了这类变换具有对数级的特征, 即变换的对数级和对数下级与其系数之间的关系, 推广了Dirichlet级数的相关结果.
关键词Lapalace-Stieltjes变换    增长性    零级    对数级    
ON THE LOGARITHMIC ORDER OF LAPLACE-STIELTJES TRANSFORMATIONS CONVERGENT IN THE RIGHT HALF-PLANE
LU Wan-chun1, YI Cai-feng2, PENG You-hua1     
1. Department of Mathematics, Pingxiang University, Pingxiang 337055, China;
2. School of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330027, China
Abstract: In this paper, the growth of the Laplace-Stieltjes transforms of zero order convergent in right half-plane is investigated. By using the deflnition of logarithmic order and lower logarithmic order, the relations between logarithmic order and lower logarithmic order and "coefficients" of the transformations is obtained. Some results of Dirichlet series are improved.
Key words: Laplace-Stieltjes transform     growth     zero order     logarithmic order    
1 引言

关于Laplace-Stieltjes变换所定义的函数增长性, 余家荣首先在文[1]中得到Valiron-Knopp-Bohr公式, 并利用该公式得到了有关“最大模”和“最大项”的相关估计.在此基础上, 文献[2-6]通过定义(R)级以及引入型函数定义的精确级研究了在半平面上解析的Laplace-Stieltjes增长性, 文[2]还通过定义指数级研究了在半平面上解析的具有相同零级的Laplace-Stieltjes变换的增长性, 得到了一些较好的结果.本文将通过引入对数级, 进一步精确地研究在右半平面上具有零级的Laplace-Stieltjes变换的增长性, 并得到关于这类变换的增长性的系数特征.考虑Laplace-Stieltjes变换所定义的函数

$\begin{aligned} F(s) = \int_0^{+\infty} {{{\rm{e}}^{ - sx}}{\rm{d}}\alpha (x)} \ \ (s=\sigma+it, \sigma, t \in \mathbb{R}), \end{aligned}$ (1)

$\alpha (x)$是对于$x \ge 0$有定义的实数或复数值函数, 而且它在任何闭区间$[0, X]$ $(0 < X < + \infty )$上是囿变的.

作序列

$\begin{aligned} 0 = {\lambda _0} < {\lambda _1} < {\lambda _2} < \cdots < {\lambda _n} \uparrow + \infty, \end{aligned}$ (2)

并且满足

$\begin{aligned} \overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{n}}{{{\lambda _n}}} =D<+ \infty, \overline {\mathop {\lim }\limits_{n \to \infty } } ({\lambda _{n + 1}} - {\lambda _n}) = h < + \infty. \end{aligned}$ (3)

$A_n^* = \mathop {\sup }\limits_{{\lambda _n} < x \le {\lambda _{n + 1}}, t \in \mathbb{R}} \left| {\displaystyle\int_{{\lambda _n}}^x {{{\rm{e}}^{ - {\rm{i}}ty}}{\rm{d}}\alpha (y)} } \right|$, 由文[1]知, 当序列(2) 满足

$\begin{aligned} \overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{\log A_n^*}}{{{\lambda _n}}} = 0 \end{aligned}$ (4)

时, 变换(1) 的一致收敛横坐标为$\sigma _u^F = 0$, 此时变换(1) 定义的函数$F(s)$为右半平面上的解析函数.对$\sigma > 0$时, 记

$\begin{align} &{{M}_{u}}(\sigma ,F)=\underset{0<x<+\infty ,t\in \mathbb{R}}{\mathop{\sup }}\,\left| \int_{0}^{x}{{{\text{e}}^{-(\sigma +\text{i}t)y}}\text{d}\alpha (y)} \right|,\mu (\sigma ,F)=\underset{1\le n<+\infty }{\mathop{\max }}\,A_{n}^{*}{{\text{e}}^{-{{\lambda }_{n}}\sigma }}, \\ &N(\sigma )=\max \{n:\mu (\sigma ,F)=A_{n}^{*}{{\text{e}}^{-{{\lambda }_{n}}\sigma }}\}. \\ \end{align}$

定义 1.1 如果变换(1) 满足(2)--(4) 式, 定义变换(1) 在右半平面的增长级为

$\rho = \overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{{{\log }^ + }{{\log }^ + }{M_u}(\sigma, F)}}{{ - \log \sigma }}, $

$\rho = 0$时, 称$F(s)$是右半平面上的零级L-S变换.

定义 1.2 设$F(s)$是右半平面上的零级L-S变换, 且存在$\varepsilon > 0$, 使得

$\begin{aligned} \frac{{\mu (\sigma, F)}}{{{\sigma ^{ - \varepsilon }}}} \to \infty (\sigma \to 0), \end{aligned}$ (5)

定义$F(s)$的对数级${\rho ^*}$和下对数级${\lambda ^*}$

${\rho ^*} = \overline {\mathop {\lim }\limits_{\sigma \to 0 + } } \frac{{{{\log }^ + }{{\log }^ + }{M_u}(\sigma, F)}}{{\log \log \frac{1}{\sigma }}}, {\lambda ^*} = \mathop {\underline {\lim } }\limits_{\sigma \to 0 + } \frac{{{{\log }^ + }{{\log }^ + }{M_u}(\sigma, F)}}{{\log \log \frac{1}{\sigma }}}.$
2 引理及证明

引理 2.1[2] 设变换(1) 满足(2)--(4) 式, 则对任意给定$\varepsilon \in (0, 1)$和充分接近0的$\sigma (\sigma > 0)$, 有

$\frac{1}{3}\mu (\sigma, F) \le {M_u}(\sigma, F) \le K(\varepsilon )\mu ((1-\varepsilon )\sigma, F)\frac{1}{\sigma },$

其中$K(\varepsilon )$是只与$\varepsilon$有关的常数.

注 1 由引理2.1及条件(5), 我们可以得到$1 \le {\lambda ^*}, {\rho ^*} \le + \infty $.

引理 2.2[2] 设变换(1) 满足(2)--(4) 式, 则存在$\delta > 0$, 当$0 < \sigma < \delta$时,

$\log \mu (\sigma, F) = A - \int_\delta ^\sigma {{\lambda _{n(x)}}dx}, $

其中$A$为常数.

由文[7]中定理3.2的证明, 有

引理 2.3关天$x$的函数$g(x) = {(\log x)^T} + rx$的最大值为${\left[{\log \frac{T}{{-r}}} \right]^T} - T$, 其中$r < 0, x \ge 0$.

3 定理及证明

定理 3.1 设变换(1) 满足(2)--(5) 式, 且有对数级${\rho ^*}$, 则$\max \{ 1, \overline {\mathop {\lim }\limits_{n \to + \infty } } \frac{{{{\log }^ + }{{\log }^ + }A_n^*}}{{\log \log {\lambda _n}}}\} = {\rho ^*}.$

 设$\max \{ 1, \overline {\mathop {\lim }\limits_{n \to + \infty } } \frac{{{{\log }^ + }{{\log }^ + }A_n^*}}{{\log \log {\lambda _n}}}\} = u$, 则$1 \le u \le \infty $.

先证明$u \le {\rho ^*}$, 不妨假设${\rho ^*} < + \infty $, 则$\forall \varepsilon > 0$, $\exists {\sigma _0} = {\sigma _0}(\varepsilon ) > 0$, 当$0 < \sigma < {\sigma _0}$时,

$\log {M_u}(\sigma, F) < {(\log \frac{1}{\sigma })^{{\rho ^*} + \varepsilon }}.$

由引理2.1, 则有$\log \mu (\sigma, F) < \log 3 + {(\log \frac{1}{\sigma })^{{\rho ^*} + \varepsilon }}, $所以$\log A_n^* < \log 3 + {(\log \frac{1}{\sigma })^{{\rho ^*} + \varepsilon }} + {\lambda _n}\sigma.$$n$使得$\frac{1}{\sigma } = \frac{{{\lambda _n}}}{{{\rho ^*} + \varepsilon }}$, 则

$\log \log A_n^* < O(1) + ({\rho ^*} + \varepsilon )\log \log (\frac{{{\lambda _n}}}{{{\rho ^*} + \varepsilon }}) + {\rho ^*} + \varepsilon .$

所以由$\varepsilon $的任意性, 则有$\overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{{{\log }^ + }{{\log }^ + }A_n^*}}{{\log \log {\lambda _n}}} \le {\rho ^*}.$而当${\rho ^*} = + \infty $时上式显然成立, 故$u \le {\rho ^*}$.

下证$u \ge {\rho ^*}$, 不妨假设$u < + \infty $, 则对$\forall \varepsilon > 0$, $\exists {n_0} = {n_0}(\varepsilon ) > 0$, 当$n > {n_0}$时,

$\begin{aligned} \log A_n^* < {(\log {\lambda _n})^{u + \varepsilon }}. \end{aligned}$ (6)

另一方面,

$\int_0^x {{{\rm{e}}^{ - (\sigma + {\rm{i}}t)y}}{\rm{d}}\alpha (y)} = \sum\limits_{k = 1}^{n - 1} {\int_{{\lambda _k}}^{{\lambda _{k + 1}}} {{{\rm{e}}^{ - (\sigma + {\rm{i}}t)y}}{\rm{d}}\alpha (y)} + } \int_{{\lambda _n}}^x {{{\rm{e}}^{ - (\sigma + {\rm{i}}t)y}}{\rm{d}}\alpha (y)} \ \ ({\lambda _n} < x \le {\lambda _{n + 1}}), $

${I_k}(x, {\rm{i}}t) = \int_{{\lambda _k}}^x {{{\rm{e}}^{ - {\rm{i}}ty}}{\rm{d}}\alpha (y)} \ \ ({\lambda _n} < x \le {\lambda _{n + 1}}), $

则当${\lambda _k} \le x \le {\lambda _{k + 1}}, - \infty < t < + \infty $

$\left| {{I_k}(x, {\rm{i}}t)} \right| \le A_k^* \le \mu (\sigma, F){{\rm{e}}^{{\lambda _k}\sigma }}.$

又由于

$\begin{array}{*{35}{l}} \int_{{{\lambda }_{k}}}^{{{\lambda }_{k+1}}}{{{\text{e}}^{-\sigma y}}{{\text{d}}_{y}}{{I}_{k}}(y,\text{i}t)}&=\left. [{{\text{e}}^{-\sigma y}}{{I}_{k}}(y,\text{i}t)] \right|_{{{\lambda }_{k}}}^{{{\lambda }_{k+1}}}-\int_{{{\lambda }_{k}}}^{{{\lambda }_{k+1}}}{{{I}_{k}}(y,\text{i}t)\text{d}{{\text{e}}^{-\sigma y}}} \\ {}&={{\text{e}}^{-\sigma {{\lambda }_{k+1}}}}{{I}_{k}}({{\lambda }_{k+1}},\text{i}t)-{{\text{e}}^{-\sigma {{\lambda }_{k}}}}{{I}_{k}}({{\lambda }_{k}},\text{i}t)+\sigma \int_{{{\lambda }_{k}}}^{{{\lambda }_{k+1}}}{{{I}_{k}}(y,\text{i}t){{\text{e}}^{-\sigma y}}\text{dy}} \\ {}&={{\text{e}}^{-\sigma {{\lambda }_{k+1}}}}{{I}_{k}}({{\lambda }_{k+1}},\text{i}t)+\sigma \int_{{{\lambda }_{k}}}^{{{\lambda }_{k+1}}}{{{I}_{k}}(y,\text{i}t){{\text{e}}^{-\sigma y}}\text{dy}}, \\ \end{array}$

同理有

$\int_{{\lambda _n}}^x {{{\rm{e}}^{-\sigma y}}{{\rm{d}}_y}{I_n}(y, {\rm{i}}t)}= {{\rm{e}}^{-\sigma x}}{I_n}(x, {\rm{i}}t) + \sigma \int_{{\lambda _n}}^x {{I_n}(y, {\rm{i}}t){{\rm{e}}^{-\sigma y}}{\rm{dy}}}.$

于是当${\lambda _n} \le x \le {\lambda _{n + 1}}, \sigma > 0$

$\begin{array}{*{35}{l}} \int_{0}^{x}{{{\text{e}}^{\text{-}(\sigma \text{+it})\text{y}}}\text{d}\alpha (\text{y})}&=&\sum\limits_{k=1}^{n-1}{\int_{{{\lambda }_{k}}}^{{{\lambda }_{k+1}}}{{{\text{e}}^{\text{-}\sigma \text{y}}}{{\text{d}}_{\text{y}}}{{I}_{k}}(y,\text{it})}+}\int_{{{\lambda }_{n}}}^{x}{{{\text{e}}^{\text{-}\sigma \text{y}}}{{\text{d}}_{\text{y}}}{{I}_{n}}(y,\text{it})} \\ {}&=&\sum\limits_{k=1}^{n-1}{[{{\text{e}}^{\text{-}{{\lambda }_{\text{k+1}}}\sigma }}{{I}_{k}}({{\lambda }_{k+1}},\text{it})+\sigma \int_{{{\lambda }_{k}}}^{{{\lambda }_{k+1}}}{{{\text{e}}^{\text{-}\sigma \text{y}}}{{I}_{k}}(y,\text{it})\text{dy}]}} \\ {}&{}&+{{\text{e}}^{-x\sigma }}{{I}_{n}}(x,\text{i}t)+\sigma \int_{{{\lambda }_{n}}}^{x}{{{\text{e}}^{-\sigma y}}{{I}_{n}}(y,\text{i}t)}\text{d}y, \\ \end{array}$

从而

$\begin{array}{*{35}{l}} \left| \int_{0}^{x}{{{\text{e}}^{\text{-}(\sigma \text{+it})\text{y}}}\text{d}\alpha (\text{y})} \right|&\le &\sum\limits_{k=1}^{n-1}{[{{\text{e}}^{\text{-}{{\lambda }_{\text{k+1}}}\sigma }}\left| {{I}_{k}}({{\lambda }_{k+1}},\text{it}) \right|+\sigma \int_{{{\lambda }_{k}}}^{{{\lambda }_{k+1}}}{{{\text{e}}^{\text{-}\sigma \text{y}}}\left| {{I}_{k}}(y,\text{it}) \right|\text{dy}]}} \\ {}&{}&+{{\text{e}}^{-x\sigma }}\left| {{I}_{n}}(x,\text{i}t) \right|+\sigma \int_{{{\lambda }_{n}}}^{x}{{{\text{e}}^{-\sigma y}}\left| {{I}_{n}}(y,\text{i}t) \right|}\text{d}y \\ {}&\le &\sum\limits_{k=1}^{n-1}{[A_{k}^{*}{{\text{e}}^{\text{-}{{\lambda }_{\text{k+1}}}\sigma }}+A_{k}^{*}({{\text{e}}^{\text{-}\sigma {{\lambda }_{\text{k}}}}}-{{\text{e}}^{\text{-}\sigma {{\lambda }_{\text{k+1}}}}})]}+A_{n}^{*}{{\text{e}}^{\text{-}\sigma {{\lambda }_{\text{n}}}}} \\ {}&\le &\sum\limits_{n=1}^{\infty }{A_{n}^{*}{{\text{e}}^{\text{-}{{\lambda }_{\text{n}}}\sigma }}}. \\ \end{array}$

所以由(6) 式

${M_u}(\sigma, F) \le\sum\limits_{n = 1}^{{n_0}} {A_n^*{{\rm{e}}^{ - {\lambda _n}\sigma }}} + \sum\limits_{n = {n_0} + 1}^{ + \infty } {A_n^*{{\rm{e}}^{ - {\lambda _n}\sigma }}}\le P({n_0}) + \sum\limits_{n = {n_0} + 1}^\infty {\exp \{ } {(\log {\lambda _n})^{u + \varepsilon }} - {\lambda _n}\sigma \},$ (7)

其中$P({n_0})$是与${n_0}$有关的常数.取$N$满足$N = (D + \varepsilon )\frac{2}{\sigma }{(\log \frac{2}{\sigma })^{u + \varepsilon }}$, 由(7) 式和引理2.3有

${M_u}(\sigma, F) \le P({n_0}) + \sum\limits_{n = {n_0} + 1}^N {\exp \{ {{(\log {\lambda _n})}^{u + \varepsilon }} - {\lambda _n}\sigma \} } + \sum\limits_{n = N + 1}^\infty {\exp \{ {{(\log {\lambda _n})}^{u + \varepsilon }} - {\lambda _n}\sigma \} } \\ \le P({n_0}) + N(\exp \{ {(\log \frac{{u + \varepsilon }}{\sigma })^{u + \varepsilon }} - (u + \varepsilon )\} ) + \sum\limits_{n = N + 1}^\infty {\exp \{ {{(\log {\lambda _n})}^{u + \varepsilon }} - {\lambda _n}\sigma \} }.$

对于每个$\sigma > 0$, 定义函数$n(\sigma )$满足${\lambda _{n(\sigma )}} < \frac{2}{\sigma } < {\lambda _{n(\sigma ) + 1}}$, 则对充分接近0的$\sigma (\sigma > 0)$, 由(3) 式中第一个等式, 当$n > N$时,

${\lambda _n} > \frac{n}{{D + \varepsilon }} > \frac{N}{{D + \varepsilon }} = \frac{2}{\sigma }{(\log \frac{2}{\sigma })^{u + \varepsilon }} > \frac{2}{\sigma }{(\log {\lambda _n})^{u + \varepsilon }}.$

所以

$\quad\sum\limits_{n = N + 1}^\infty {\exp \{ {{(\log {\lambda _n})}^{u + \varepsilon }} - {\lambda _n}\sigma \} } \le \sum\limits_{n = N + 1}^\infty {\exp \{ - \frac{{{\lambda _n}\sigma }}{2}\} } \\ \le \sum\limits_{n = N + 1}^\infty {\exp \{ - \frac{{n\sigma }}{{2(D + \varepsilon )}}\} } = \frac{{\exp \{ \frac{{ - \sigma (N + 1)}}{{2(D + \varepsilon )}}\} }}{{1 - \exp \{ \frac{{ - \sigma }}{{2(D + \varepsilon )}}\} }} \le \frac{{\exp \{ \frac{{ - \sigma N}}{{2(D + \varepsilon )}}\} }}{{1 - \exp \{ \frac{{ - \sigma }}{{2(D + \varepsilon )}}\} }}.$

由于

$\mathop {\lim }\limits_{\sigma \to 0} \frac{{\exp \{ \frac{{-\sigma N}}{{2(D + \varepsilon )}}\} }}{{1-\exp \{ \frac{{-\sigma }}{{2(D + \varepsilon )}}\} }} = \mathop {\lim }\limits_{\sigma \to 0} \frac{{\exp \{ - {{(\log \frac{2}{\sigma })}^{u + \varepsilon }}\} }}{{\frac{\sigma }{{2(D + \varepsilon )}}(1 + o(\sigma ))}} = 0,$

所以

$\sum\limits_{n = N + 1}^\infty {\exp \{ {{(\log {\lambda _n})}^{u + \varepsilon }} - {\lambda _n}\sigma \} } = o(1)\ \ (\sigma \to 0) .$

所以对充分接近0的$\sigma (\sigma > 0)$,

${M_u}(\sigma, F) \le P({n_0}) + N(\exp \{ {(\log \frac{{u + \varepsilon }}{\sigma })^{u + \varepsilon }}-(u + \varepsilon )\} ) + o(1),$

$\log \log {M_u}(\sigma, F) \le (1-o(1))(u + \varepsilon )\log \log \frac{{u + \varepsilon }}{\sigma } + o(1),$

$\varepsilon$的任意性, 有

$\overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{\log \log {M_u}(\sigma, F)}}{{\log \log \frac{1}{\sigma }}} \le u.$

由于$u = + \infty $时上式是显然成立的, 所以${\rho ^*} \le u$.

定理 3.2 设变换(1) 满足(2)--(5) 式, 且有对数级${\rho ^*}$, 则

$\overline {\mathop {\lim }\limits_{\sigma \to 0} }\frac{{{{\log }^ + }{{\log }^ + }\mu (\sigma, F)}}{{\log \log \frac{1}{\sigma }}} = \overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{{{\log }^ + }{{\log }^ + }{M_u}(\sigma, F)}}{{\log \log \frac{1}{\sigma }}} = {\rho ^*}.$

 作Dirichlet级数

$f(s) = \sum\limits_{n = 1}^{ + \infty } {A_n^*{{\rm{e}}^{ - {\lambda _n}s}}},$ (8)

则级数(8) 所确定的函数是右半平面上的解析函数, 由文[8]中定理1.1和定理1.2有

$\max \{ 1, \overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{{{\log }^ + }{{\log }^ + }A_n^*}}{{\log \log {\lambda _n}}}\} = \overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{{{\log }^ + }{{\log }^ + }\mu (\sigma, F)}}{{\log \log \frac{1}{\sigma }}},$

再由定理3.1, 可知定理成立.

定理 3.3 设变换(1) 满足(2)--(5) 式, 且有对数级${\rho ^*}(1 < {\rho ^*} < + \infty )$, 则\[{\rho ^*}-1 \le \overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{\log ({\lambda _{N(\sigma)}}\sigma)}}{{\log \log \frac{1}{\sigma }}}\} \le {\rho ^*}.\]

 设$\overline {\mathop {\lim }\limits_{\sigma \to 0}} \frac{{\log ({\lambda _{N(\sigma )}}\sigma )}}{{\log \log \frac{1}{\sigma }}}\} = \theta $, 则$\forall \varepsilon > 0, \exists {\sigma _1} = {\sigma _1}(\varepsilon ) > 0$, 当$0 < \sigma < {\sigma _1}$时,

$\begin{aligned} {\lambda _{N(\sigma )}}\sigma < {(\log \frac{1}{\sigma })^{\theta + \varepsilon }}, \end{aligned}$ (9)

由引理2.2,

$\log \mu (\sigma, F) = A-\int_{{\sigma _0}}^\sigma {{\lambda _{N(x)}}{\rm{d}}x}.$

${\sigma _0} = \min \{ \delta, {\sigma _1}\} $, 则当$0 < \sigma < {\sigma _0}$时, 由(9) 式有

$\begin{array}{*{20}{l}} {\log \mu (\sigma ,F)}&{ < A - \int_{{\sigma _0}}^\sigma {\frac{{{{(\log \frac{1}{x})}^{\theta + \varepsilon }}}}{x}{\rm{d}}x} }\\ {}&{ \le A + \frac{1}{{\theta + \varepsilon + 1}}[{{(\log \frac{1}{\sigma })}^{\theta + \varepsilon + 1}} - {{(\log \frac{1}{{{\sigma _0}}})}^{\theta + \varepsilon + 1}}]}\\ {}&{ \le \frac{1}{{\theta + \varepsilon + 1}}{{(\log \frac{1}{\sigma })}^{\theta + \varepsilon + 1}} + O(1).} \end{array}$

$\varepsilon$的任意性, 有

$\overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{{{\log }^ + }{{\log }^ + }\mu (\sigma, F)}}{{\log \log \frac{1}{\sigma }}} \le \theta + 1,$

再由定理3.2, 则有${\rho ^*} \le \theta + 1$.

另一方面, 由${\rho ^*} = \overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{{{\log }^ + }{{\log }^ + }{M_u}(\sigma, F)}}{{\log \log \frac{1}{\sigma }}}$, 则$\forall \varepsilon > 0, \exists {\sigma _1} = {\sigma _1}(\varepsilon ) > 0$, 当$0 < \sigma < {\sigma _1}$时,

$\log {M_u}(\sigma, F) < {(\log \frac{1}{\sigma })^{{\rho ^*} + \varepsilon }}.$

由引理1.1, 则有

$\begin{aligned} \log \mu (\sigma, F) < \log 3 + {(\log \frac{1}{\sigma })^{{\rho ^*} + \varepsilon }}, \end{aligned}$ (10)

由(3) 式, 对上述的$\varepsilon $$\sigma $

$\sigma N(\sigma ) < (D + \varepsilon ){\lambda _{N(\sigma )}}\sigma \le-2(D + \varepsilon )\int_\sigma ^{\frac{\sigma }{2}} {{\lambda _{N(x)}}{\rm{d}}x} \le 2(D + \varepsilon )\log \mu (\sigma, F) + O(1).$

再由(10) 式, 则有

$\sigma N(\sigma ) \le 2(D + \varepsilon ){(\log \frac{1}{\sigma })^{{\rho ^*} + \varepsilon }} + O(1),$

两边取对数再除以$\log \log \frac{1}{\sigma }$, 然后取上极限, 则有

$\overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{\log ({\lambda _{N(\sigma )}}\sigma )}}{{\log \log \frac{1}{\sigma }}} \le {\rho ^*} + \varepsilon,$

$\varepsilon$的任意性, 有

$\overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{\log ({\lambda _{N(\sigma )}}\sigma )}}{{\log \log \frac{1}{\sigma }}} \le {\rho ^*}.$

综合前半部分证明, 可知定理成立.

注 2 若$\overline {\mathop {\lim }\limits_{\sigma \to 0} } \frac{{\log ({\lambda _{N(\sigma )}}\sigma )}}{{\log \log \frac{1}{\sigma }}} = 0$, 由定理3.2和注1可知此时${\rho ^*} = 1$.

定理 3.4 设变换(1) 满足(2)--(5) 式, 且有下对数级${\lambda ^*}(1 \le {\lambda ^*} \le \infty )$, $\{ {n_k}\} _1^\infty $是一列递增正整数序列, 则

$\mathop {\underline {\lim } }\limits_{k \to \infty } \frac{{{{\log }^ + }{{\log }^ + }A_{{n_k}}^*}}{{\log \log {\lambda _{{n_{k + 1}}}}}} \le {\lambda ^*}.$

 设$\mathop {\underline {\lim } }\limits_{k \to \infty } \frac{{{{\log }^ + }{{\log }^ + }A_{{n_k}}^*}}{{\log \log {\lambda _{{n_{k + 1}}}}}} = \theta (0 \le \theta < \infty )$, 则对任意给定的$\varepsilon > 0$, 存在$N > 0$, 当$k > N$时,

${\log ^ + }A_{{n_k}}^* \ge {(\log {\lambda _{{n_{k + 1}}}})^{\theta-\varepsilon }}.$

选取${\sigma _k} = \frac{{\theta - \varepsilon }}{{{\lambda _{{n_k}}}}}, k = 1, 2, \cdots $, 当$k > N$${\sigma _{k + 1}} \le \sigma \le {\sigma _k}$时,

$\begin{array}{*{20}{l}} {{{\log }^ + }{M_u}(\sigma ,F) \ge {{\log }^ + }\mu (\sigma ,F)}&{ \ge {{(\log {\lambda _{{n_{k + 1}}}})}^{\theta - \varepsilon }} - {\lambda _{{n_k}}}\sigma }\\ {}&\begin{array}{l} \ge {(\log \frac{1}{{{\sigma _{k + 1}}}})^{\theta - \varepsilon }} + O(1) \ge {(\log \frac{1}{\sigma })^{\theta - \varepsilon }} + O(1),\\ \end{array} \end{array}$

所以

${\lambda ^*} = \mathop {\underline {\lim } }\limits_{\sigma \to 0 + } \frac{{{{\log }^ + }{{\log }^ + }{M_u}(\sigma, F)}}{{\log \log \frac{1}{\sigma }}} \ge \theta.$

$\theta = \infty $, 显然${\lambda ^*} = \infty $, 所以定理得证.

参考文献
[1] 余家荣. Laplace-Stieltjes变换所定义的整函数之Borel线[J]. 数学学报, 1963, 13(03): 471–484.
[2] Kong Yingying, Hong Yong. On the growth of Laplace-Stieltjes transforms and the singular Diriction of complex analysis[M]. Guangzhou: Jinan University Press, 2010.
[3] Kong Yingying, Sun Daochun. On Type-function and the growth of Laplace-Stieltjes transformations convergent in the right half-plane[J]. Adv. Math., 2008, 37(2): 197–205.
[4] 孔荫莹. 半平面解析的无穷级Laplace-Stieltjes变换[J]. 数学学报, 2012, 55(1): 141–148.
[5] 尚丽娜, 高宗升. Laplace-Stieltjes变换所表示的解析函数的值分布[J]. 数学学报, 2008, 51(5): 993–1000.
[6] 陆万春, 彭友花. 右半平面上收敛的Laplace-Stieltjes变换的无限级[J]. 纯粹数学与应用数学, 2012, 28(5): 620–627.
[7] Awasthi K N, Dixit K K. On the logarithmic order of analytic functions represented by Dirichlet series[J]. Indian J. Pure Appl. Math., 1979, 10(2): 171–182.
[8] 周凤麟, 罗国顺, 周永正, 徐洪焱. 左半平面上零级Dirichlet级数及随机Dirichlet级数的对数级[J]. 南昌大学学报(理科版), 2011, 35(2): 121–125.
[9] Nandan K. On the maximum term and maximum modulus of analytic functions represented by Dirichlet series[J]. Annls. Polon. Math., 1973, 28: 213–222.